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Abstract. We present program GITAN for symbolic computation of the class of polynomial Hamil-
tonians and formal integrals with the help of ordinary and inverse Birkhoff–Gustavson normalization
based on the algorithm ANFER using a conventional pseudocode. The corresponding algorithm of
the program QUANTGIT for a semiclassical quantization of the BGNF is described too. Typical
examples for a hydrogen atom in external fields demonstrating the runs of the above algorithms and
programs as input and output data are given. A comparison of the obtained semiclassical spectrum
and its quantum counterpart calculated by the POINTFIELD program is shown.

1 Introduction

In recent papers, a Computer Algebra algorithm for generation of a parametric class of polynomial Hamil-
tonians which are reduced to the same Birkhoff–Gustavson normal form (BGNF)[1–3] named ANFER
(Algorithm of Normal Form Expansion and Restoration) has been developed to study the two-dimensional
integrable systems [4–7]. Such a type of algorithms and programs have indeed an important application in
the BGNF study of both around integrable systems [8–15], geometrical quantization approaches [16–18],
algebraic perturbation methods [19–25], and solving applied problems of atomic and laser physics [26–29].

The aim of this talk is to give a unified description using a conventional pseudocode for the algo-
rithms and routines developed by us for generating the class of polynomial Hamiltonians and formal
integrals of motion with the help of ordinary[2, 3] and inverse normalization [6]. These algorithms have
been implemented by parts in our previous programs GITA [30], GITA−1 [31] and ANFER [4, 5], and
accumulated here within the framework of the program GITAN. This program is based on an extension
of the two-dimensional GITA program for an ordinary normalization till the n-dimensional version and a
basic idea of the ANFER algorithm about using the third-type generation function classified by [32] with
arbitrary coefficients from a range of the diagonal shift operator on each kth step of the inverse iteration
procedure [4]. For extraction of the representative samples of a class of the integrable two-dimensional
systems the program BDIC has been developed [7, 33]. The routines of semiclassical quantizing of normal
forms [20, 34] using algebraic perturbation theory (APT) algorithm described in [35, 36] have also been
incorporated in the the program QUANTGIT presented here as a kernel program surrounded by the
specialized procedures tuning on a solution of the specific quantum-mechanical tasks [34, 35, 37]. The
programs under consideration are oriented to a support of computer modelling of dynamic and atomic
system in external fields like [26–28] and the laser induced formation of Saturnian Hydrogen atoms in a
low density plasma [29].

Section 2 gives a brief background of the ordinary and inverse normalization and describes the basic
procedures of the program GITAN. The corresponding examples of input and output data of the GITAN
run within the framework of a polynomial version BGNF transformation of two- and three-dimensional
hydrogen atom in electric F and magnetic γ fields are considered. In Section 3 we display the background
and the main procedure of the program QUANTGIT and examine it on a semiclassical quantization of
2D hydrogen atom in the field of distant charge. We also give a comparison of the semiclassical results
with one of a pure quantum mechanical algebraic calculation by the program POINTFIELD [35]. In
conclusion we discuss the perspective of the development approach to build up new normalization and
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quantization procedures. The proposed algorithms and programs GITAN and QUANTGIT have been
implemented with the help of REDUCE 3.71.

2 Description of Program GITAN

In this section, we review very briefly the ordinary and inverse problems of the BGNF expansion following
[3, 4, 6] and the basic procedures Normform, Integral and Invert of the program GITAN for constructing
the BGNF and formal integrals of motion, respectively. Consider the Hamiltonian system with n degrees
of freedom in the phase space �n×�n, which admits a stable equilibrium point in both non-resonance and
most general resonance cases: with incommensurable and commensurable frequencies ων , (ν = 1, ..., n).
Without loss of generality, such an equilibrium point can be put at the origin of the phase space. So, the
Hamiltonian H[δ] of such a system is assumed to be expanded into a formal power series, up to degree
smax. As a result, it becomes a polynomial in (q, p) of the form

H[δ](q, p) =
1
2

n∑
ν=1

ων

(
p2

ν + q2
ν

)
+

smax∑
k=3

H
(k)
[δ] (q, p), (1)

where H
(k)
[δ] (k = 3, 4, · · ·) denotes the homogeneous part of degree k, while an auxiliary subscript δ

equalling 0 or 1 designates what a type of the ordinary or inverse normalization can be chosen as input
data for the GITAN algorithm.

