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Abstract. In this paper, we present a method for the analysis of ordinary differential equations.
The main idea is to replace the original non-linear dynamical system by an approximate piecewise
linear one. The latter gives an algebraic expression of the solutions. Our method differs also from
classical methods (e.g. Runge-Kutta) by the fact that we use a discretization of the phase space
instead of the time space. Theoretical results of convergence exist and are proved here. An efficient
symbolic-numeric algorithm for the construction of the solutions of this piecewise linear system is
given. As an application, we show how we can compute an accurate approximation of periodic orbits
using symbolic differentiation of the Poincar map.

1 Introduction

Computation of approximate solutions of ordinary differential equations (ODEs) is an important problem
on which many things have been done (see for example [2], [8]). Most of classical methods (e.g. Runge-
Kutta) use a discretization of the time space to compute approximate solutions. In [1], an alternative
to these methods was proposed. The principle was to replace the initial vector field by an approximate
piecewise linear one which allows much more symbolic computations.
The use of linear systems as a technique for local analysis of dynamical systems almost dates back to the
birth of the subject (e.g. Hartman-Grobman theorem, [7]). In the eighties ([10]), approximate piecewise
linear systems were introduced as a tool for the global qualitative analysis of dynamical systems, but had
never been used (as far as we know) for the computation of approximate solutions.
This method differs from the classical ones by the fact that we use a discretization of the phase space
instead of the time space. Indeed, given a simplicial subdivision of size h of the phase space, let Fh be
the interpolate piecewise linear vector field of F on the subdivision. Then, the question is the following.
In which way does the solutions of the system Ẋ = Fh(X) approximate the solutions of Ẋ = F (X)?
In [3], a detailed study of this method applied to scalar systems have been presented. Numerical tests have
shown that it is comparable to Runge-Kutta methods in terms of computational cost. Moreover, some
improvements have been proposed in order to icrease its accuracy (up to 6 using approximate piecewise
quadratic vector fields).
In the present paper, we focus on higher dimensional systems. After giving an overview of the method, we
will see how it works with a simple example. Then, we will explain how the construction of the solutions
of the approximate piecewise linear system can be practically implemented using a symbolic-numeric
algorithm. Finally, after giving the proof of the convergence of approximate solutions, we will show how
our method can be used in order to compute approximate periodic orbits with automatic differentiation.

2 Overview of the Method

We consider the following initial value problem:

Ẋ(t) = F (X(t)), X(t) ∈ Ω, X(0) = X0 (1)

where Ω is a bounded subset of R
n. The idea of our method is to replace the vector field F by a piecewise

approximation which can be locally and symbolically integrated. For example, we can replace F by its
piecewise linear interpolant on a simplicial subdivision of Ω.
An important point of our method is that we have a decomposition of the phase space (that is Ω).
Hence, let us define a subdivision (Ωi)i∈I of Ω. For all i of I, we define Fi a vector field which approx-
imates F on Ωi. Then, the integration of the piecewise approximate vector field allows to construct an
approximate solution of (1). It can be done using the following algorithm :
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– Initialization
• Set t0 = 0.
• Compute the active cell Ωi0 containing X0.

– Main loop
• First step :

Solve symbolically the differential equation on the active cell Ωik

X ′(t) = Fik
(X(t)), X(tk) = Xk .

i.e. compute the local flow Φik
in Ωik

.
• Second step :

Compute the time tk+1 and the point Xk+1 where X(t) exits Ωik
(using a symbolic or numerical

method).
On the time-interval [tk, tk+1[, X(t) = Φik

(Xk, t − tk).
• Third step :

If tk+1 exists, compute the new active simplex Ωik+1 containing Xk+1.

This algorithm will be detailed in the next sections for piecewise linear approximate vector fields. But
first, in order to catch the idea of the method, let us consider a simple scalar example.

