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Abstract. We describe algorithms and tutor programs for simulation and visualization of the
trajectory sets of a few-body system including a movement of the carrier rocket taking account
of basic forces forming pathways. We consider typical examples of visualization of movement of a
classical particle with variable mass in the field of a massive geoid. We also study dynamics of a
semiclassical few-body model and trajectory sets of two negative charged particles in the field of a
positive charged surface. The symbolic computation system MAPLE is applied to generate computer
codes using numerical integrators for solving the Cauchy problem and to simplify visualization tasks.

1 Introduction

The applications of symbolic computing in the study of the classical and quantum few-body problem
dynamics and the visualization of corresponding trajectories are the subject of recent papers[1–3]. Note
that a quantum few-body problem with the pair Coulomb interactions can be treated via the semiclassical
capture and ionization models of atomic and molecular targets[4–7]. In these models a semiclassical
character of the trajectory set is approximated by the velocity dependent pseudopotentials or variable
mass of particles [8].

In the first part of the talk we consider the problem of simulating the launching and tracing flight paths
of satellites that was solved half a century ago, but its detailed description and visualization is rather a
cumbersome task [9–13]. Nevertheless such a modelling problem is of interest as a standard module for
the automatic information and control systems [14, 15]. We remind that the stationary trajectory of a
satellite is well described by the Kepler laws, while a description of an active part of trajectory requires
the solution of a system of differential equations with the account of basic forces acting on the carrier [9,
10]. The technique of the construction of the model, algorithm and visualization of a flight path and of
a tutor program ’Sputnik’, simulating the motion of the satellite on an active and passive parts of the
flight path, is considered. In particular, for the 2D visualization the carrier rocket is viewed as a material
point and the equations of motion are integrated in a system of cylindrical coordinates. All characteristic
parameters are bound to the Earth surface by means of the geographic coordinates of a subsatellite point.
The position of the carrier rocket is figured in the delivery plane of a launching, and the position of a
subsatellite point is introduced as an authalic projection of the Earth surface [13].

In the second part of the talk we consider a visualization problem of a family of the hyperbolic
paths by Maple in a semiclassical model of the double ionization processes of a helium atom [3], where
two electrons are ejected on the hyperbolic paths via a surface of the order of atomic unit with some
initial data generated either by the elliptic orbits of the internal region [6] or the corresponding quantum
mechanical calculations [16, 17].

We apply Maple with aim to have a useful tool both to generate different codes for a numerical
simulation adopted to different methods [18] and modifications of the task and to have a visualization
tutoring experience by a more simple way. The latter is oriented to the further solution of some kind of
inverse problems, in particular, fitting a set of the initial conditions, which yield a particle orbited on
given elliptic or hyperbolic paths.

The talk is organized as follows. Section 2 deals with the basic steps and equations of the algorithm.
Section 3 gives a description of the basic modules of the program, typical initial data map points of
world space-vehicle launching sites and some examples of the computer 3D visualization of the position
and slope of a launching orbit. The run of the program SPUTNIK is demonstrated on an example of
imitation of flight of the carrier such as ARIANA [13]. The given program is implemented for the 2D
and 3D visualization cases by means of PASCAL and MAPLE, respectively. In section 4 we consider an
application of the 2D visualization of classical trajectories of electrons in the semiclassical model of the
double ionization of a helium atom by a fast electron, allowing one to fit experimental data in view of
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deviations from rectilinear trajectories of the ejected electrons with the Coulomb interaction in the exit
channel. In conclusion some perspectives of applying such an approach are discussed briefly.

2 Basic Equations of the Algorithm

1.Coordinate system. It is known that the passive flight of the satellite occurs in one plane and, therefore,
one of the basic characteristics of an orbit is its inclination to a plane of equator. The other characteristic
is the geographic coordinates of a space-vehicle launching site point Mst, where the start is made. The
inclination of an orbit, the start point Mst, and the center of the Earth O determine the plain of satellite
motion. Assume that the active part of a pathway also lies in the same plane, which we accept as one
of the coordinate planes (Oxy).The Oz axis is normal to this plane. The Ox axis is fixed with respect
to asterisks and directed from the center of the Earth O towards the crossing point Ao of the equator
line with a great circle passing through the point Mst in the starting time of the launcher. The Oy axis
augments the Ox and Oz axes to the right Cartesian coordinate system, which together with clock set
an inertial coordinate system. The satellite motion is then described in a cylindrical coordinate system
(ρ, ϕ, z). The angle ϕ is counted off a point Ao, r is the module of radius vector r(t) of the moving
point M(r, ϕ) of the launcher in a current time t. In terms of angles, � AoOM = ϕ, � AoOMst = ϕst,
� AOM = δ, � AOMst = δst, � AoOA = α, � AoOAst = αst and � NOz = i, and the corresponding
spherical triangles we have the following relations:

sin δ = sin i sin ϕ, tg α = cos i tg ϕ, ctg σ = tg i cosϕ,

where σ is an azimuthal angle of motion. The above angles, except for the inclination angle i, depend on
time t. These relations determine the start values of the angles:

sin ϕst = sin δst/ sin i, tg αst = cos i tg ϕst, ctg σst = tg i cosϕst.
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The value ϕst sets one of the
initial condition of a flight such
that ϕ(1) = ϕ0 = ϕst. The value
αst sets a drift of the longitude
of an ascending knot of the or-
bit with respect to the absolute
value of longitude of the starting
point by the Greenwich α0 abs =
αls abs −αst, where αls abs is the
longitude of a starting point by
the Greenwich. Then the current
longitude of a moving point is set
by αabs = α0 abs + α, that to-
gether with δ determine the geo-
graphical location of a subsatel-
lite point Mu(δ, α).

2.The basic forces. The ba-
sic forces acting on the carrier
are the gravity, aerodynamic and
tractive forces. It is known that
the gravity and tractive forces
are of the same order, while the
aerodynamic forces have a lesser
order. All other forces of random-
ness have an even lesser order
than the aerodynamic forces, and
those are not taken into account.

3. The gravity force. The gravity force Fgr is defined through potential gradient

Fgr = −m(t) gradU.

The mass of Earth is inside a surface of the so-called terrestrial geoid. As a source of the gravity force
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we use an approximation of the potential of a massive rotational ellipsoid up to within the terms of the
same order in κ = (Re − Rn)/Re:

U(r, δ) = −
[(

1 − 2κ

2 − κ
cos2 δ

) (
Re

r

)2

+ . . .

]
GM

r
,

where Re and Rn are the equatorial and polar radii of the Earth, M is the mass of the Earth, G is the
gravity constant, r is a distance from the center of the Earth to the satellite, δ is a geographic latitude
of the subsatellite point.

4. The aerodynamic forces. If the projections of the relative (to the atmosphere) velocity ṽ are preset,
the aerodynamic forces Faer are defined via the formulas

F aer
r = −1

2
ρ|ṽ| (cxS⊥ṽr − cyS‖ṽϕ

)
, F aer

ϕ = −1
2
ρ|ṽ| (cyS‖ṽr + cxS⊥ṽϕ

)
, F aer

z = −1
2
ρ|ṽ|czSz ṽz ,

where S‖ = S‖(β), S⊥ = S⊥(β), Sz = Sz(β) are the areas of the carrier seen from normal, from tangent,
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and from z-direction,

ṽρ = ṙ, ṽϕ = rϕ̇ − ωτr cos i, ṽz = ż − ωτr sin i, |ṽ| = (ṽ2
ρ + ṽ2

ϕ + ṽ2
z)1/2,

are components of the relative (to the atmosphere) velocity ṽ, ω is the angular velocity of rotation of
the Earth, τ ∈ [0, 1] is the atmosphere friction coefficient, i is the inclination angle. For dependence of an
atmosphere density ρ = ρ(h, t, µ, δ, α) and temperature T = T (h, δ, α) of altitude h, we use the following
approximations, which agree well with experimental data:

ρ = ρ0 exp(−|ṁ|gh/RbT ), T = T (h) = T0(αT exp(γT h) + βT ).

h = r − R, R = Re

√
1 − (1 − 1/(1 + κ)2) sin2 ϕ sin2 i,

Here αT = 0.95, βT = 0.05, γT = 1.67 · 10−4, and the aerodynamical coefficients cx, cy and cz are
supposed to be constants.
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5.The tractive force A tractive force Ftr is considered to be a sum of two items: one item appears at
the expense of momentum carried away by a gas jet, and the second item appears because of a difference
of pressure till both sides of outflow section of a nozzle
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Ftr = |ṁ|u + (ps − pa)Sn,

where ṁ is the second propellant consumption, u is
the velocity of its outflow, S is the area of the nozzle
cross section, ps is the pressure inside the nozzle,
and pa is an atmospheric pressure. For the reasons a
module of the tractive force F tr = |Ftr| is specified
by means of the so-called specific pulse Is, which is
defined as a traction resulting from the combustion
of one kilogram of the fuel within one second, i.e.
F tr = |ṁ|gIs. As two components of the tractive
force have a different nature, the specific pulse can
be subdivided into two parts Is = Ic + δIa, where
Ic = u/g and δIa = (ps − pa)S/(|ṁ|g).

