
Non-Commutative Gröbner Bases in Poincaré-Birkhoff-Witt

Extensions

Mark Giesbrecht1, Greg Reid2, and Yang Zang2

1 School of Computer Science,
University of Waterloo, Waterloo, Canada

mwg@uwaterloo.ca
2 Department of Applied Mathematics,

University of Western Ontario, London, Canada
{reid,yzhang26}@uwo.ca

Abstract. Commutative Gröbner Bases are a well established technique with many applications,
including polynomial solving and constructive approaches to commutative algebra and algebraic ge-
ometry. Noncommutative Gröbner Bases are a focus of much recent research activity. For example,
combining invariant theory and elimination theory, or elimination in moving frames of partial differ-
ential operators invariant under an equivalence group, requires the use of noncommutative Gröbner
bases. This paper presents theory and algorithms for noncommutative Gröbner bases in Poincaré-
Birkhoff-Witt extensions. These extension rings generalize the previous domains over which non-
commutative Gröbner bases have been applied. Our approach to noncommutative Gröbner bases
differs from previous work which assumes that the coefficients are from a field or commutative ring.
In applications such as Cartan’s method of moving frames, this is not the case, and the theory that
we present can be applied.

1 Introduction

Since the mid-1980’s, noncommutative Gröbner bases have developed as an active research area in Com-
puter Algebra, with many applications. See, for example, Chyzak and Salvy [6] for Ore algebras, Green
[10] for path algebras, Kandri-Rody and Weispfenning [12] for algebras of solvable type, Mora [17] for
free algebras over fields. Generally speaking, there are two streams in these studies. One is free algebras,
which preserve properties of semigroups. The other is algebras of solvable type (including rings of differ-
ential operators) which preserve Dickson’s lemma. In most of the above papers, the authors assume that
the coefficients are from a field or commutative ring, and that these commute with the indeterminates
(although the indeterminates may not commute with each other).

There are many interesting and useful rings which the above papers do not address. Examples include
some kinds of homogenous partial differential equations with non-constant coefficients (see Adams et al.
[2]). The method of choosing coordinates which are invariant under a given symmetry group (e.g. polar
coordinates), in its most general form requires the introduction of a moving frame of non-commuting
partial differential operators (Cartan’s famous equivalence method). Elimination theories for such systems,
by necessity, require a non-commutative Gröbner Basis method of the type presented in this paper (see
Lisle & Reid [14], and Mansfield [15]). Another example is the skew enveloping algebra R#U(L) (see
McConnell and Robson [16]), which is important in associative ring theory. This motivates us to define
Gröbner bases in Poincaré-Birkhoff-Witt (PBW) extensions. We prove the left division rule and many
fundamental properties of such Gröbner bases, and give an algorithm to construct them. As a special case,
we consider the graded lexicographic ordering, and reduce computing Gröbner bases of PBW extensions
to the commutative case. Finally we apply this theory to the moving frame approach in Section 4.

Differential elimination algorithms have been effective in pre-processing and simplifying systems for
the subsequent application of the methods of scientific computation. Such methods include numerical
integration techniques and symmetry techniques.

A popular new research area is the area of Geometric Integration [18]. The general philosophy of that
area is to include as many qualitative features of the physical system being studied as possible in the tools
used to study the system. For example numerical integrators, which are invariant under the symplectic
group (geometric integrators) are used to numerically solve Hamilton’s equations, which are also symplec-
tically invariant. This paper represents progress in this direction for differential elimination algorithms
by, for example, enabling the differentiations and eliminations of such algorithms to be executed in a
moving frame, invariant under a group admitted by the given problem. Our extension of such algorithms
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to coefficients which do not come from a field (and are not necessarily invertible) are potentially relevant
for matrix formulations arising in non-commutative field theories. In such instances it is helpful to be
able to perform such calculations, as physicists would, in the non-commutative matrix formalism, instead
of breaking it down to components and using commutative differential algebra, as is the current practice.
This is an area which we are investigating.

2 Poincaré-Birkhoff-Witt Extensions

We first introduce the definition of PBW extensions used in this paper, which is given by Bell and
Goodearl [5]. This definition leads to a unified treatment of many polynomial rings currently studied in
associative ring theory and Computer Algebra.

Definition 1. Let R and T be two associative rings with R ⊆ T . T is called a (finite) PBW extension
of R if there exist x1, x2, · · · , xn ∈ T such that

(1) the monomials xi1
1 x

i2
2 · · ·xin

n form a basis for T as a free left R-module, where i1, i2, · · · , in ∈ N;
(2) xir − rxi := [xi, r] ∈ R for each i = 1, · · · , n and any r ∈ R;
(3) xixj − xjxi := [xi, xj ] ∈ R+Rx1 + · · · +Rxn for all i, j = 1, · · · , n.
We write T = R〈x1, · · · , xn〉.