3 A One-Dimensional Example

An example may help to understand the principle. Consider the initial value problem:

ẋ(t) = (x(t))2, x(0) = 1 . (2)

The solution of (2) is x(t) = 1/(1 − t). We are now going to approximate x(t) by the solution of a
piecewise linear dynamical system. We follow the different steps presented in the previous section. First,
a subdivision of the phase space (that is the x-axe) must be set. Let h be a positive real, the x-axe is cut
into intervals Ii = [ih, (i+1)h[. Note that we do not cut the time space (as we do with classical methods)
but the phase space. Then, the next task is to choose an approximation of the function f(x) = x2 on
each interval, for example the linear interpolate function of f at the bounds of Ii:

fi(x) = aix + bi

with

ai =
[(i + 1)h]2 − [ih]2

(i + 1)h − ih
= (2i + 1)h

and
bi = (ih)2 − ai(ih) = ih2[i − (2i + 1)] = −i(i + 1)h2 .

Let xh(t) be the solution of

ẋh(t) = fi(xh(t)), if xh(t) ∈ Ii, xh(0) = 1 . (3)

Let us assume that h = 1/N with N ∈ N. We can compute xh(t) the approximation of x(t).
Thus , t0 = 0 and the first active cell is the interval IN since xh(0) = 1 = Nh. Let ti−N be the time at
which xh(t) enters in Ii. Then, while xh(t) is in this interval, its expression is

xh(t) = (ih +
bi

ai
)eai(t−ti−N ) − bi

ai

which is equivalent to

xh(t) =
i2h

2i + 1
e(2i+1)h(t−ti−N ) +

i(i + 1)h
2i + 1

, if xh(t) ∈ Ii .

Then, xh(t) exits Ii at the point (i + 1)h and at the time

ti+1−N = ti−N +
2

(2i + 1)h
ln (

i + 1
i

) .
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Here is the big difference with classical methods; indeed, the time subdivision is given by the approximate
system and is not fixed a priori. We can remark that the solution of (2) has a vertical asymptote at t = 1.
A good approximation of x(t) should also have a vertical asymptote. It is easy to show that xh(t) has
one:

ti+1−N − ti−N ∼ 2
i(2i + 1)h

⇒ lim
i→∞

ti+1−N =
∑
i≥0

(ti+1 − ti) < ∞ .

This is a great advantage in comparison with classical methods. Indeed, a constant step method can
clearly not reproduce such behaviours. The second point is that we do not have just a sequence of points
(ti, xi) but a symbolic expression of the approximate solution:

xh(t) =
i2h

2i + 1
e(2i+1)h(t−ti−N ) +

i(i + 1)h
2i + 1

, if t ∈ [ti−N , ti+1−N [ .
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Fig. 1. Solution of (3) for h ∈ {0.125, 0.25, 0.5, 1} and solution of (2) (i.e. 1/(1 − t)) (full)

In Fig. 1, we have plotted x(t) and xh(t) for different values of h. We did not plot the approximate
solutions for small values of h since the approximation was so good that one was unable to distinguish
the representative curve of x(t) from the one of xh(t). Experimentally we find a second order of accuracy
for our method.
A detailed study of the method applied to scalar differential equations has been made in [3]. It has been
shown that the solutions of the piecewise linear interpolate (PLI) vector field approximates the exact
solution with the precision O(h2). Moreover, the choice of a better linear approximation (e.g. the inter-
polate function at the Gauss integration points (GPLI)) leads to a third order approximation. Tests on
computational complexity have been made showing that the cost of our method is comparable to the cost
of the Runge-Kutta scheme though a bit more expensive (see table 1).

Table 1. Experimental results for ẋ = ex, x(0) = 1, [3]. (Pentium 3 i686, 1 GHz, C++)

Method Mean run time for Experimental Order
1280 iterations (ms)

PLI 1.124 2.001
GPLI 1.168 3.058
RK3 0.677 2.968

In the next section, we will detail the algorithm of the second section for general n-dimensional
systems.
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4 The Detailed Algorithm for the General n-Dimensional Case

We consider the initial value problem (1). This section deals with the efficient implementation of the
algorithm of section 2 for the construction of an approximate solution X(t) of the problem (1).

