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Abstract. Cohomology operations (including the cohomology ring) of a geometric object are finer
algebraic invariants than the homology of it. In the literature, there exist various algorithms for
computing the homology groups of simplicial complexes ([Mun84], [DE95,ELZ00], [DG98]), but
concerning the algorithmic treatment of cohomology operations, very little is known. In this pa-
per, we establish a version of the incremental algorithm for computing homology given in [ELZ00],
which saves algebraic information, allowing us the computation of the cup product and the effective
evaluation of the primary and secondary cohomology operations on the cohomology of a finite sim-
plicial complex. The efficient combinatorial descriptions at cochain level of cohomology operations
developed in [GR99,GR99a] are essential ingredients in our method. We study the computational
complexity of these processes and a program in Mathematica for cohomology computations is pre-
sented.

1 Introduction

A simplicial complex is a well–known discrete model of a geometric object, which consists of a collection
of simplices that fit together in a natural way to form the object. In order to classify simplicial complexes
from a topological point of view, a first algebraic invariant that can be used is homology, which in some
sense, counts the number of holes of the object.

We can cite two relevant algorithms for computing homology groups H∗K of a simplicial complex
K in Rn: (1) the classical algorithm based on reducing certain matrices to their Smith normal form
[Mun84]; (2) the incremental algorithm [DE95,ELZ00,EZ01], avoiding the severe computational costs of
the reduction to Smith normal form and consisting of assembling the complex simplex by simplex and at
each step updates the Betti numbers of the current complex. Starting with the boundary of a negative
simplex, this persistence process finds the cycle which is destroyed by this simplex through the search,
computing in this way the geometric realization of a homology cycle. It runs in time at most O(m3), where
m is the number of simplices of the complex. For simplicial complexes embedding in R3, this complexity
is reduced to O(m) in time and space [DE95]. The algorithm proposed in [DG98] is based on simulating
a thickening of a given complex in R3 to a topological 3-manifold homotopic to it, and computing the
homology groups of the last one using classical results. The time and space complexity is linear and this
method also produces representations of generators of the homology groups.

In general, computing homology is not enough for determining whether two geometric objects are
homeomorphic or not. Finer algebraic invariants such as the cohomology (an algebraic dual notion to
homology), the cup product on cohomology or cohomology operations [Spa81], allow us to topologically
distinguish two geometric objects having isomorphic homology groups. For example, a torus and the
wedge product of a sphere and two circles have the same homology but the respective cup products on
cohomology are “essentially” different. Using a field as the coefficient group, for example, Z2, the coho-
mology H∗K of a simplicial complex K gives us the same topological information as the homology of it.
However, the additional ring structure on the cohomology determined by the cup product and cohomology
operations cannot directly be produced from the algorithms previously mentioned for computing the ho-
mology. Roughly speaking, a cohomology operation θ : Hm(−; G)→ Hn(−; G′) is a homomorphism that
acts on cohomology (G and G′ being groups); relevant examples of cohomology operations are Steenrod
squares, Steenrod reduced powers and Adem secondary cohomology operations [MT68]. As an example
of the strong constraints that these operations impose on the cohomology of spaces, we can cite that
the use of this machinery is essential for showing that there do not exist spaces X having cohomology
H∗(X ;Z) a polynomial ring Z[α] unless α has dimension 2 or 4.
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In this paper, we make use of an explicit chain contraction (a special chain equivalence) connecting the
chain complex C∗K, canonically associated to a simplicial complex K and its homology H∗K. Moreover,
from this datum we can derive a cochain contraction from the cochain complex C∗K = Hom(C∗K;Z2),
to the cohomology H∗K. Using this information, we can compute:

1. Geometric realizations of (co)homology generators.
2. The (co)homology class of a (co)cycle in terms of (co)homology generators.
3. The construction of a (co)boundary of a given (co)cycle.
4. The induced homomorphism at (co)homology level of a simplicial map between two complexes.
5. The cup product on cohomology and some primary and secondary cohomology operations.

The first problem is to construct such chain contractions from C∗K to H∗K. In [GR01], a translation
of the classical matrix algorithm (1) in terms of chain contractions is designed. In this paper, we design a
version of the incremental method described in [ELZ00] in terms of chain contractions. The complexity of
our method is also O(m3) where m is the number of simplices of K, but our algorithm saves information
which allows us, for example, to compute the following operations:

1. The cohomology ring of K in O(m5).
2. The Steenrod square operation Sqiαn of a cohomology class αn of degree n in O(in−i+1m) (see

[GR99a])
3. The Adem secondary cohomology operation Ψ2α2 of a cohomology class α2 ∈ KerSq2H1(K;Z2) in

O(m3).

In fact, the modus operandi for evaluating a mod 2 cohomology operation Ō : HmK → HnK on a
cohomology class αm is the following:

1. First, given a finite simplicial complex K, construct the chain contraction from C∗K to H∗K (denoted
(f∗, g∗, φ∗) : C∗K ⇒ H∗K), using our version of the incremental technique.