It is clear that every element ofR〈x1, · · · , xn〉 can be uniquely represented as a finite sum
∑
rix

i1
1 · · ·xin

n ,
where ri ∈ R, i1, · · · , in ∈ N. We call the monomials of the form xi1

1 · · ·xin
n standard monomials. Note

also that any non-standard monomial xi1
j1
· · ·xin

jn
can be expressed as a finite sum of standard monomials.

Remark 1. We remind the reader of the differences between PBW extensions and other similar algebraic
structures. For example, comparing PBW extensions with algebras of solvable type defined in [12], we
note a number of important differences. Algebras of solvable type require coefficients and indeterminates
commute, whereas PBW extensions make no such requirement. For example, R#U(L) is not an algebra
of solvable type in general, but is a PBW extension. On the other hand, algebras of solvable type define
a “quantum” or “ordering” version of condition (3) above, which states roughly that the commutator is
smaller than the product under a term ordering. In an upcoming paper we define skew-PBW extensions
which include both algebras of solvable type and PBW extensions. We also suggest that reader should
compare PBW extensions with free algebras and note the differences.

Example 1. There are several prototypical examples of PBW extensions:
(1) The usual multivariate polynomial rings over R, Ore algebras and PBW algebras discussed in Com-

puter algebra. The skew enveloping algebra (or smash product) R#U(L) is an example of PBW
extensions. In particular, the universal enveloping algebra U(L), the n-Weyl algebra An(K) and skew
polynomial ring (derivation type) R[x, δ] also are examples of PBW extensions (see McConnell and
Robson [16]).

(2) Some kinds of PDEs with non-constant coefficients. For example, let R = K(x1, · · · , xn) be a function
field over a field K. It is well-known that all partial derivations over R form a (possibly infinite dimen-
sional) Lie algebra under the usual brace product. In the language of PDEs, one partial differential
equation is written as:

an(x1, · · · , xn)
∂i1

∂xi1
1

· · · ∂
in

∂xin
n

+ · · · + a0(x1, · · · , xn) = 0.

Corresponding to the skew enveloping algebra, the above equation is in the ringK(x1, · · · , xn)#U(L),
and can be written as:

an(x1, · · · , xn)x̄i1
1 · · · x̄in

n + · · · + a0(x1, · · · , xn) = 0

where the new (non-commuting) indeterminates x̄1, . . . , x̄n represent the operators ∂
∂x1

, . . . , ∂
∂xn

re-
spectively.

(3) Moving frames (see Section 4) and some systems of linear homogeneous partial differential equations
with non-constant coefficients (see [2], [14] and [15]).
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We denote by M(X) or M(x1, . . . , xn) the set {xα1
1 xα2

2 · · ·xαn
n |αi ∈ N} of all standard monomials of

{x1, · · · , xn}. For simplicity, we write Xα = xα1
1 xα2

2 · · ·xαn
n and α = (α1, α2, · · · , αn) ∈ N

n. Given a total
order ≺ on the set of standard monomials, we define the leading monomial lm(f) of f ∈ R〈x1, · · · , xn〉
to be the largest standard monomial occurring in f with non-zero coefficient, the leading coefficient lc(f)
to be the coefficient of lm(f) and leading term lt(f) = lc(f) · lm(f). For a subset S ⊆ R〈x1, · · · , xn〉,
lm(S) = {lm(s)|s ∈ S} while lc(S) and lt(S) are similarly defined and �(S) will be the left ideal generated
by S in R〈x1, · · · , xn〉. The degree of Xα := xα1

1 · · ·xαn
n is deg(Xα) = |α| := α1 + · · ·αn.

Definition 2. An admissible order ≺ on M(X) is a total order of M(X) which satisfies:
(1) multiplicative, i.e., r ≺ Xα and Xα ≺ Xβ imply that lm(XηXαXγ) ≺ lm(XηXβXγ), where

Xη, Xα, Xβ, Xγ ∈ M(X) and r ∈ R.
(2) degree compatible, i.e., deg(Xα) ≺ deg(Xβ) implies Xα ≺ Xβ, where Xα, Xβ ∈ M(X).

Remark 2. From condition (2), we get the descending chain condition, i.e., there are no infinite strictly
descending chains of standard monomials, which is used to prove that the reductions will stop eventually.

Example 2. The typical example of this order is the graded lexicographic ordering. That is, xα1
1 xα2

2 · · ·xαn
n

≺ xβ1
1 xβ2

2 · · ·xβn
n if and only if the first nonzero component of (

∑n
k=1(αk − βk), α1 − β1, · · · , αn − βn) is

negative.

Before computing Gröbner bases in PBW extensions, we first need a notion of the coefficient ring
being computable.

Definition 3. An associative (though not necessarily commutative) ring R is (left) computable, if in
addition to the usual arithmetic operations being computable, the following two conditions hold:
(1) (left ideal membership) Given a, a1, · · · , am ∈ R, there is an algorithm which decides whether a is in

the left ideal R(a1, · · · , am) and if so, finds b1, b2, · · · , bm ∈ R such that a =
∑m

i=1 biai.
(2) (left syzygies) Given a1, · · · , am ∈ R there is an algorithm which finds a finite set of generators for

the R-module

Syz(a1, · · · , am) := {(b1, · · · , bm) ∈ Rm|
m∑

i=1

biai = 0}.