4.1 Choice of the Approximate Vector Field

We define a simplicial subdivision (Ωi)i∈I of Ω. For all i of I, Ai and bi are defined so that

Fi(X) = AiX + bi

is the interpolate linear vector field of F at the vertices of the simplex Ωi.

4.2 First Step : Symbolic Local Integration

If X(t) is in the simplex Ωik
, then it verifies

Ẋ(t) = Aik
X(t) + bik

.

This equation is equivalent to (
Ẋ(t)

0

)
= Mik

(
X(t)

1

)

where

Mik
=
(

Aik
bik

0 0

)
.

Let tk be the time at which X(t) entered the simplex Ωik
by the point Xk, then using results of theory

of linear differential equations, it comes that(
X(t)

1

)
= e(t−tk)Mik

(
Xk

1

)

until X(t) leaves Ωik
.

4.3 Second Step : Numerical Computation of the Exit Time

The main difficulty of the method is the computation of the times (tk) at which X(t) exits a simplex. In-
deed, this series is easily computable in scalar systems (see in the previous section). But for n-dimensional
systems (n ≥ 2), there does not exist general algebraic expressions (see [1]). Consequently, a numerical
iterative method must be used to evaluate (tk). This problem has been studied in [4]; in this paragraph,
the main results are given.
The problem to be solved is

For X ′(t) = Aik
X(t) + bik

, X(tk) = Xk ∈ Ωik
;

Find tk+1 (if it exists) the time at which X(t) leaves Ωik
.

But for the simplicity of the notations, we replace it by the equivalent problem

For X ′(t) = AX(t) + b, X(0) = X0 ∈ Ω;
Find t∗ > 0 (if it exists) the time at which X(t) leaves Ω .

(4)

In a first time, let us assume that t∗ exists, the case when the approximate solution does not exit the
simplex will be discussed at the end of the paragraph.
The formulation of the problem (4) is simple but it needs to be transformed in order to be solved.
Consequently, we have to introduce some additional notations. Since Ω is a simplex of R

n, it has n +
1 vertices {Y1, . . . , Yn+1}. Moreover, it is delimited by n + 1 hyperplanes {F1, . . . , Fn+1}. Let kj be
the unitary vector orthogonal to Fj and directed towards the interior of Ω. There exist n + 1 scalars
{d1, . . . , dn+1} such that a point X of R

n is in Ω, if and only if

∀j ∈ {1, . . . , n + 1}, kt
jX − dj ≥ 0 .
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We define the functions fj(t) which represent the distance of X(t) to the faces Fj :

∀j ∈ {1, . . . , n + 1}, fj(t) = kt
jX(t) − dj .

The problem (4) is clearly equivalent to{∀j ∈ {1, . . . , n + 1}, ∀t ∈]0, t∗[, fj(t) > 0
∃j ∈ {1, . . . , n + 1}, fj(t∗) = 0 .

Consequently, the problem to solve is equivalent to the resolution of a non-linear equation. The method
proposed here to find t∗ is quite similar to the classical method of Newton. Indeed, note that the derivative
of fj(t) is simple,

∀j ∈ {1, . . . , n + 1}, f ′
j(t) = kt

jX
′(t) = kt

j(AX(t) + b) .

However, we do not apply the classical method of Newton since it does not allow to insure that it has a
global convergence. Moreover, the functions fj(t) have some interesting properties that can be very useful.
For example, it is easy to compute (using linearity of the vector field and the barycentric definition of Ω)
some bounds on f

(2)
j (t) for all t where X(t) is in Ω. Indeed, we can show ([4]) that

∀t ∈ [0, t∗] ,

{
f

(2)
j (t) ≥ mj = mini=n+1

i=1 [kt
j(A

2Yi + Ab)]
f

(2)
j (t) ≤ Mj = maxi=n+1

i=1 [kt
j(A

2Yi + Ab)] .