2. Evaluate Ō on the cohomology class αm using the diagram

C∗K
g∗
← H∗K

O ↓ ↓Ō
C∗K

f∗
→ H∗K ,

where O : C∗K → C∗K is a cochain operation associated to Ō whose formulation is explicitly
given in simplicial terms. An efficient combinatorial description O for Ō being a Steenrod square
[GR99,GR99a], a Steenrod reduced power [GR99] or some Adem secondary cohomology operations
[GR01] have already been done by the authors. We do not deal with this question in this paper, but
it is necessary to say that the algorithmic approach we give here will only be valid if combinatorial
pictures of cohomology operations at cochain level are determined.

Let us observe that in this paper we deal with the general case of Rn. Versions in terms of chain
contractions of the algorithms given in [DE95] and [DG98], designed for the special case of R3, would
allow us to considerably reduce the computational costs of the processes.

2 Homology and Chain Contractions

In this section, we design a version of the incremental algorithm
of [ELZ00] in terms of chain contractions. In this way, we construct a chain contraction from the chain

complex canonically associated to a simplicial complex K, to its homology. Let us observe that passing
to cohomology is not a problem if we use a field as the ground ring. The resulting cochain contraction
from C∗K to H∗K will help us to compute the cup product on cohomology and cohomology operations.

Now, we give a brief summary of concepts and notations. The terminology follows Munkres [Mun84].
Throughout this paper, we consider Z2 is the ground ring and µ denotes the product on Z2. A q–

simplex σ in Rn(where q ≤ n) is the convex hull of q + 1 affinely independent points {v0, ..., vq}. We
denote σ = 〈v0, ..., vq〉. The dimension of σ is |σ| = q. A 0–simplex is a vertex, a 1–simplex is an edge,
a 2–simplex is a triangle, a 3–simplex is a tetrahedron, and so on. An i–face of σ = 〈v0, ..., vq〉 (i < q) is
an i–simplex whose vertices are in the set {v0, ..., vq}. The (q− 1)–faces of σ are called the facets of σ. A
simplex is shared if it is a face of more than one simplex. Otherwise, the simplex is free if it belongs to
one higher–dimensional simplex, and maximal if it does not belong to any. A simplicial complex K is a
collection of simplices such that:
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– If τ is a face of σ ∈ K, then τ ∈ K.
– If σ′, σ ∈ K, then σ′ ∩ σ ∈ K or σ′ ∩ σ = ∅.

Let us notice that K can be given by the set of its maximal simplices. The dimension of K is dimK =
max{|σ| : σ ∈ K}. In this paper, all the simplices have finite dimension and all the simplicial complexes
are finite collections. The set of all the q–simplices of K is denoted by K(q). If L is a subcollection of
K that contains all faces of its elements, then L is a simplicial complex in its own right; it is called a
subcomplex of K. Let K and K ′ be two simplicial complexes. A map f : K(0) → K ′(0) such that whenever
〈v0, ..., vq〉 ∈ K then f(v0), ..., f(vn) are vertices of a simplex of K ′, is called a vertex map.

Algebraic Topology is the study of algebraic objects attached to topological spaces; the algebraic
invariants reflect some of the topological structure of the spaces.

The chain complex C∗K associated to a simplicial complex K is a family {CqK, ∂q}q≥0 defined in
each dimension q by:

– CqK is the free abelian group generated by the q–simplices of K. An element a = σ1 + · · ·+ σm of
CqK (σi ∈ K(q)) is called a q–chain.

– ∂q : CqK → Cq−1K called the boundary operator is given by

∂q〈v0, ..., vq〉 =
q∑

i=0

〈v0, ..., v̂i, ..., vq〉

where 〈v0, ..., vq〉 is a q–simplex of K and the hat means that vi is omitted. By linearity, ∂q can be
extended to CqK, where it is a homomorphism.

A q–chain a is called a q–cycle if ∂a = 0. If a = ∂b for some b ∈ Cq+1K then a is called a q–boundary. We
denote the groups of q–cycles and q–boundaries by ZqK and BqK respectively, and define Z0K = C0K.
Since BqK ⊆ ZqK, we can define the qth homology group to be the quotient group ZqK/BqK, denoted
by HqK. Given that elements of this group are cosets of the form a + BqK, where a ∈ ZqK, we say that
the coset a + BqK, denoted by [a], is the homology class in HqK determined by a or a is a representative
cycle of [a]. Let K and L be two simplicial complexes. A chain map f : C∗K → C∗L is a family of
homomorphisms

{fq : CqK → CqL}q≥0

such that ∂qfq = fq−1∂q for all q. Observe that for every vertex map f : K(0) → L(0), we can obtain the
corresponding chain map f# : C∗K → C∗L such that

f#〈v0, ..., vq〉 =
{ 〈f(v0), ..., f(vq)〉 if f(vi) distinct

0 otherwise

Let h and k be two chain maps from C∗K to C∗L. A chain homotopy from h to k is a family of
homomorphisms

{φq : CqK → Cq+1L}q≥0

such that ∂q+1φq + φq−1∂q = hq + kq. We write h ∼ k if a chain homotopy between h and k exists. Two
chain complexes C∗K and C∗L are chain equivalent if there exist two chain maps f : C∗K → C∗L and
g : C∗L→ C∗K such that

fg ∼ 1C∗L and gf ∼ 1C∗K .