If R is a field, the condition “left ideal membership” is trivial. But if R is a ring, it is a useful and
necessary condition. The condition “left syzygies” is needed to guarantee that the algorithm GröbnerPBW
which follows is implementable, since from the noetherian condition we only know that there exist a
finite number of generators. In fact these conditions have been used in many papers, for example, Gianni,
Trager and Zacharias [9]. It is a common condition when one considers Gröbner theory on rings instead
of fields. There are many rings satisfying this condition, for example, the usual polynomial ring over a
field and the universal enveloping Lie algebra over a field (see Apel and Lassner [4]).

In the remainder of the paper, we assume that R is a left computable and noetherian (not necessarily
commutative) ring with a finite PBW extension R〈x1, · · · , xn〉, and ≺ is an admissible order on M(X).

3 Gröbner Bases in PBW Extensions

In [8], Galligo first considered Gröbner bases in the ring of linear differential operators. Later, many
authors extended Galligo’s idea to various rings. For example, Chyzak and Salvy [6] consider Gröbner
bases in Ore algebras, and Insa and Pauer [11] for Gröbner bases in the ring of differential operators,
assuming the coefficient form a subring of a function field. In this paper we consider the more general
case, PBW extensions.

Definition 4. For f, g ∈ M(X), f is a factor of g if there exist p, q ∈ M(X) such that g = lm(pfq).
Also g is said to be divisible by f , denoted by f |g.

It is easy to see that if f = xα1
1 · · ·xαn

n , and g = xβ1
1 · · ·xβn

n , then f is a factor of g if and only if
αk ≤ βk, for all 1 ≤ k ≤ n.

In the following definition, we only require that the leading terms are reduced. The conditions involving
reduced polynomials (over rings) are no longer required, and so reducing non-leading terms is unnecessary
(see [1], p.211).



100 Mark Giesbrecht, Greg Reid, Yang Zang

Definition 5. Let G be a finite subset of R〈x1, · · · , xn〉 and f, h ∈ R〈x1, · · · , xn〉. We say h is a one step
reduction of f modulo G, denoted f →G h, if for the leading term aXα in f , there exist g1, · · · , gt ∈ G
and r1, · · · , rt ∈ R such that
(1) lm(gi)’s are factors of Xα, say lm(XβigiX

γi) = Xα, for all i = 1, · · · , t;
(2) a =

∑t
i=1 ri lc(gi) for some ri ∈ R, i = 1, · · · , t;

(3) h = f − ∑t
i=1 riX

βigiX
γi .

Furthermore, we say f reduces to h modulo G if and only if there exist h1, · · · , hs ∈ R〈x1, · · · , xn〉
such that f →G h1 →G h2 →G · · · →G hs →G h.

Remark 3.
(1) Note that the conditions of (1) and (3) are equivalent to:

(1)’ lm(gi)’s are factors of Xα, say lm(Xβigi) = Xα, for all i = 1, · · · , t;
(3)’ h = f − ∑t

i=1 riX
βigi.

(2) We remind the reader that Gauss reduction does not work in PBW extensions since the elements of R
are not necessarily invertible. Therefore we have to use “sum” to cancel some terms. For example, consider
the PBW extension K[y1, y2, y3]〈x1, x2, x3〉, where K[y1, y2, y3] is the usual polynomial ring over a field K
and {x1, x2, x3} is the 3-dimensional Lie algebra with [x1, x2] = x1, [x1, x3] = −2x1 and [x2, x3] = −2x3.
Set G = {g1 := y1x1, g2 := y2x2} and f := (2y1 + 3y2)x1x2 + x1 + 1. Since K[y1, y2, y3] is just a ring, not
a field, we do elimination as follows:

h = f − (2g1x2 + 3g2x1) = (2y1 + 3y2)x1x2 + x1 + 1 − (2(y1x1)x2 + 3(y2x2)x1)
= (2y1 + 3y2)x1x2 + x1 + 1 − (2(y1x1x2) + 3y2(x1x2 − x3)) = x1 − 3y2x3 + 1.

Definition 6. An element f ∈ R〈x1, · · · , xn〉 is said to be in reduced form with respect to G if f can not
be reduced modulo G. A reduced form of f modulo G is an element h ∈ R〈x1, · · · , xn〉 such that h is in
reduced form with respect to G and f →G h.

As in the commutative case we have a division rule, but here it is one-sided.