We consequently define the series (τk) which converges to the solution of the problem (4).{
τ0 = 0
τk+1 = τk + minj=n+1

j=1 (sj
k)

(5)

where sj
k is the smallest positive root (if it exists) of the quadratic polynomial

fj(τk) + sf ′
j(τk) +

s2

2
mj . (6)

If this polynomial does not have any strictly positive root then set sj
k = +∞. As it was told before,

the series (τk) converges to the value of t∗. Moreover, in [4], it is proved that it converges quadratically.
Indeed,

Theorem 1. Let (τk) be defined as in equation (5).

lim
k→∞

τk = t∗

Assuming j∗ in {1, . . . , n + 1} such that fj∗(t∗) = 0 is unique and f ′
j∗(t∗) 	= 0, then

∃k̄ ≥ 0 so that,

[
Mj∗

inf [τk̄,t∗] |f ′
j∗(t)|

]
|t∗ − τk̄| < 1

and

∀k ≥ k̄, |t∗ − τk| ≤
([

Mj∗

inf [τk̄,t∗] |f ′
j∗(t)|

]
|t∗ − τk̄|

)2k−k̄−1

|t∗ − τk̄|.

The proof of the theorem is simple though quite long. Let us give an idea. We can remark that the
linear part of the quadratic polynomial (6) is the first order Taylor expansion of fj(t) at the point
τk. The quadratic term allows to insure that the value of the polynomial is always smaller than fj(t).
This implies that t∗ is an upper bound for (τk). Moreover, by definition (τk) is increasing and therefore
convergent (it is easy to show that it converges to t∗). Then, the second order convergence comes from
the fact that if the quadratic term in the polynomial (6) is omited, the iteration (4) becomes an iteration
of Newton’s method.
Numerical experiments have been realized ([4]) to test this iterative method and the results are impressive,
we generally need very few iterations to evaluate t∗ with a very good accuracy.
We now consider the case when X(t) does not exit the simplex Ω. Then, there necessarly exists either
an equilibrium or a periodic orbit in Ω to which X(t) converges. It can be shown that in this case

lim
k→∞

τk = +∞ .

Consequently, there are two distinct cases :
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– We want to construct the approximate solution X(t) on a finite time interval [0, T ]. There exist a
finite k such that τk > T . Then, the algorithm stops.

– We want the solution on the interval [0,∞[. The first thing to do is to compute the possible limit of
X(t). Then, special techniques involving Lyapunov stability (see [9]) may be used to prove that X(t)
never exits Ω.

Currently only the first case has been implemented, but the second one should be considered for a later
version.

4.4 Third Step : Computation of the New Active Cell

Once we have tk+1 and Xk+1 then we can compute the new active simplex Ωik+1 using the following rule:{
Xk+1 is in Ωik+1 ,
Aik+1Xk+1 + bik+1 is directed towards the interior of Ωik+1 .

(7)

The second condition allows to insure that the solution X(t) is going to stay in the simplex Ωik+1 during
a non-zero time interval.

4.5 Construction of the Expression of the Approximate Solution

After the computation of the series (tk) and (Xk), the approximate solution can be evaluated at any time
t using the symbolic expression of X(t):(

X(t)
1

)
= e(t−tk)Mik

(
Xk

1

)
if t ∈ [tk, tk+1] .

4.6 Example

The algorithm described in this section has been implemented in Matlab. In this paragraph, the results
of the application of our method to the computation of an approximate solution of the following planar
dynamical system are shown. {

ẋ = −x +y +(x − 1.85)2

ẏ = 3x +y −x3 .
(8)
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1
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3

Fig. 2. A trajectory and the associated simplices

We chose an uniform triangulation of size h = 0.2. A solution of the approximate system is plotted
in figure 2. We can see that the solution is C1 (because the piecewise interpolate vector field is continuous).

In the next section, it is proved that as the subdivision (Ωi) is refined, the solutions of the piecewise
linear interpolate dynamical system converge to the solutions of the exact system.
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5 Convergence of the Approximate Solutions

Before giving the proof of the convergence of the approximate solutions, it is useful to recall a fundamental
theorem of the theory of dynamical systems.