The values Ic and δIa are defined from a thermodynamical model of the nozzle flow of a gas jet with the
invariable structure, i.e. a model ”of the frozen flow”:

Ic = I0

√
1 − (pc/p0)(γ−1)/γ , δI =

γ − 1
2γ

(pc/p0)(γ−1)/γ

1 − (pc/p0)(γ−1)/γ
Ic,

where I0 is a limiting specific pulse, and γ is the parameter of an adiabat of the products of combustion
with molar mass µg. An atmospheric pressure changes with altitude h in accordance with the barometric
height formula, therefore, for the specific pulse Is we have:

Is = Is(h) = Isv(1 − q exp(−|ṁ|gh/RbT )),
Isv = Ic(1 + k̄), q = (1 − p0/pcp · k̄/(1 + k̄)), k̄ = δI/Ic,

where p0 is the atmospheric pressure on the Earth surface. The projections of a vector of the tractive
force Ftr are set by means of projective angles as follows:

F tr
r = |ṁ|Isg cos εz(t) sin ερϕ(t), F tr

ϕ = |ṁ|Isg cos εz(t) cos ερϕ(t), F tr
z = |ṁ|Isg sin εz(t).
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Here εz(t) is an angle of the directional control and
ερϕ(t) is an angle of the control at the pitch. The
control of the traction is made with zero angle of an
attack β = 0, i.e. the vector of the tractive force Ftr

is parallel to the vector of the relative velocity ṽ.

6. Equations of motion: fissile flight. On a fissile flight segment at compiling differential equations of
motion we take into consideration following conditions:

a) the gravity forces act in three directions; considering, that the movement occurs only in a plane
z = 0 , we shall obtain that one of equations of motion is transformed to an equation for determination
of an angle of directional control εz(t). Thus it appears that the angle εz(t) is so small that in the given
approximation it is possible to assume that sin εz(t) ≈ 0 and cos εz(t) ≈ 1;

b) since a control at a pitch in the plane of the motion is realized with the zero angle of attack, then
sin ερϕ(t) = ṽr/|ṽ| and cos ερϕ(t) = ṽϕ/|ṽ|;

c) Considering that the gravity potential is created by a massive body with a surface of a rotation
ellipsoid, the components of potential gradient are set by the following formulas:

gradrU(r, δ) =
[
1 − 3(sin2 ϕ sin2 i − 1)K(κ)(Re/r)2

]
GM/r2,

gradϕU(r, δ) =
[
0 − sin 2ϕ sin2 iK(κ)(Re/r)2

]
GM/r2,

K(κ) = κ/(1 − κ/2);

d) a current weight of the launcher m(t) is expressed via its initial mass m0, a second propellant
consumption ṁ, and the flight time t:

m(t) = m0 − |ṁ|t, |ṁ| = const.
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As a result we have a system of differential equations

r̈ = − gradrU(r, δ) + rϕ̇2 − ρ|ṽ|
2m(t)

(
cxS⊥ṽr − cyS‖ṽϕ

)
+

|ṁ|
m(t)

Īsg
ṽr

|ṽ| ,

rϕ̈ = − gradϕU(r, δ) − 2ṙϕ̇ − ρ|ṽ|
2m(t)

(
cyS‖ṽr + cxS⊥ṽϕ

)
+

|ṁ|
m(t)

Īsg
ṽϕ

|ṽ| ,

with the initial conditions

r(0) = Rst, ṙ(0) = 0, ϕ(0) = ϕst, ϕ̇(0) = ωτ cos i.

This system of equations is solved by the Runge-Kutta numerical integrator of the fourth order; applying
other numerical integrators with the analytical Taylor expansions of the right-hand side terms of those
like in [18] is also possible.

7. Equations of motion: passive flight. The passive part of flying is described by differential equations
in the absence of traction. Thus, it is assumed that the flying of the satellite takes place in vacuum in
Newtonian gravitation potential, i.e. the equations of motion are given by

r̈ = −GM/r2 + rϕ̇2, rϕ̈ = −2ṙϕ̇.