Proposition 1. (Left division rule) Let G := {g1, · · · , gt} ⊆ R〈x1, · · · , xn〉 and f ∈ R〈x1, · · · , xn〉.
Then there exist h1, · · · , ht, ψ ∈ R〈x1, · · · , xn〉 such that f = h1g1 + · · · + htgt + ψ, where ψ is reduced
modulo G and lm(f) = max{max{lm(lm(hi) lm(gi))}t

i=1, lm(ψ)}.
Proof. If f is reduced modulo G, then there is nothing to do. Assume then that there is a reduction
chain f → ψ1 → ψ2 → · · · . By the definition of reduction, the leading term is decreased, that is,
lm(f) � lm(ψ1) � lm(ψ2) � · · · . Since � is a well-ordering, the reduction chain has to stop, say,
f → ψ1 → · · · → ψs → ψ, where ψ is reduced modulo G. By the remark 3, we have f − ψ1 =
r11X

α11g1 + · · ·+ r1tX
α1tgt, where {r1i} ∈ R, lt(f) = r11 lt(Xα11g1) + · · ·+ r1t lt(Xα1tgt) (some rji and

αji maybe zero) and lm(f) = lm(Xα1igi) for all i such that r1i 	= 0 (since R maybe has zero-divisors).
Similarly we have the representation for ψ1 − ψ2 = r21X

α21g1 + · · · + r2tX
α2tgt. Therefore

f − ψ2 = (f − ψ1) + (ψ1 − ψ2) = (r11Xα11 + r21X
α21)g1 + · · · + (r1tX

α1t + r2tX
α2t)gt.

Note that the coefficients of {gi} are not all zero if s > 2. Continuing in this way, we get the representation
for f − ψ as required. 
�

The above proposition gives a method to calculate the reduced form:

Algorithm: ReducedForm
Input: � G = {g1, · · · , gt} ⊆ R〈x1, · · · , xn〉;

� f ∈ R〈x1, · · · , xn〉;
Output: � a reduced form of f modulo G: h1, · · · , ht, ψ ∈ R〈x1, · · · , xn〉 such that f = h1g1 + · · · +

htgt+ψ, where ψ is reduced modulo G and lm(f) = max{max{lm(lm(hi) lm(gi))}t
i=1, lm(ψ)};

Set ψ := f and h1, . . . , ht := 0;
While ψ 	= 0 and lc(ψ) ∈ �(lc(g) : g ∈ G, lm(g)| lm(ψ)) Do

Find {ri}t
1 ∈ R, {Xαi}t

1 so lc(ψ) =
∑t

i=1 ri lc(gi), lm(Xαigi) = lm(ψ);
ψ := ψ − ∑t

i=1 riX
αigi.

For i = 1 to t Do hi := hi + riX
αi ;

End.
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Definition 7. Let I be a left ideal of R〈x1, · · · , xn〉 and G a subset of I. Then G is called a (left) Gröbner
basis of I if for all f ∈ I, f →G 0.

While some of the definitions and theorems in the PBW extensions case are equivalent to those in the
commutative case, others do not hold.

Theorem 1. Let I be a left ideal of R〈x1, · · · , xn〉 and let G be a finite subset of I. The following
assertions are equivalent:

(1) G is a left Gröbner basis of I;
(2) For all 0 	= f ∈ I, f is reducible modulo G;
(3) For all 0 	= f ∈ I, there exist g1, · · · , gt ∈ G such that lm(gi), i = 1, · · · , t are factors of lm(f) and

lc(f) ∈ �(lc(g1), · · · , lc(gt));
(4) For α ∈ N

n, let

�(α, I) := �(lc(f) : f ∈ I, lm(f) = Xα). Then for all α ∈ N
n the left ideal �(α, I) is generated by

{lc(g) : g ∈ G, lm(g)|Xα}.

Proof. (1) ⇒ (2) follows from the definition of Gröbner bases.
(2) ⇒ (1): Let G := {g1, · · · , gt} and 0 	= f ∈ I. Since f is reducible, by induction and Proposition 1,

there exist h1, · · ·ht, ψ ∈ R〈x1, · · · , xn〉 such that f = h1g1 + · · ·htgt + ψ, where ψ is reduced modulo G.
This implies that ψ = f − (h1g1 + · · ·+htgt) ∈ I, and so ψ is reducible by (2), a contradiction. Therefore
ψ = 0, that is, f can be reduced to 0 modulo G.

(2) ⇔ (3) follows from the definition of reduction.
(3) ⇒ (4): For fixed α ∈ N

n, for any r ∈ �(α, I), since �(α, I) is usually not a principal ideal, there exist
f1, · · · , ft ∈ I with lm(fi) = Xα, i = 1, · · · , t and a1, · · · , at ∈ R such that r = a1 lc(f1) + · · · + at lc(ft).
From (3), for each fi, we have lc(fi) = b1 lc(gi1) + · · · + bs lc(gis), where gij ∈ G, lm(gij)| lm(fi), bj ∈
R, j = 1, · · · , s. Thus r ∈ �(lc(g) : g ∈ G, lm(g)|Xα).

Conversely, let a ∈ �(lc(g) : g ∈ G, lm(g)|Xα). Then a = r1 lc(g1)+ · · ·+ rt lc(gt) for some ri ∈ R, gi ∈
G, lm(gi)|Xα, i = 1, · · · , t. Choose {Xαi}t

1 ∈ M(X) such that lm(Xαigi) = Xα for i = 1, · · · , t. Note
that Xαigi ∈ I, we get

a = r1 lc(g1) + · · · + rt lc(gt) = r1 lc(Xα1g1) + · · · + rt lc(Xαtgt)
∈ �(lc(f) : f ∈ I, lm(f) = Xα).