Theorem 2 (Fundamental Inequality [8]). If on a compact Ω the differential equation Ẋ = F (X) satisfies
a Lipschitz condition with Lipschitz constant K 	= 0 and if u1(t) and u2(t) are two continuous, piecewise
differentiable functions satisfying

|u̇i(t) − F (ui(t))| ≤ εi

for all t at which u1(t) and u2(t) are differentiable; and if

|u1(0) − u2(0)| ≤ δ

then for all t where u1 and u2 are defined,

|u1(t) − u2(t)| ≤ δeK|t| +
ε

K
(eK|t| − 1)

where ε = ε1 + ε2.

Now, let us consider the dynamical system :

Ẋ(t) = F (X(t)), X(t) ∈ Ω . (9)

We define, as described in the previous section, a piecewise linear interpolate dynamical system. We
choose a simplicial subdivision (Ωi)i∈I of Ω. Let h be the length of the longest edge of the subdivision.
We note Fh the piecewise linear interpolate vector field of F with regard to (Ωi)i∈I . The approximate
dynamical system we consider is

Ẋh(t) = Fh(Xh(t)), Xh(t) ∈ ∪i∈IΩi . (10)

The proof of the convergence of the solutions of this system to the solutions of (9) is an immediate
corollary of the theorem 2.

Corollary 1 (Convergence of approximate solutions). Assuming that F is C2 and K-Lipschitz on Ω; let
X(t) be the solution of the system (9) verifying X(0) = X0 and Xh(t) be the solution of the system (10)
verifying Xh(0) = X0. Then for all t where X and Xh are defined,

‖X(t) − Xh(t)‖ = O(h2) .

Proof. From interpolation theory, we have the classical result :

∀X ∈ ∪i∈IΩi, ‖F (X) − Fh(X)‖ = O(h2) .

Hence,
‖Ẋ(t) − F (X(t))‖ = 0

and
‖Ẋh(t) − F (Xh(t))‖ = ‖Fh(Xh(t)) − F (Xh(t))‖ = O(h2) .

Moreover ‖Xh(0) − X(0)‖ = 0, consequently the fundamental inequality gives

‖X(t) − Xh(t)‖ = O(h2) .

In [3], numerical experiments have been made. They confirm the theoretical result.

In the next section, a method for the computation of approximate periodic solutions of dynamical
systems using piecewise linear vector field is given.
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6 An Application: Computation of Limit Cycles with Automatic
Differentiation

The computation of periodic orbits is an important point of the study of dynamical systems. In [6] and
[11], algorithms for this problem have been proposed. Both of them use automatic differentiation of the
Poincar map in a neighbourhood of a limit cycle. In this section we show how, using the differentiation
technique and piecewise linear vector fields, we are able to compute approximate limit cycles of dynamical
systems.

6.1 Notations and Assumptions

Let us assume that the approximate piecewise linear dynamical system (10) has a limit cycle Γ . Γ passes
by a finite closed sequence of simplices {Ωi0 , . . . , Ωil

, Ωi0}. Γ enters each simplex Ωij by one of its faces
Fij at the point X∗

ij
and leaves it after a time s∗ij+1

by one of its faces Fij+1 at the point X∗
ij+1

. Please
note that we have {

Fi0 = Fil+1

X∗
i0

= X∗
il+1

.

We define the sequence {t∗i0 , . . . , t∗il+1
}:

{
t∗i0 = 0
t∗ij

=
∑k=j

k=1 s∗ik
.

We note ki the orthogonal vectors to the faces Fi.
We must make the two following assumptions:

Assumption 1 ∀i ∈ {i0, . . . , il}, X∗
i is in the interior of Fi.

Assumption 2 Γ does not enter nor exit the simplices tangently:

∀j ∈ {0, . . . , l}, kt
ij+1

(Aij X
∗
ij+1

+ bij ) 	= 0 .