The solutions of these equations are known:

r =
p

1 + ε cos(ϕ − ϕx)
, p =

L2

GM
, ε = (1 +

4EL2

(GM)2
)1/2,

where E is an energy of the satellite, L is its moment and the unknown value ϕx is defined by final
values of the dynamic parameters of an active part of flying. The dependence of time t via coordinate ϕ
is determined by means of a series

t − tk =
T

2π
[(ϕ − ϕk) − 2ε sin(ϕ − ϕk) +

3
4
ε2 sin 2(ϕ − ϕk) + . . .],

where tk is a time of exit into an orbit, ϕk is the coordinate of the satellite at a given moment of time,
and T is a period of rotation of satellite determined from the third Kepler law.

Fig. 1. Points on the map are the
world space-vehicle launching sites
positions [13]

3 Description of the Program

The proposed program SPUTNIK consists of three module and the program of management of the system
menu:
• module 1 contains the routines for the calculation and display on the screen of parameters of an orbit
and the characteristics of movement of the satellite at the given moment of time and visualization of its
motion; the allocation of this part simplifies adaptation of various mathematical means for the solution
of different physical problems;
• module 2 contains the constants, the data about carriers, space-vehicle launching sites, and parameters
of orbits that simplify the creation of the new versions in different languages; in this case the text is given
as files of textual type, but if necessary it is possible to set the text as a file or database;
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• module 3 contains the procedures for management of the menu as well as the procedure of input and
output of the textual and graphic information on the screen, that allows to quickly remake this program
for the study of other physical processes;
• the basic program sputnik administers the system menu. After a display of title page on the screen the
menu containing 5 items is obtained: the theoretical part (contains the theoretical items of information);
the instructions (instructions necessary for work with the program); the choice of the rocket-carrier (it is
possible to choose a type of the rocket-carrier and to look at its characteristics); the choice of the space-
vehicle launching site (it is possible to choose the space-vehicle launching site, look at points in Fig. 1;and
to look at the location and inclination of an orbit of started rocket-carrier); the model of flight (the model
of flight is demonstrated for the chosen configuration of a rocket and space-vehicle launching site: the
first movement of the carrier on an active part of flight is shown, then the location of a subsatellite point
on a surface of the Earth on a passive part of flight, see examples in Figs. 2, 3; thus, the basic parameters
of movement are displayed on the screen).

Fig. 2. An example of the computer visualization of the position and slope of a started launcher orbit in a fixed
coordinate system

Fig. 3. An example of computer visualization of passive part of the launcher orbit in rotation coordinate system

The work of the program SPUTNIK is demonstrated on an example of the imitation of flight of the
carrier such as ARIANA [13]. The given program has been implemented by means PASCAL 7.0 and
MAPLE 7.

4 Visualization of Trajectories of Ejected Electrons in a Semiclassical Model
of Helium Atom

Here we consider an application of the two-dimensional visualization of classical trajectories of electrons in
the semiclassical model of double ionization of a helium atom by fast electron, allowing to fit experimental
data in view of deviations from rectilinear trajectories of electrons to take into account the Coulomb
interaction in the exit channel [3]. In general case, the classical model of an N electron atom of atomic
number Z is described by the Hamiltonian [8] (in atomic units)

Hcl = T + VZ + Vij =
N∑

i=1

[
p2

i

2
− Z

ri

]
+

∑
i<j

1
rij

,

where ri and pi are the positions and momenta of the atomic electrons relative to the fixed nucleus and
rij = |ri − rj | are the coordinates of electron pairs. The semiclassical, Kirschbaum–Wilets version of this
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model is described by

Hsc = Hcl + VH + VP = Hcl +
N∑

i=1

VH(ri, pi) +
∑
i<j

VP (rij , pij),

where
VH(ri, pi) =

ξH

4aHr2
i

exp(aH(1 − (ripi/ξH)4))

is a Heisenberg-type pseudopotential which stabilizes the atom by preventing the collapse of the atomic
electrons into the nucleus, while

VP (rij , pij) =
ξH

4aP r2
ij

exp(aH(1 − (rijpij/ξP )4))δsisj

is Pauli-type pseudopotential which separates identical electron pairs in phase space, resulting in an
electronic structure. The semiclassical model of an atom can be minimized to find a stable ground state
in which the electrons, while at rest, have nonzero momenta in the presence of momentum dependent
potentials; this process has been reviewed by Cohen, who calculated the ground states up to Z = 38 with
fixed parameters defined in the pseudopotentials [7]. The model is used to study the collision systems in
dependence of both the ground states of electron distributions and of the collision dynamics versus the
pseudo potential parameters a and ξ.