(4) ⇒ (3): For any 0 	= f ∈ I, let lm(f) = Xα. Then lc(f) ∈ �(α, I). By (4), lc(f) ∈ �(lc(g) : g ∈
G, lm(g)|Xα). 
�

Corollary 1.
(1) If G is a Gröbner basis for the left ideal I in R〈x1, · · · , xn〉, then I = �(G).
(2) If G is a Gröbner basis and f ∈ �(G) and f →G h, where h is reduced, then h = 0.
(3) Let G be the Gröbner basis of left ideal I and f ∈ R〈x1, · · · , xn〉. Then f ∈ I if and only if f = 0

modulo G.

Next we give a method to construct Gröbner bases in PBW extensions. We remind the reader that
in general rings the S-pair criteria do not work. A simple example can be found in ([4], p.248).

Theorem 2. Let I be the left ideal of R〈x1, · · · , xn〉 generated by a finite set G. For F := {g1, · · · , gs} ⊆
G, let lcm(F ) be the least common multiple of {lm(gi)}s

i=1. Let BF be a finite set of generators of
Syz(lc(g1), · · · , lc(gs)). Then the following assertions are equivalent:
(1) G is a Gröbner basis of I;
(2) For all F := {gi}s

1 ⊆ G and for all {b1, . . . , bs} ∈ BF , we have that
∑s

i=1 bi(X
lcm(F )/ lm(gi))gi reduces

to zero with respect to G.

Proof. (1) ⇒ (2) follows from
∑s

i=1 bi(X
lcm(F )/ lm(gi))gi ∈ �(G).

(2) ⇒ (1): Let f ∈ I. By Theorem 1 we need to show: lc(f) ∈ �(lc(g) : g ∈ G, lm(g)| lm(f)).
Let G := {g1, · · · , gt}. Then f ∈ I implies that there exists a representation f =

∑t
i=1 figi. Further-

more we may choose {fi}t
1 such that max≺{lm(lm(fi) lm(gi))}t

i=1 is minimal, say Xα0 . Let F := {gi ∈
G| lm(lm(fi) lm(gi)) = Xα0}. Without loss of generality, we may assume that F = {g1, · · · , gs}, 1 ≤ s ≤ t.
The following argument considers cases based on the leading monomial of f .
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If lm(f) = Xα0 , then lt(f) =
∑s

i=1 lt(figi) and lc(f) =
∑s

i=1 lc(fi) lc(gi) ∈ �(lc(g) : g ∈ F ). Note
that gi ∈ F implies lm(f) = lm(lm(fi) lm(gi)). Thus lm(gi)| lm(f). Therefore lc(f) ∈ �(lc(g) : g ∈
G, lm(g)| lm(f)).

If lm(f) ≺ Xα0 , then
∑s

i=1 lc(fi) lc(gi) = 0 and (lc(f1), · · · , lc(fs)) ∈ Syz(lc(g1), · · · , lc(gs)). Let BF

be a basis of Syz(lc(g1), · · · , lc(gs)), say, BF := {b1, · · · , bk} := {(b11, · · · , b1s), · · · , (bk1, · · · , bks)}. There
exist r1, · · · , rk ∈ R such that (lc(f1), · · · , lc(fs)) = r1b1 + · · ·+rkbk = (r1b11 + · · ·+rkbk1, · · · , r1b1s · · ·+
rkbks). That is, for 1 ≤ i ≤ s, we have lc(fi) = r1b1i + · · · + rkbki. Now

f =
t∑

i=1

figi =
s∑

i=1

figi +
t∑

i=s+1

figi

=
s∑

i=1

(fi −
k∑

j=1

rjbji lm(fi))gi +
s∑

i=1

k∑

j=1

rjbji lm(fi)gi +
t∑

i=s+1

figi.

For the first sum of equation (3.2), from lm(fi −
∑k

j=1 rjbji lm(fi)) ≺ lm(fi), we have that lm(lm(fi −∑k
j=1 rjbji lm(fi)) lm(gi)) ≺ Xα0 , i = 1, · · · , s.
For the third sum of equation (3.2), by the definition of F , we have max{lm(lm(fi) lm(gi))}t

i=s+1

≺ Xα0 .
In order to get the contradiction to the minimality of α0, we have to rewrite the second sum of

equation (3.2). Note that for all gi ∈ F , lm(lm(fi) lm(gi)) = Xα0 . Thus there is an element 0 	= γ ∈ N
n

such that α0 = lcm(F ) + γ. Then

s∑

i=1

k∑

j=1

rjbji lm(fi)gi =
k∑

j=1

rjX
γ(

s∑

i=1

bji
X lcm(F )

lm(gi)
gi)

+
k∑

j=1

rj(
s∑

i=1

(bji lm(fi) −Xγbji
X lcm(F )

lm(gi)
)gi).