These assumptions are reasonable; indeed, almost all the trajectories of the system (10) verify these
properties.
In the next paragraph, the computation of the derivative of the Poincaré map on the face Fi0 under the
assumptions 1 and 2 is detailed.

6.2 Algebraic Differentiation of the Poincaré Map

Since the vector field Fh is continuous, then the associated flow Φh is also continuous with regard to the
initial condition. Then, there exists a trajectory Xh(t) with initial condition Xi0 on the face Fi0 such
that it passes by the same sequence of simplices as Γ , entering the simplex Ωij by the face Fij at a point
Xij and leaving after a time sij by the face Fij+1 at the point Xij+1 .
Moreover, for Xi0 sufficiently close to X∗

i0
the sequence of points (Xij ) verifies the assumptions 1 and 2.

The point Xil
is called the successor of Xi0 on the Poincaré section Fi0 .

Note that the point X∗
i0 is its own successor. Consequently, the computation of the limit cycle is equivalent

to the computation of the fixed point of the Poincaré map.
This paragraph deals with the computational differentiation of the Poincar map. But first, let us consider
the functions Pij . Given a point Xij of the face Fij , we note, if it exists, Pij (Xij ) = Xij+1 the point of
Fij+1 at which the trajectory entering Ωij at the point Xij , exits the simplex.
These functions have the following properties:

Lemma 1. Pij is defined in a neighbourhood of X∗
ij
. Moreover it is continuous, differentiable and its

derivative at the point Xij is:

Pij (Xij ) =

(
I − (Aij Xij+1 + bij )kt

ij+1

kt
ij+1

(Aij Xij+1 + bij )

)
esij

Aij .
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Proof. The proof of this lemma comes immediatly with the classical theorem of implicit functions. Indeed,
let Φij be the local flow of the system (10) associated to the linear vector field on the simplex Ωij . Then
the point Xij+1 is defined by:

Xij+1 = Φij (Xij , sij ) .

Since Xij+1 is on the face Fij+1 , sij and Xij are related according to the equation

Hij (Xij , sij ) = kt
ij+1

Φij (Xij , sij ) − dij+1 = 0 . (11)

Hij (Xij , sij ) is continuous and differentiable and its derivatives are:

∂Hij

∂Xij

(Xij , sij ) = kt
ij+1

esij
Aij

and
∂Hij

∂sij

(Xij , sij ) = kt
ij+1

(Aij Xij+1 + bij ) .

Moreover,
Hij (X

∗
ij

, s∗ij
) = 0

and according to assumption 2
∂Hij

∂sij

(X∗
ij

, s∗ij
) 	= 0 .

Thus, the theorem of implicit functions applies; consequently there exists a function Sij defined on a
neighbourhood of X∗

ij
such that

sij = Sij (Xij )

is a solution of equation (11). Moreover, Sij is differentiable and its derivative is:

∂Sij

∂Xij

(Xij ) = −
∂Hij

∂Xij
(Xij , sij )

∂Hij

∂sij
(Xij , sij )

=
−kt

ij+1
esij

Aij

kt
ij+1

(Aij Xij+1 + bij )
. (12)

It follows that Pij is defined on a neighbourhood of X∗
ij

and

Xij+1 = Pij (Xij ) = Φij (Xij , Sij (Xij )) .

Furthermore, it is differentiable and its derivative is

Pij (Xij ) =
∂Φij

∂Xij

(Xij , Sij (Xij )) +
∂Φij

∂sij

(Xij , Sij (Xij ))
∂Sij

∂Xij

(Xij ) .

Pij (Xij ) = esij
Aij + (Aij Xij+1 + bij )

−kt
ij+1

esij
Aij

kt
ij+1

(Aij Xij+1 + bij )

which leads to the result presented in lemma 1.

The matrix Pij (Xij ) has the following property:

Proposition 1.
∀X ∈ R

n, kt
ij+1

Pij (Xij )X = 0 .

