A Relation between the Weyl Group $W(E_8)$ and Eight-line Arrangements on a Real Projective Plane

Tetsuo Fukui
Department of Informatics and Mediology
Mukogawa Women’s University
Nishinomiya, Japan

Jiro Sekiguchi
Department of Mathematics
Tokyo University of Agriculture and Technology
Koganei, Japan

Abstract

The Weyl group $W(E_8)$ of type E_8 acts on the configuration space of labelled eight lines with some conditions on a real projective plane. This configuration space is identified with an affine open subset S of \mathbb{R}^8. Let \mathcal{P}_S be the totality of connected components of S. Then $W(E_8)$ also action on \mathcal{P}_S. On the other hand, to each labelled eight lines, there associates a diagram consisting of ten circles (roots in a root system of type E_8) analogous to Dynkin diagram. We already showed an existence of a $W(E_8)$-equivariant map f of the totality of such diagrams to \mathcal{P}_S.

The purpose of this talk is to report that the map f is injective. The first step to prove this statement is to determine all the representatives of S_8-orbits of the totality of such diagrams by using symbolic computation. There are 2160 number of S_8-orbits of the totality of such diagrams. Let $\mathcal{U}_i = w_i \mathcal{U}_1$ ($i = 1, \ldots, 2160$, $w_i \in W(E_8)$) be the representatives of S_8-orbits. The second step is to study the $W(E_8)$-actions of \mathcal{U}_i to all the representatives, where \mathcal{U}_1 is the S_8-orbit of the remarkable diagram described in our previous paper. The third step is to determine the labelled eight lines of $f(\mathcal{U}_i)$ by operating w_i on $f(\mathcal{U}_1)$ successively. As a result, we conclude that labelled eight line contained in $f(\mathcal{U}_i)(i \neq 1)$ is not equivalent to that contained in $f(\mathcal{U}_1)$ and the injectivity of f is proved.