Clearly, the leading monomials of every product in the second sum are smaller than Xα0 . Thus we only
need to consider the first sum. By the assumption,

∑s
i=1 bji

Xlcm(F )

lm(gi)
gi reduces to zero modulo G. Then by

the division rule there exist h1, · · · , ht ∈ R〈x1, · · · , xn〉 such that
∑s

i=1 bji
Xlcm(F )

lm(gi)
gi −

∑t
i=1 higi = 0 and

lm(lm(hi) lm(gi)) ≺ Xα0−γ . Therefore

k∑

j=1

rjX
γ(

s∑

i=1

bji
Xm(F )

lm(gi)
gi) =

k∑

j=1

rjX
γ(

t∑

i=1

higi) =
k∑

j=1

t∑

i=1

Xγhigi.

It is easy to see that for all i, lm(lm(Xγhi) lm(gi)) ≺ Xα0 , a contradiction as required. 
�
The above theorem suggests an algorithm to construct Gröbner bases:

Algorithm: GröbnerPBW
Input: � F = {f1, · · · , fs} ⊆ R〈x1, · · · , xn〉.
Output: � G = {g1, · · · , gt}, a Gröbner basis for �(f1, · · · , fs).

Initialization: G := F,G′ := all subsets of F ;
While G′ 	= ∅ Do

Choose ∅ 	= S ∈ G′, say, S := {fi1 , · · · , fik
};

G′ := G′ \ S;
Compute BS, a generating set for Syz(lc(fi1), · · · , lc(fik

)) and lcm(S);
For each b := (bi1 , · · · , bik

) ∈ BS Do
bi1(X lcm(S)/ lm(fi1))fi1 + · · · + bik

(X lcm(S)/ lm(fik
))fik

→G ψ, ψ is reduced module G.
If ψ 	= 0, then

G := G ∪ {ψ};
G′ := {S′ ∪ {ψ}}; add ψ to every nonempty subset S′.

End Do
End Do
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By the noetherian properties of the ring R, we know that R〈x1, · · · , xn〉 is also noetherian and we
obtain the following proposition.

Corollary 2. Let I be a non-zero left ideal of R〈x1, · · · , xn〉. Then I has a finite Gröbner basis.

If R has some special properties, we can define a notion of S-pairs. For example, when R is a field,
we can define the reductions and S-pairs similar to the commutative case, and easily prove that:

Corollary 3. Assume that R is a field. Let I be a left ideal of R〈x1, · · · , xn〉 generated by a finite set G.
Then G is a Gröbner basis if and only if all S-pairs reduce to zero.

For noncommutative PIDs, we can define S-pairs in a similar fashion to commutative PIDs, though
the situation becomes much more complex. For example, in noncommutative PIDs and UFDs, factors are
only unique with respect to some invariant factors and left great common divisors are may not same as
right great common divisors. We will discuss these issues in forthcoming paper.

Discussing Gröbner bases from the graded point of view has a long history; for example, Robbiano
[19], and more recently Apel [3], consider Gröbner bases on general graded rings. In PBW extensions the
graded lexicographic ordering is the most popular ordering. Let T = R〈x1, · · · , xn〉 be a PBW extension
and ≺ a term ordering compatible with the graded lexicographic ordering. The associated graded ring
grT is defined as R[x̄1, · · · , x̄n] with rx̄i = x̄ir and x̄ix̄j = x̄j x̄i for all r ∈ R, that is, the usual polynomial
ring over R.

We set up a relation between the Gröbner bases of R〈x1, · · · , xn〉 and its associated graded ring
grR〈x1, · · · , xn〉. For an element f ∈ R〈x1, · · · , xn〉, f̄ will be the image of f in grR〈x1, · · · , xn〉. Recall
that the standard filtration of R〈x1, · · · , xn〉 is F1,F2, · · · ,Fn where Fi is the R-subspace generated by all
Xα with |α| ≤ i and grR〈x1, · · · , xn〉 = ⊕Fn/Fn−1 = R[x̄1, · · · , x̄n]. For any left ideal I of R〈x1, · · · , xn〉,
there is a graded ideal gr I of grR〈x1, · · · , xn〉 which is defined by setting (gr I)i = (I+Fi−1)∩Fi/Fi−1 �
I ∩ Fi/I ∩ Fi−1 ⊂ Fi/Fi−1, and gr I = ⊕i(gr I)i.

Lemma 1. ( [16]) Let T = R〈x1, · · · , xn〉 be a PBW extension. If R is a noetherian ring, then T and
grT are noetherian rings.

Theorem 3. Let I be a left ideal of T = R〈x1, · · · , xn〉. If G = {f1, · · · , fm} is a Gröbner bases of I,
then {f̄1, · · · , f̄m} is a Gröbner basis of gr I. Conversely if {g1, · · · , gt} is a Gröbner basis of gr I, then
choose {f1, · · · , ft} ⊆ I such that f̄1 = g1, · · · , f̄t = gt and {f1, · · · , ft} is a Gröbner basis of I.