Proof. Let X be in R
n:

kt
ij+1

Pij (Xij )X = kt
ij+1

(
I − (Aij Xij+1 + bij )kt

ij+1

kt
ij+1

(Aij Xij+1 + bij )

)
esij

Aij X .

So,

kt
ij+1

Pij (Xij )X = kt
ij+1

esij
Aij X − kt

ij+1
(Aij Xij+1 + bij )

kt
ij+1

(Aij Xij+1 + bij )
kt

ij+1
esij

Aij X .

And the result follows immediatly.
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Now, finding an expression of the Poincaré map P is very simple. Indeed, P is the composition of all the
functions Pij . Thus,

P(Xi0) = Pil
oPil−1o . . . oPi1oPi0(Xi0) . (13)

It follows from lemma 1 that

Theorem 3. P is defined in a neighbourhood of X∗
i0

. Moreover it is continuous, differentiable and its
derivative at the point Xi0 is:

P (Xi0) =
j=0∏
j=l

[(
I − (Aij Xij+1 + bij )kt

ij+1

kt
ij+1

(Aij Xij+1 + bij )

)
esij

Aij

]
.

Proof. According to equation (13) and lemma 1, P is the composition of continuous differentiable func-
tions. Consequently, it is continuous differentiable and moreover its derivative can be computed using the
classical formula:

P (Xi0) =
j=0∏
j=l

[
Pij (Xij )

]
which leads to the expected result.

We also have, as a consequence of proposition 1

Proposition 2.
∀X ∈ R

n, kt
il+1

P (Xi0)X = 0 .

Proof. Let X be in R
n

kt
il+1

P (Xi0)X = kt
il+1

Pil
(Xil

)


 j=0∏

j=l−1

[
Pij (Xij )

]
X


 .

From proposition 1,
kt

il+1
P (Xi0)X = 0 .

Now, let us consider a trajectory with the initial condition Xi0 on the face Fi0 . The sequences (Xij )
and (sij ) can be computed using the method of paragraph 4.2. Consequently, the computation of P (Xi0)
is possible. Then, the trajectory with initial condition Xi0 + dXi0 on the face Fi0 comes back on Fi0 at
a point Xil

+ dXil
such that

dXil
= P (Xi0)dXi0 + O(‖dXi0‖2) .

In the next paragraph, this result is applied to the computation of the limit cycles of the system (10).

6.3 Computation of Limit Cycles

The algorithm presented here for the computation of limit cycles is the method of Newton applied to the
Poincaré map on the face Fi0 .
Let Xk

i0
be a point of Fi0 approximating X∗

i0
. Let us assume that the trajectory Xk

h(t) begining at Xk
i0

passes by the same sequence of simplices as Γ ; Xk
h(t) is an approximation of Γ .

The sequences Xk
ij

and sk
ij

and the matrix P (Xk
i0) are computed as before. We have to make the following

assumption:

Assumption 3 Γ is not singular: P (X∗
i0

) has no eigenvalue equal to 1.

For Xk
i0 on Fi0 sufficiently near of X∗

i0 , P (Xk
i0) has no eigenvalue equals to 1 so (I −P (Xk

i0)) is invertible.
We choose the next approximation of X∗

i0 , Xk+1
i0

defined by:

Xk+1
i0

= [I − P (Xk
i0)]

−1(Xk
il
− P (Xk

i0)X
k
i0) . (14)

If the iteration is well defined, then since Xk
i0 and Xk

il
are on the face Fi0 , Xk+1

i0
should also be on Fi0 .

This is indeed the case ; the equation (14) is equivalent to

Xk+1
i0

= Xk
il

+ P (Xk
i0)(X

k+1
i0

− Xk
i0) . (15)
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Using proposition 2 we have
kt

il+1
P (Xk

i0)(X
k+1
i0

− Xk
i0) = 0 .

Consequently, Xk+1
i0

is on the face Fi0 . We can see that our iterations are well defined and moreover we
have the following classical result of convergence of Newton’s method:

Theorem 4. Let X0
i0 be on Fi0 and sufficiently near X∗

i0 , then

lim
k→∞

Xk
i0 = X∗

i0 ,

moreover
‖X∗

i0 − Xk+1
i0

‖ = O(‖X∗
i0 − Xk

i0‖2) .