Below we present the simulation of the double ionization of helium atom (N=2) by a fast electron
with the initial momentum p0 � 1. The visualization of the classical trajectories of the two ejected
electrons with momenta p1,p2 are given in a plane of their motion in coordinate system shown in Fig. 4
beyond a ”surface” with characteristic atomic size r0 ∼ 1. Here r1, r2 are the distances between atomic
nucleus with charge Z = 2 and the electrons, and θ1, θ2 are the angles between a transferred momentum
Q = ps − p0 ≈ −p1 − p2 and radius-vectors of electrons, where ps is the scattering momentum of a fast
electron (projectile particle). We assume for definiteness that 0 < θ1 < 180o and −180o < θ2 < 0, and
count of angle θ1 from axis Q counter-clockwise while angle θ2 counter-clock. The distance s between
electrons is

s =
√

r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2), (1)

and the angular moment Mi of each electron i = 1, 2 is defined as

Mi = r2
i θ̇i. (2)

In these notations, the equations of motion take the form

r̈1 =
M2

1

r3
1

− 2
r2
1

+
r1 − r2 cos(θ1 − θ2)

s3
, r̈2 =

M2
2

r3
2

− 2
r2
2

+
r2 − r1 cos(θ1 − θ2)

s3
, (3)

Ṁ1 =
r1r2 sin(θ1 − θ2)

s3
, Ṁ2 =

r1r2 sin(θ2 − θ1)
s3

. (4)

Equation (4) shows that the full angular moment M = M1 + M2 is the integral of motion, in the same
way as the total energy Ef = E1 + E2 of the ejected electrons

H = Ef =
ṙ2
1

2
+

ṙ2
2

2
+

M2
1

2r2
1

+
M2

2

2r2
2

− 2
r1

− 2
r2

+
1
s
. (5)

The latter is calculated by formula Ef = E0 − Ei − p2
s/2, where E0 = p2

0/2 and Ei = EHe
0 is the energy

of the initial bound state of a helium atom. Let Ef = 0.74 and the initial conditions for the system of
equations (3), (4) are

r1(0) = r2(0) = r0 = 1, θ1(0) = θ10, θ2(0) = θ20, M1(0) = M2(0) = 0, |ṙ1(0)| = |ṙ2(0)|. (6)

The corresponding plot of asymptotic values of angle θ = (θ1 − θ2)/2 versus the values of angle θ0 =
(θ10 − θ20)/2 at time t = 0 is shown in Fig. 4. For a set of initial data θ10 ∈ (0, 180) and θ20 ∈ (−180, 0)
the plots of asymptotic isolines of angles θ1 and θ2 versus the values of angles θ10 and θ20 at time t = 0
are shown in Fig. 5. One can see from these figures that the electrons from two angular domains of an
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atomic ”surface” of radius r0 can reach the same detector. To compare the calculations with experiment
we have at the first stage to find for each couple of measured plane angles the emitting angles using the
plots. After this we calculate using, say, the close-coupling technique the differential cross section with
the angles θ10 and θ20 and the function |f(x)|2 which is the coefficient of penetration through the external
potential barrier. One can insert all obtained data in the differential cross-section formula [3]

d5σ(θ1, θ2)
dE1dE2dΩ1dΩ2dΩs

=
1
2

2∑
i=1

|f(xi)|2
(

d5σ(θ10, θ20)i

dE1dE2dΩ1dΩ2dΩs

)
in

. (7)

and compare the result with the experiment at the angles of observation θ1 and θ2 [16, 17]. Here E1

and E2 are the energies, and Ω1, Ω2 are the solid angles of emitted electrons and Ωs is solid angle of
scattering fast electron, summation means that the arrival angle θi of an electron corresponds to two
emitting angles θ10, θ20, the function f(xi) is dependent on θ10, θ20 and the radius r0 playing a role of
adjusting parameters of the model [3].
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5 Conclusion

We show the efficiency of symbolic computer systems in the study of the classical and quantum few-
body problem dynamics and visualization of corresponding trajectories on typical examples. We see
further perspective of applications of symbolic computation system MAPLE in generating the needed
computer codes compatible with FORTRAN and C++ applied for the numerical integration of Cauchy
problem together with solving some kind of inverse problems and simplifying the visualization tasks under
consideration.
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