Proof. Let G = {f1, · · · , fm} be a Gröbner bases of I. For a homogeneous element g ∈ (gr I)i, there
exists f ∈ (I + Fi−1) ∩ Fi/Fi−1 such that f̄ = g. Since f ∈ I, we assume that f = h1f1 + · · · + htft

with lm(lm(hj) lm(fj)) ≺ lm(f), 1 ≤ j ≤ t. Thus g = f̄ = f + Fi−1 = h1f1 + · · · + htft + Fi−1 =
(h1f1 +Fi−1)+ · · ·+ (htft +Fi−1) = h̄1f̄1 + · · ·+ h̄tf̄t. Therefore {f̄1, · · · , f̄m} is a Gröbner basis of gr I.
We leave the remainder of the proof to the reader and remind that S-pairs also do not work on grT . 
�

4 Application to Moving Frames

Standard differential elimination algorithms are based on commuting derivations. In many applications
it is natural to choose instead a basis for these derivations which is adapted to the geometry of the
application (e.g., a basis which is invariant under some given symmetry group of the application).

In these cases, the given commuting frame of commuting partial differential operators ∂
∂xi

may not
be well suited to the application.

One class of moving frames is moving frames of differential operators of the form

∆i =
∑

i

Aj
i (z)

∂

∂zj
, (1)

and these satisfy frame commutation relations of the form:

[∆i, ∆j ] =
∑

k

γk
ij(z)∆k . (2)

A significant abstraction and generalization of these ideas was initiated by Cartan, and in recent times
developed and applied by Fels and Olver [7].



104 Mark Giesbrecht, Greg Reid, Yang Zang

A simple example of such an approach is using polar coordinates for cylindrically invariant problems
(where the operators ∂

∂θ and ∂
∂r commute). Given an arbitrary Lie group G the power of the general

method of moving frames is that, on some sufficiently prolonged space, a G-invariant frame always exists.
A study of differential-elimination methods in moving frames of differential operators was given by

Lisle in his PhD thesis [13]. However Lisle did not give a rigorous Gröbner basis theory for his approach. He
was able, however, to do very complex classification problems which were beyond the power of differential
elimination packages based on commuting derivations.

In this section we show that the Gröbner theory developed in this paper can be applied to moving
frames of differential operators for systems of linear homogeneous partial differential equations.

We treat an illustrative example which arises from the group classification problem for the class of
nonlinear diffusion equations of the form

ut =
(
D(u)ux

)
x
. (3)

This example was used by Lisle and Reid [14] and Lisle [13] to illustrate Lisle’s moving frame method.
The method of group classification attempts, for every form of D(u), to describe the symmetry properties
of the above partial differential equation. This is easy for the illustrative example, but in general leads to
intractable overdetermined systems of partial differential equations for the symmetries when commuting
derivations are used. The idea of Lisle’s method, was to exploit equivalence transformations which mapped
members of the class of partial differential differential equations to another member of the class. In the
above case u �→ au + b, x �→ cx + d, t �→ ex + f , are simple examples of such transformations. Then the
method constructs a moving frame of differential operators invariant under such an equivalence group.

One branch of the calculation, for the nonlinear diffusion equation, leads to the following system of
partial differential equations in the frame standard form of Lisle and Reid [14]:

∆1∆1θ
1 = 0 ∆1θ

2 = 0 ∆1θ
3 = 0

∆2θ
1 = 0 ∆2θ

2 = 2∆1θ
1 − θ3 ∆2θ

3 = 0

∆3θ
1 = −1

2
θ1 ∆3θ

2 = 0 ∆3θ
3 = 0.

This is the system of equations just after equation (18) of Lisle and Reid [14]. In this case the frame
derivations ∆j , j = 1, 2, 3, have vanishing commutators except for

[∆1, ∆3] = −1
2
∆1. (4)

In terms of the original physical variables x, t, u, and the commuting coordinate frame ∂
∂x , ∂

∂t ,
∂
∂u , the

frame derivations are given by

∆1 := D1/2 ∂

∂x
, ∆2 :=

∂

∂t
, ∆3 := D/Ḋ

∂

∂u
, (5)

and the dependent variables θ1, θ2, θ3, yield the infinitesimal symmetries via the relation (14) given in
Lisle and Reid [14].