Observe that, in this case, φq : CqK → Cq+1K for all q ≥ 0. A chain contraction [EM52] from C∗K to
C∗L is a chain equivalence such that

fg = 1C∗L and gf ∼ 1C∗K (that is, 1C∗K + gf = ∂φ + φ∂)

and φ has the following “annihilation” properties: fφ = 0, φg = 0 and φφ = 0 . We denote such chain
contraction as (f, g, φ) : C∗K ⇒ C∗L. Observe that if a chain contraction from C∗K to C∗L exists then
L has fewer or the same number of simplices than K. Now, we show some examples of contractions.

(a) Edge Contractions.
Conditions under which edge contractions are homeomorphisms appear in [DEGN99]. Here, we show
one condition under which edge contractions become, at algebraic level, chain contractions.
Let K be a simplicial complex and τ = 〈a, b〉 an edge in K. An edge contraction is given by the vertex
map f : K(0) → L(0) = K(0) − {a, b} ∪ {c} where f(a) = f(b) = c, and f(v) = v for all v �= a, b.
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Let B be a subset of K that is not necessarily a subcomplex. Define

B = {σ′ ∈ K : σ′ ≤ σ ∈ B}, St B = {σ ∈ K : σ ≥ σ′ ∈ B} and Lk B = St B − St B ,

where σ′ < σ means that σ′ is a face of σ.
If Lk a ∩ Lk b = Lk τ, then a chain contraction (f#, g, φ) from C∗K to C∗L is defined as follows:
• f# is the chain map induced by the vertex map f .
• g : C∗L→ C∗K is such that

gτ = τ ∀τ �∈ St c,
g〈c〉 = 〈a〉,

g(ω ∪ 〈c〉) =




ω ∪ 〈a〉 if ω ∈ Lk a,
ω ∪ 〈b〉+ ω̄ ∪ 〈a, b〉 if ω ∈ Lk b− Lk τ and ω̄ ∈ Lk τ is a facet of ω,

ω ∪ 〈b〉 if ω ∈ Lk b− Lk τ and no facet of ω belongs to Lk τ .

• φ : C∗K → C∗+1K is given by

φ〈v0, ..., vq, b〉 = 〈v0, ..., vq, a, b〉 if 〈v0, ..., vq〉 ∈ Lk τ

and φτ = 0 otherwise.
(b) Simplicial Collapses.

Suppose K is a simplicial complex, σ ∈ K is a maximal q–simplex and σ′ is a free (q − 1)–face of σ.
Then, K simplicially collapses onto K −{σ, σ′}. More generally, a simplicial collapse is any sequence
of such operations. A thinned simplicial complex Mscol(K) is a subcomplex of K with the condition
that all the faces of the maximal simplices of Mscol(K) are shared. Then, it is obvious that it is no
longer possible to collapse. There is an explicit chain contraction from C∗K onto C∗(MscolK) [For99].
The following algorithm computes MscolK and the chain contraction from C∗K onto C∗(MscolK).
Suppose that K is given by the set of its maximal simplices.

Initially, MscolK = K, φτ = 0, fτ = gτ = τ for each τ ∈ K.
While there exists a maximal simplex σ with a free face σ′ do

MscolK = MscolK − {σ, σ′},
φσ′ = σ, fσ′ = σ′ + ∂σ and fσ = 0

End while

(c) Contraction to a Vertex.
Let σ = 〈v0, . . . , vq〉 be a simplex and let K[σ] be the simplicial complex whose maximal simplex is
σ. It is obvious that we can obtain a chain contraction from C∗K[σ] to 〈v0〉 using simplicial collapses.
But now, we show another contraction from C∗K[σ] to 〈v0〉 determining the acyclicity of the simplex
σ. This last chain contraction is the key for constructing another one from any simplicial complex to
its homology as we will see in the following section. We define (fσ, gσ, φσ) : C∗K[σ]⇒ 〈v0〉 as follows:

fσ〈vi〉 = 〈v0〉 0 ≤ i ≤ q , and fσ(τ) = 0 otherwise,

φσ〈v0, vj1 , . . . , vjn〉 = 0 and φσ〈vj1 , . . . , vjn〉 = 〈v0, vj1 , . . . , vjn〉 1 ≤ j1 < · · · < jn ≤ q,

gσ〈v0〉 = 〈v0〉.

Let us observe that in this case 〈v0〉 represents the unique class of homology in H∗K[σ].

2.1 Incremental Homology Algorithm and Chain Contractions

Our algorithm for computing a chain contraction from the chain complex of a simplicial complex K to
its homology is based on the incremental algorithm for computing the persistence of the Betti numbers
developed in [ELZ00].

The input of our algorithm implemented in Mathematica is the sorted set of all the simplices, K =
{σ1, . . . , σm}, with the property that any subset of it, {σ1, . . . , σi}, i ≤ m, is a simplicial complex itself.
The output 	 =contraction[K] is a list of sorted lists. Each sorted list has three elements. The first
one is a simplex σ of K, the second one is the image of σ under f and the third one consists of the image
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of σ under φ. We omit in the list the simplices such that the image of them are null under f and φ. In
general, a class of homology α is represented by a simplex τ , so in order to obtain the image of α under
g, we only have to compute a = τ + φ∂τ . Moreover, a will be a representative cycle of α.