Proof. From theorem 3 and since X∗
i0

is a fixed point of P , we have

X∗
i0 = Xk

il
+ P (Xk

i0)(X
∗
i0 − Xk

i0) + O(‖X∗
i0 − Xk

i0‖2) .

Substracting the equation (15) to this equation, we obtain

X∗
i0 − Xk+1

i0
= P (Xk

i0)[X
∗
i0 − Xk+1

i0
] + O(‖X∗

i0 − Xk
i0‖2) .

Consequently,
[I − P (Xk

i0)](X
∗
i0 − Xk+1

i0
) = O(‖X∗

i0 − Xk
i0‖2) .

And since I − P (Xk
i0

) is invertible,

‖X∗
i0 − Xk+1

i0
‖ = O(‖X∗

i0 − Xk
i0‖2) .

Some numerical tests have been done in [5] and the numerical experiments confirm the theoretical esti-
mation of the convergence. Here, this algorithm was used to compute the limit cycle of the system (8),
the limit cycle and the associated simplices (here triangles) are shown in figure 3.
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Fig. 3. Limit cycle and the associated simplices

This method works very well but has a quite important defect. Indeed, like all the methods of Newton,
the convergence is guaranteed only in a neighbourhood of X∗

i0 . Consequently, we must have an idea of
where the cycle is located to use the algorithm. Currently, we do not have methods to do the location
work and simulations must be used to choose the first approximation of the limit cycle.
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Fig. 4. Left: Phase portrait of a planar dynamical system. Right: Phase portrait of the associated piecewise linear
dynamical system (with regard to a mesh of size 0.2).

7 Conclusion

In order to show that our method gives good results, we applied it to the system (8). We computed the
phase portrait of the system using our method and also using a Runge-Kutta method in order to make
a comparison. The results are shown in figure 4.

For our method, a regular triangular mesh of size 0.2 was used. Please note that the phase portraits
are equivalent though the mesh is not very refined. The advantage of our method is here. Indeed, for
many systems we do not need to have a great precision to catch its behaviour. Our method allows to
compute approximate solutions of a system, and even though the mesh is not very refined, our solutions
are always C1.

There are of course some systems that our method cannot handle. These cases arise typically when
the actual system (9) undergoes a bifurcation (e.g. the Jacobian of the vector field at a steady point
becomes singular). We can, for example, consider the following scalar differential equation.

ẋ(t) = α + sin(x(t)), x(0) = 1, α ∈ [0, +∞[ . (16)

The solution of this equation has a horizontal asymptote for α in [0, 1]. For α greater than 1 the solution
of (16) grows to infinity. It is clear that the solution of the associated interpolate piecewise linear equation
can catch (if the mesh is refined enough) the global behaviour of the actual solution for any alpha in
[0, 1[∪]1,∞]. However, for α = 1 the approximate solution generally does not have any asymptote (see
figure 5). Indeed, to catch the asymptote, we should interpolate the vector field 1 + sin(x) at the point
x = 3π/2 (this is generally not the case). Further researches should be done to see how such equations
can be handled by our method.

Future work should focus on adaptative triangulation. Indeed, we have only used regular meshes here.
But, it is clear that the mesh should be refined in some regions (e.g. neighbourhood of equilibrium points)
and could be larger in some others (e.g. regions where the system is quite linear).
Another direction that we would like to explore is differential equations on surfaces. Indeed, a triangulation
of the surface could be made and then the vector field could be approximated with a piecewise linear one.
The applications of our method are numerous (see in [1]) and we are conviced that there will be more in
the next years.
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Fig. 5. Left: representative curves of 1 + sin(x) (solid curve) and of its piecewise linear interpolant with regard
to a subdivision of size h = 0.2 (dashed curve) and h = 0.1 (dotted curve). Right: associated solutions.
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