Notice that the theory of this paper, which is directed to linear homogeneous systems is not directly
applicable, since the above system has 3 dependent variables. To transform it to an equivalent system, with
one dependent variable, we use the Drach Transformation which, although written for the commutative
case, easily generalizes to the non-commutative case. Consider systems with n independent variables
x1, ..., xn (here n = 3) and m dependent variables (here m = 3). The Drach transformation proceeds by
introducing m new independent variables xn+j , j = 1, ...,m and is defined by:

θj := ∆n+jw, j = 1, ...,m, ∆n+j :=
∂

∂xn+j
(6)

together with the additional relations

∆n+j∆n+kw = 0, 1 ≤ j, k ≤ m. (7)

The only non-vanishing commutators remain as

[∆i, ∆j ] =
∑

k

γk
ij(z)∆k, 1 ≤ i, j ≤ n . (8)
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Under this transformation our system becomes

∆1∆1∆4w = 0 ∆1∆5w = 0 ∆1∆6w = 0
∆2∆4w = 0 ∆2∆5w = 2∆1∆4w −∆6w ∆2∆6w = 0

∆3∆4w = −1
2
∆4w ∆3∆5w = 0 ∆3∆6w = 0,

together with the extra relations
∆3+j∆3+kw = 0, 1 ≤ j, k ≤ 3, (9)

and the single non-vanishing commutator amongst the ∆1, ..., ∆6 remains as [∆1, ∆3] = − 1
2∆1. Now the

system for w is a system to which our PBW Gröbner methods can be applied.
Next we outline the main idea. First, we define the ranking on a moving frame. Set the independent

variables x = {x1, · · · , xm}, dependent variables u = {u1, · · · , un}, derivatives {∆1, · · · , ∆m} and ∆ =
{∆αui|α = (α1, · · · , αm) ∈ N

m, i ∈ {1, · · · , n}}. For α = (α1, · · · , αm) ∈ N
m, let |α| = α1 + · · · + αm.

Now we define the ranking on ∆ as following:
Without loss of generality, we may assume that x1 ≺ x2 ≺ · · · ≺ xm and u1 ≺ u2 ≺ · · · ≺ un. The

total degree ordering on ∆ is given by:

∆αui ≺ ∆βuj ⇐⇒ |α| < |β|, or |α| = |β|, and i < j, or
|α| = |β|, i = j and α1 < β1, or
|α| = |β|, i = j, α1 = β1, · · · , αk−1 = βk−1,

and αk < βk for some 2 ≤ k ≤ m− 1.

By the commutative rule, we also can write ∆j∆
αui as a polynomial of standard monomials and ui.

Thus we can define hd∆j∆
αui as the highest derivative (highest with respect to ≺).

Definition 8. A positive ranking ≺ of ∆ is a total degree ordering of ∆ which is compatible with differ-
entiation and well-ordering:

∆αui ≺ ∆βuj ⇒ hd∆γ∆αui ≺ hd∆γ∆βuj (10)

hd∆αui ≺ hd∆γ∆αui for |γ| 	= 0. (11)

It is easy to see that positive ranking is compatible with Definition 2 and the Drach transformation
keeps the positive ranking invariant. Let I be the left ideal generated by a w-system. Then f(u) = 0 for
all f ∈ I. This point of view enables us to study w-systems through Gröbner bases for left ideals in PBW
extensions. Given fw, gw in w-system, the S-pair is defined to be S(fw, gw) = lcm(lm(f), lm(g))/ lm(f) ·
fw− lc(f)/lc(g) · lcm(lm(f), lm(g))/ lm(g) · gw. In particular if we assume that all S-pairs are reduced to
zero in the original untransformed system, then it is easy to show that all the S-pairs in the w-system are
reduced to zero and we can use Corollary 3 to construct Gröbner bases. Thus we have a Buchberger-like
algorithm for moving frames.

The above example from Lisle and Reid [14] is fairly simple to do, even in the original non-variant
commuting coordinate frame. However Lisle and Reid [14] apply their moving frame method to some
highly non-trivial systems (earlier given in Lisle’s thesis [13]). These include group classification of a class
of potential convection diffusion equation, and also a large class of linear wave equations admitting an
infinite equivalence group.

Lisle and Reid conjectured [14], but did not prove, that if their linear homogeneous frame systems
had their S-pairs reduce to zero, then they would obtain a Gröbner basis. This conjecture is rigorously
proved in the current paper.

Some of the linear homogeneous systems in [14] involve functions of the dependent variables (the class
variables) in their coefficients. The sometimes nonlinear auxiliary relations satisfied by the class functions,
need a separate treatment, and had to be checked on a case by case basis. A fully algorithmic approach
involving the class functions in addition to the linear homogeneous frame systems, is an important open
problem. Finally, we note the we are currently working on generalizing the treatment of this paper to
PBW extensions over modules, and this would allow the example to be treated directly without using
the indirect Drach Transformation.
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extensions, Pacific Journal of Mathematics, vol.131(1)(1988), 13-37.
6. F. Chyzak and B. Salvy, Non-commutative elimination in Ore algebras proves multivariate identities, J. Symb.

Comp. 11(1996),
7. M. Fels and P.J. Olver, Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math.

55 (1999) 127-208.
8. A. Galligo, Some algorithmic questions on ideals of differential operators, Proc. EUROCAL’85, Springer LNCS

204, 413-421.
9. P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomial ideals, J.

Symb. Comp. 6(1988), 149-167.
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11. M. Insa and F. Pauer, Gröbner bases in rings of differential operators, In B. Buchberger and F. Winkler,
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