Now, let us suppose we have constructed the list 	 =contraction[L] for L = {σ1, . . . , σi−1}, i ≤ m
(if L = ∅, we assume 	 = ∅). We construct contraction[{σ1, . . . , σi}] as follows:

If f[∂σi, 	]= 0 then,
	 ∪ {(σi, σi, φσi)},

Else
Replace [ Replace [ 	,

Solve[f[∂σi, 	]=0]
],

Solve[φ[∂σi, 	]=σi]
]

End if

where, for a simplex τ , f [τ, 	] and φ[τ, 	] are, respectively, the second and the third element of the list of
	 that has τ as the first element. If this list does not exist, then f[τ, 	]= 0 and φ[τ, 	]= 0. Now, let us
explain what contraction[{σ1, . . . , σi}] computes. If f[∂σi, 	]= 0 then σi “creates a cycle”, so in fact,
σi is a new generator of homology. Otherwise, f[∂σi, 	] is a sum of elements of the form

∑
σj∈N⊂L σj .

The idea of this last case is that σi destroys the cycle generated by ∂σi in L. Therefore, we impose
f[∂σi, 	]= 0 and φ[∂σi, 	]= σi. We replace these relations in 	 with the commands Replace and Solve.

At the end of the algorithm, all the elements of the form φτ are replaced by zero. For obtaining the
morphism g and the representative cycles of the homology classes of K, we compute τ + φ∂τ for each
simplex τ (the generators of homology) satisfying that f[τ, 	]= τ in the list 	 =contraction[K]. We
create a new list of sorted lists, called representativeCycles[K] such that in each sorted list the first
element is a generator of homology, τ , and the second element is its image under g, τ + φ∂τ . Observe
that this last chain is, in fact, a cycle:

∂(τ + φ∂τ) = ∂τ + ∂φ∂τ

= ∂τ + (gf − 1− φ∂)∂τ

= gf∂τ − φ∂∂τ [ since ∂∂τ = 0, then ]
= gf∂τ [ since, by construction, f∂τ = 0, then ]
= 0.

It is easy to check that (f, g, φ) is, in fact, a chain contraction from C∗K to H∗K. Observe that given a
cycle a, if fa = 0 then a is also a boundary. In order to compute a chain a′ such that a = ∂a′, we can
use the relation

a− gfa = φ∂a + ∂φa .

Since ∂a = 0 and fa = 0, we have a = ∂φa .

Theorem 1. The complexity of our algorithm for computing the homology of a finite simplicial complex
K and a chain contraction from C∗K on H∗K is O(m3), where m is the number of simplices of K.

Proof. Let K = {σ1, . . . , σm} and d = dim K. Suppose that we have computed 	 =contraction[{σ1, . . . ,
σi−1}]. In the worst case, we have to solve f[∂σi, 	]= 0 and φ[∂σi, 	]= σi. Observe that the number
of simplices involved in ∂σi is less or equal than the dimension of σi which is at most d and then, the
number of simplices involved in the formulas of f[∂σi, 	] and φ[∂σi, 	] is O(dm) = O(m). Since we have
to solve the equations and replace the solution in 	, the total cost of these operations is O(m2). Moreover,
for obtaining the representative cycles, we have to compute τ +φ∂τ for every generator of homology. The
cost of this is also O(m2). Therefore, the total algorithm runs in time at most O(m3). ��

3 Cohomology and Cohomology Operations

One reason in order to use the cohomology for distinguishing spaces instead of homology, is that the
cohomology has additional structures, such as the cup product and cohomology operations. If two spaces
have isomorphic (co)homology groups but the behaviour of the ring structure or cohomology operations
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is different, then they are not homeomorphic. In this section we explain how we can compute the cup
product and cohomology operations starting from a chain contraction from an algebraic object to its
homology. We first need to define more concepts.

The cochain complex associated to K, denoted by C∗K, is the family

{CqK, δq}q≥0 ,

defined in each dimension q by:

– The group CqK = Hom(CqK;Z2)={c : CqK → Z2, c is a homomorphism}.
– The homomorphism δq : CqK → Cq+1K called the coboundary operator given by

δqc a = c ∂q+1a

where c ∈ CqK and a ∈ Cq+1K.

The elements of CqK are called q–cochains. Observe that a q–cochain can be defined on K(q) and it
is naturally extended by linearity on CqK. ZqK and BqK are the kernel of δq and the image of δq−1,
respectively. The elements in ZqK are called q–cocycles and those in BqK are called q–coboundaries. The
qth cohomology group

HqK = ZqK/BqK

can be defined for each integer q. Take into account that since the ground ring is a field, the homology
and cohomology of K are isomorphic. Moreover, given a generator of homology, α, of dimension q, we
can define the corresponding generator of cohomology α∗ : HqK → Z2 such as

α∗α = 1 and α∗β = 0 for α �= β ∈ HqK .

One can also define the dual concept of chain maps and chain contractions, in the obvious way. Further-
more, starting from a chain contraction (f, g, φ) from C∗K to H∗K, we construct a cochain contraction
(f∗, g∗, φ∗) from C∗K to H∗K as follows. Let c ∈ C∗K and α∗ ∈ H∗K. Define f∗c = c g, g∗α∗ = α∗f
and φ∗c = c φ.

The cohomology of K is a ring with the cup product

�: HiK ⊗HjK → Hi+jK

defined at a cocycle level by (c � c′)σ = µ(c〈v0, . . . , vi〉⊗c′〈vi, . . . , vi+j〉), where c and c′ are an i–cocycle
and a j–cocycle, respectively, and σ = 〈v0, . . . , vi+j〉 ∈ K(i+j) is such that v0 < · · · < vi+j . Using the
chain contraction (f, g, φ) from C∗K to H∗K, we can compute the cohomology ring of K in the following
way:

Take α∗ and β∗, cohomology classes of K
For every γ ∈ Hi+jK

compute ((α∗f) � (β∗f))gγ
End for

Notice that the resulting cohomology class is determined by the cocycle c = (α∗f) � (β∗f).
In order to compute a cohomology operation Ō : H∗K → H∗+iK, on one hand, we need to compute

contraction[K] in order to obtain a chain contraction (f, g, φ) from C∗K to its homology and, on the
other hand, we need a simplicial version O : C∗K → C∗+iK of Ō. Therefore, for obtaining Ō(α∗), where
α∗ ∈ H∗K, we only need to compute O(α∗f)g (for more details, see [GR01]). For example, from the
combinatorial formulae of Steenrod squares given in [Ste47,SE62],

Sqi : H∗K → H∗+iK ,

for calculating the cohomology class Sqi(α∗) with α∗ in HqK, we only have to compute Sqi(α∗f)g. More
concretely, at cochain level, Sqic = c �q−i c mod 2. Moreover, given a p–cochain c and a q–cochain c′,
c �n c′ is a (p + q − n)–cochain defined by

(c �n c′)σ =
∑

0≤i0<···<in≤p+q−n

µ(c(∪j evenz
j)⊗ c′(∪j oddz

j))

where σ = 〈v0, . . . , vp+q−i〉, v0 < · · · < vp+q−i; z0 = 〈v0, . . . , vi0〉, zj = 〈vij−1 , . . . , vij 〉, for 1 ≤ j ≤ n, and
zn+1 = 〈vin , . . . , vp+q−n〉. Finally, we can express Steerond squares in a matrix form due to the fact that
these cohomology operations are homomorphisms. The process of diagonalization of such matrices can
give us detailed information about the kernel and image of these cohomology operations. This information
will be very useful in the next section in order to compute Adem secondary cohomology operations.
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4 Adem Secondary Cohomology Operations

For attacking the computation of secondary cohomology operations, we will see in this section that the
homotopy operator φ of the chain contraction (f, g, φ) from C∗K to the homology of K, is essential.

First of all, we will need the following mod 2 relation [Ste47]:

δ(c �n c′) = c �n−1 c′ + c′ �n−1 c + δc �n c′ + c �n δc′ (1)

where c and c′ are two cochains. Now, we shall indicate how Adem secondary cohomology operations

Ψq : N qK → Hq+3(K;Z2)/Sq2Hq+1(K;Z), q ≥ 2

can be constructed (see [Ade52,Ade58]). N qK denotes the kernel of Sq2 : Hq(K;Z) → Hq+2(K;Z2).
These operations appear using the known relation:

Sq2Sq2α + Sq3Sq1α = 0

for any α ∈ H∗(K;Z). For this particular relation there exist cochain mappings

Ej : C∗(K ×K ×K ×K)→ C∗−jK

such that mod 2

(c �q−2 c) �q (c �q−2 c) + (c �q−1 c) �q−2 (c �q−1 c) = δE3q−3c
4 ,

where c is a q–cochain with integer coefficients. Making use of the relation (1) we have that mod 2

(c �q−2 c) �q (c �q−2 c) = δ(b �q δb + b �q−1 b)

(c �q−1 c) �q−2 (c �q−1 c) = δ(η �q−2 δη + η �q−3 η)

where b is a (q + 1)–cochain such that c �q−2 c = δb and η = 1
2 (c �q c + c). Therefore

w =




E3q−3c
4 + b �q−1 b + b �q δb + η �q−2 δη + η �q−3 η, q > 2

E3c
4 + b �1 b + b �2 δb + η � δη, q = 2

is a mod 2 cocycle. If c is a representative q–cocycle of a cohomology class α ∈ N qK with integer
coefficients then,

Ψqα = [w] + Sq2Hq+1K .

Now, suppose Z2 is the ground ring and suppose we have computed the contraction (f, g, φ) from
C∗K to H∗K, 	 =contraction[K]. Then, the cochain b is φ∗(c �q−2 c) = (c �q−2 c)φ. Observe that
for computing Ψqα

∗, α∗ ∈ H∗K, we need to have a combinatorial expression of the morphism E3q−3. A
method for obtaining “economical” combinatorial formulae for E3q−3 is given in [Gon00]. For example,

(E3c
4)σ = µ(c〈v0, v2, v3〉 ⊗ c(v0, v1, v2〉 ⊗ c〈v3, v4, v5〉 ⊗ c〈v2, v3, v5〉

+c〈v0, v4, v5〉 ⊗ c〈v3, v4, v5〉 ⊗ c〈v0, v1, v2〉 ⊗ c〈v0, v1, v2〉
+c〈v0, v1, v5〉 ⊗ c〈v3, v4, v5〉 ⊗ c〈v1, v2, v3〉 ⊗ c〈v1, v2, v3〉
+c〈v0, v1, v2〉 ⊗ c〈v2, v4, v5〉 ⊗ c〈v2, v3, v4〉 ⊗ c〈v2, v3, v4〉
+c〈v0, v1, v2〉 ⊗ c〈v2, v3, v5〉 ⊗ c〈v3, v4, v5〉 ⊗ c〈v3, v4, v5〉) ,

where c is a 2–cochain and σ = 〈v0, v1, v2, v3, v4, v5〉 is a 5–simplex such that v0 < v1 < v2 < v3 < v4 < v5.
Therefore, the steps for computing Ψq are the following:

1. Take α∗ ∈ N qK making use of the diagonalization of the matrix of Sq2HqK.
2. Compute c = α∗f .
3. Compute b = (c �q−2 c)φ, η = 1

2 (c �q c + c), b �q−1 b, b �q δb, η �q−3 η, η �q−2 δη and
E3q−3c

4.
2. Compute wg.
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Let us explain with more detail the first step. In our implementation in Mathematica, the command
hclass[	, q] computes the list of all the cohomology classes of K in dimension q. We compute Sq2α∗

for each α∗ ∈ hclass[	, q] and we write the result as a vector sq2[	, α∗] of 0′s and 1′s such that
Sq2α∗ =sq2[	, α∗]. hclass[	, q+2]. Then, we construct the matrix corresponding to Sq2HqK with the
command

matrixSq2[	, q]=Table[sq2[	, hclass[	, q][[i]]],{i, 1,Length[hclass[	, q]]}
After this, we compute

NullSpace[matrixSq2[	, q], Modulus→ 2]. hclass[	, q]

in order to obtain a base of N qK.
An example of the computation of Adem secondary cohomology operation using our algorithm is the

following. Let K be a simplicial complex whose set of maximal simplices is

{〈1, 3, 7〉, 〈3, 4, 7〉, 〈1, 4, 7〉, 〈1, 2, 8〉, 〈2, 3, 8〉, 〈1, 3, 8〉, 〈4, 5, 9〉, 〈4, 6, 9〉, 〈5, 6, 9〉, 〈3, 4, 10〉,
〈3, 6, 10〉, 〈4, 6, 10〉, 〈1, 2, 3, 4, 5, 6〉, 〈1, 2, 3, 4, 5, 11〉, 〈1, 2, 3, 4, 6, 11〉, 〈1, 2, 3, 5, 6, 11〉, 〈1, 2, 4, 5, 6, 11〉,
〈1, 3, 4, 5, 6, 11〉, 〈2, 3, 4, 5, 6, 11〉}

We first compute the chain contraction to the homology:

{{〈1〉, 〈1〉, 0}, {〈2〉, 〈1〉, 〈1, 2〉}, {〈3〉, 〈1〉, 〈1, 3〉}, {〈4〉, 〈1〉, 〈1, 3〉+ 〈3, 4〉}, {〈5〉, 〈1〉, 〈1, 3〉+ 〈3, 4〉+ 〈4, 5〉},
{〈6〉, 〈1〉, 〈1, 3〉+ 〈3, 4〉+ 〈4, 6〉}, {〈7〉, 〈1〉, 〈1, 7〉}, {〈8〉, 〈1〉, 〈1, 8〉}, {〈9〉, 〈1〉, 〈1, 3〉+ 〈3, 4〉+ 〈4, 9〉},
{〈10〉, 〈1〉, 〈1, 3〉+ 〈3, 10〉}, {〈11〉, 〈1〉, 〈1, 11〉}, {〈1, 4〉, 0, 〈1, 3, 7〉+ 〈1, 4, 7〉+ 〈3, 4, 7〉},
{〈1, 5〉, 0, 〈1, 3, 7〉+ 〈1, 4, 5〉+ 〈1, 4, 7〉+ 〈3, 4, 7〉}, {〈1, 6〉, 0, 〈1, 3, 6〉+ 〈3, 4, 10〉+ 〈3, 6, 10〉+ 〈4, 6, 10〉},
{〈2, 3〉, 0, 〈1, 2, 8〉+ 〈1, 3, 8〉+ 〈2, 3, 8〉}, {〈2, 4〉, 0, 〈1, 2, 4〉+ 〈1, 3, 7〉+ 〈1, 4, 7〉+ 〈3, 4, 7〉},
{〈2, 5〉, 0, 〈1, 2, 5〉+ 〈1, 3, 7〉+ 〈1, 4, 5〉+ 〈1, 4, 7〉+ 〈3, 4, 7〉},
{〈2, 6〉, 0, 〈1, 2, 6〉+ 〈1, 3, 6〉+ 〈3, 4, 10〉+ 〈3, 6, 10〉+ 〈4, 6, 10〉},
{〈2, 8〉, 0, 〈1, 2, 8〉}, {〈2, 11〉, 0, 〈1, 2, 11〉}, {〈3, 5〉, 0, 〈1, 3, 5〉+ 〈1, 3, 7〉+ 〈1, 4, 5〉+ 〈1, 4, 7〉+ 〈3, 4, 7〉},
{〈3, 6〉, 0, 〈3, 4, 10〉+ 〈3, 6, 10〉+ 〈4, 6, 10〉}, {〈3, 7〉, 0, 〈1, 3, 7〉}, {〈3, 8〉, 0, 〈1, 3, 8〉},
{〈3, 11〉, 0, 〈1, 3, 11〉}, {〈4, 7〉, 0, 〈1, 3, 7〉+ 〈3, 4, 7〉}, {〈4, 10〉, 0, 〈3, 4, 10〉},
{〈4, 11〉, 0, 〈1, 3, 7〉+ 〈1, 4, 7〉+ 〈1, 4, 11〉+ 〈3, 4, 7〉}, {〈5, 6〉, 0, 〈4, 5, 9〉+ 〈4, 6, 9〉+ 〈5, 6, 9〉},
{〈5, 9〉, 0, 〈4, 5, 9〉}, {〈5, 11〉, 0, 〈1, 3, 7〉+ 〈1, 4, 5〉+ 〈1, 4, 7〉+ 〈1, 5, 11〉+ 〈3, 4, 7〉},
{〈6, 9〉, 0, 〈4, 6, 9〉}, {〈6, 10〉, 0, 〈3, 4, 10〉+ 〈4, 6, 10〉},
{〈6, 11〉, 0, 〈1, 3, 6〉+ 〈1, 6, 11〉+ 〈3, 4, 10〉+ 〈3, 6, 10〉+ 〈4, 6, 10〉},
{〈1, 2, 3〉, 〈1, 2, 3〉, 0}, {〈1, 3, 4〉, 〈1, 3, 4〉, 0}, {〈1, 4, 6〉, 〈1, 4, 6〉, 0}, {〈1, 5, 6〉, 〈1, 5, 6〉, 0},
{〈2, 3, 4〉, 〈1, 2, 3〉+ 〈1, 3, 4〉, 〈1, 2, 3, 4〉}, {〈2, 3, 5〉, 〈1, 2, 3〉, 〈1, 2, 3, 5〉},
{〈2, 3, 6〉, 〈1, 2, 3〉, 〈1, 2, 3, 6〉}, {〈2, 3, 11〉, 〈1, 2, 3〉, 〈1, 2, 3, 11〉}, {〈2, 4, 5〉, 0, 〈1, 2, 4, 5〉},
{〈2, 4, 6〉, 〈1, 4, 6〉, 〈1, 2, 4, 6〉}, {〈2, 4, 11〉, 0, 〈1, 2, 4, 11〉}, {〈2, 5, 6〉, 〈1, 5, 6〉, 〈1, 2, 5, 6〉},
{〈2, 5, 11〉, 0, 〈1, 2, 5, 11〉}, {〈2, 6, 11〉, 0, 〈1, 2, 6, 11〉}, {〈3, 4, 5〉, 〈1, 3, 4〉, 〈1, 3, 4, 5〉},
{〈3, 4, 6〉, 〈1, 3, 4〉+ 〈1, 4, 6〉, 〈1, 3, 4, 6〉}, {〈3, 4, 11〉, 〈1, 3, 4〉, 〈1, 3, 4, 11〉}, {〈3, 5, 6〉, 〈1, 5, 6〉, 〈1, 3, 5, 6〉},
{〈3, 5, 11〉, 0, 〈1, 3, 5, 11〉}, {〈3, 6, 11〉, 0, 〈1, 3, 6, 11〉}, {〈4, 5, 6〉, 〈1, 4, 6〉+ 〈1, 5, 6〉, 〈1, 4, 5, 6〉},
{〈4, 5, 11〉, 0, 〈1, 4, 5, 11〉}, {〈4, 6, 11〉, 〈1, 4, 6〉, 〈1, 4, 6, 11〉}, {〈5, 6, 11〉, 〈1, 5, 6〉, 〈1, 5, 6, 11〉},
{〈2, 3, 4, 5〉, 0, 〈1, 2, 3, 4, 5〉}, {〈2, 3, 4, 6〉, 0, 〈1, 2, 3, 4, 6〉}, {〈2, 3, 4, 11〉, 0, 〈1, 2, 3, 4, 11〉},
{〈2, 3, 5, 6〉, 0, 〈1, 2, 3, 5, 6〉}, {〈2, 3, 5, 11〉, 0, 〈1, 2, 3, 5, 11〉}, {〈2, 3, 6, 11〉, 0, 〈1, 2, 3, 6, 11〉},
{〈2, 4, 5, 6〉, 0, 〈1, 2, 4, 5, 6〉}, {〈2, 4, 5, 11〉, 0, 〈1, 2, 4, 5, 11〉}, {〈2, 4, 6, 11〉, 0, 〈1, 2, 4, 6, 11〉},
{〈2, 5, 6, 11〉, 0, 〈1, 2, 5, 6, 11〉}, {〈3, 4, 5, 6〉, 0, 〈1, 3, 4, 5, 6〉}, {〈3, 4, 5, 11〉, 0, 〈1, 3, 4, 5, 11〉},
{〈3, 4, 6, 11〉, 0, 〈1, 3, 4, 6, 11〉}, {〈3, 5, 6, 11〉, 0, 〈1, 3, 5, 6, 11〉}, {〈4, 5, 6, 11〉, 0, 〈1, 4, 5, 6, 11〉},
{〈2, 3, 4, 5, 6〉, 0, 〈1, 2, 3, 4, 5, 6〉}, {〈2, 3, 4, 5, 11〉, 0, 〈1, 2, 3, 4, 5, 11〉}, {〈2, 3, 4, 6, 11〉, 0, 〈1, 2, 3, 4, 6, 11〉},
{〈2, 3, 5, 6, 11〉, 0, 〈1, 2, 3, 5, 6, 11〉}, {〈2, 4, 5, 6, 11〉, 0, 〈1, 2, 4, 5, 6, 11〉}, {〈3, 4, 5, 6, 11〉, 0, 〈1, 3, 4, 5, 6, 11〉},
{〈2, 3, 4, 5, 6, 11〉, 〈2, 3, 4, 5, 6, 11〉, 0}} .
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Notice that if a simplex of K doesn’t appear in this list, it is because its image under f and φ is null.
The representative cycle of every homology class is:

g〈1〉 = 〈1〉
g〈1, 2, 3〉 = 〈1, 2, 3〉+ 〈1, 2, 8〉+ 〈1, 3, 8] + 〈2, 3, 8〉
g〈1, 3, 4〉 = 〈1, 3, 4〉+ 〈1, 3, 7〉+ 〈1, 4, 7〉+ 〈3, 4, 7〉
g〈1, 4, 6〉 = 〈1, 3, 4〉+ 〈1, 3, 6〉+ 〈1, 4, 6〉+ 〈3, 4, 10〉+ 〈3, 6, 10〉+ 〈4, 6, 10〉
g〈1, 5, 6〉 = 〈1, 4, 5〉+ 〈1, 4, 6〉+ 〈1, 5, 6〉+ 〈4, 5, 9〉+ 〈4, 6, 9〉+ 〈5, 6, 9〉
g〈2, 3, 4, 5, 6, 11〉 = 〈1, 2, 3, 4, 5, 6〉+ 〈1, 2, 3, 4, 5, 11〉+ 〈1, 2, 3, 4, 6, 11〉

+〈1, 2, 3, 5, 6, 11〉+ 〈1, 2, 4, 5, 6, 11〉+ 〈1, 3, 4, 5, 6, 11〉+ 〈2, 3, 4, 5, 6, 11〉 .

A base of the kernel of Sq2H2K is:

{〈1, 2, 3〉∗, 〈1, 3, 4〉∗, 〈1, 4, 6〉∗, 〈1, 5, 6〉∗} .

Now, given an element α of this kernel, we first have to compute c = g∗α. Let us study a concrete example
with all the details. Let us take α = 〈1, 2, 3〉∗ + 〈1, 5, 6〉∗. Then

c = g∗α = αf = 〈1, 2, 3〉∗ + 〈1, 5, 6〉∗ + 〈2, 3, 4〉∗ + 〈2, 3, 5〉∗ + 〈2, 3, 6〉∗
+〈2, 3, 11〉∗ + 〈2, 5, 6〉∗ + 〈3, 5, 6〉∗ + 〈4, 5, 6〉∗ + 〈5, 6, 11〉∗ .

We now compute the cochains of the 3rd step of the algorithm for computing Ψ2.

δb = c � c = 〈1, 2, 3, 5, 6〉∗ + 〈2, 3, 4, 5, 6〉∗ + 〈2, 3, 5, 6, 11〉∗ b = (c � c)φ = 〈2, 3, 5, 6〉∗

Then, we have that b �1 b = 0 and b �2 δb = 0. On the other hand, δη = c �1 c = 0 therefore
η � δη = 0. We thus get,

w = f∗(E3c
4) = (E3c

4)g = 〈1, 2, 3, 4, 5, 6〉∗g = 〈2, 3, 4, 5, 6, 11〉∗ .

Therefore, Ψ2(〈1, 2, 3〉∗ + 〈1, 5, 6〉∗) = 〈2, 3, 4, 5, 6, 11〉∗. Finally, observe that since there are no classes of
cohomology of dimension 3, then 〈2, 3, 4, 5, 6, 11〉∗ �∈ Im Sq2H3K.

5 Some Comments

All these results can be given in a more general framework working not necessarily with finite simplicial
complexes. Nevertheless, a contraction from the (co)chain complex associated to the simplicial complex
to its (co)homology must exist in order to develop the method.

In this paper, the ground ring is Z2 for simplicity, but the same process can be done working with
any field as the ground ring. For example, let Zp (p being a prime) be the group of coefficients. From
the combinatorial formulae for the reduced pth powers Pi [Ste47,SE62] at cochain level in terms of face
operators established in [GR99,Gon00] and the algorithm for computing the chain contraction (f, g, φ)
from C∗(K;Zp) to H∗(K;Zp), Steenrod cohomology operations can effectively be computed. Let α∗ ∈
Hq(K;Zp), for calculating the cohomology class Pi(α∗) with α∗ ∈ Hq(K;Zp), we only have to compute
Pi(αf)g.

Finally, in order to obtain the image of any cohomology operation at cochain level over a representative
cocycle using our formulae, we have to compute them on a base of C∗(K) in the desired dimension. A
way of decreasing the complexity of this is to do a “topological” thinning of the simplicial complex K in
order to obtain a thinned simplicial subcomplex MtopK of K (such that there exists a chain contraction
from C∗K to C∗(MtopK)). Two examples of thinning in this way are edge contractions (example (a))
and simplicial collapses (example (b)). Therefore, we can apply our machinery to compute cohomology
operations in the thinned simplicial complex MtopK and then, the results can be easily interpreted in
the “big” simplicial complex K via composition of contractions.
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