The ordinary normalization problem is the conversion of given H[δ] = K at δ = 0 into a BGNF
power series through a local canonical transformation, (q, p) → (ξ, η), which is associated with a type-2
generating function W[δ](q, η) at δ = 0 of the ’old’ position variables q and the ’new’ momentum ones η
[32]

W[0](q, η) =
n∑

ν=1

qνην +
smax∑
k=3

W
(k)
[0] (q, η). (2)

On choosing W[0](q, η) = W (q, η) suitably, the input H[0](q, p) is converted to the power series, say output
Γ[0](ξ, η) = Γ (ξ, η), through

Γ[0](
∂W[0]

∂η
, η) = H[0](q,

∂W[0]

∂q
), Γ[0](ξ, η) =

1
2

n∑
ν=1

ων

(
η2

ν + ξ2
ν

)
+

smax∑
k=3

Γ
(k)
[0] (ξ, η), (3)

where every homogeneous part Γ
(k)
[0] (ξ, η) (k = 3, 4, · · · , smax) satisfies the Poisson-commuting relation,{

1
2

n∑
ν=1

ων

(
η2

ν + ξ2
ν

)
, Γ

(k)
[δ] (ξ, η)

}
=

(
n∑

ν=1

ων

(
ξν

∂

∂ην
− ην

∂

∂ξν

))
Γ

(k)
[δ] (ξ, η) = 0, (4)

which has been rewritten with help of the differential shift operator Dξ,η in the form Dξ,ηΓ
(k)
[δ] (ξ, η) = 0.

The inverse problem is extracting a class of the output Hamiltonians H[δ] = H at δ = 1 which must
transform to the previous BGNF output, Γ[0] ≡ Γ = Γ[1] from (3), such as H[1] ≡ H ⊃ K ≡ H[0] [4, 6].

Let us consider W[1] ≡ S(q, η) ⊃ −W (q, η) ≡ −W[0] (see (2)) as the non-normal type-3 generating
function of the ’new’ position variables q and the ’old’ momentum ones η [32],

W[1](q, η) = −
n∑

ν=1

ηνqν −
smax∑
k=3

W
(k)
[1] (q, η), (5)

associated with the inverse canonical transformation, (ξ, η) → (q, p), through the relation

H[1](q,−
∂W[1]

∂q
) = Γ[1](−

∂W[1]

∂η
, η), H[1](q, p) =

1
2

n∑
ν=1

ων

(
p2

ν + q2
ν

)
+

smax∑
k=3

H
(k)
[1] (q, p), (6)

where the input BGNF Hamiltonian Γ[1] = Γ stays in the r.h.s. of Eq. (6) like the ordinary one K in the
r.h.s. of Eq. (3). Both −S and W are assumed further to satisfy

−S, W ∈ imageDq,η with Dq,η =
n∑

ν=1

ων

(
qν

∂

∂ην
− ην

∂

∂qν

)
. (7)

1 The authors are now implementing the same procedure GITAN in Maple 7.
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2.1 Procedure Normform

Input:
δ: for the ordinary problem δ = 0, for the inverse problem δ = 1;
n is the number of degrees of freedom;
smax is the order of the normalization;
ων are frequencies; r is the number of resonance frequencies;
jmax ≥ 3 is a maximum degree of terms H(j) of an input Hamiltonian H[0] at δ = 0 or Γ[1] at δ = 1;
H(j) are the homogeneous polynomials of degree j in the Cartesian coordinates (q, p) ∈ Rn × Rn ;
Output: W (s) are the terms of a generation function W ;
Γ (s) are the terms of an output Hamiltonian Γ[0] at δ = 0 or H[1] at δ = 1;
Local:
ν = 1, ..., n, s = 3, ..., smax, j = 3, ..., smax;
k = (k1, k2, ..., kn) is multiindex:
|k| = k1 + k2 + ... + kn, k! = k1!k2!...kn!, qk = qk1

1 qk2
2 ...qkn

n , ηk = ηk1
1 ηk2

2 ...ηkn
n , ...;

xν , yν , are auxiliary complex coordinates;
H

(s)
lm , Γ

(s)
lm , W

(s)
lm are auxiliary coefficients;

l = (l1, l2, ..., ln), m = (m1, m2, ..., mn) are multiindices;
c
(s)
lm : if δ = 0 then c

(s)
lm ≡ 0 else c

(s)
lm are arbitrary complex constants;

Global:
c(s): if δ = 0 then c(s) ≡ 0 else c(s) ≡ c(s)(x, y) ∈ R̃ is a complex polynomial of degree s;
qν , ην , are current coordinates;
Note:
for the ordinary problem (δ = 0) the output Hamiltonian Γ (s) is a normal form
1: for j:=jmax to smax do H(j) := 0 end for
2: for s:=3 to smax do

3: H(s) := subs(qν → 1√
2
(xν + ıyν), ην → ı√

2
(xν − ıyν), H(s))

4: H(s) →
∑
l,m

|l|+|m|=s

H
(s)
lm

n∏
ν=1

xlν
ν ymν

ν ; c(s) →
∑
l,m

|l|+|m|=s

Σn
ν=1ων(mν−lν) �=0

c
(s)
lm

n∏
ν=1

xlν
ν ymν

ν

5: for all (l, m) ∈ H
(s)
lm �= 0 ∪ c

(s)
lm �= 0

if
∑n

ν=1 ων(mν − lν) �= 0

then Γ
(s)
lm := c

(s)
lm ; W

(s)
lm := ı(−1)δ(H(s)

lm + c
(s)
lm)
[ n∑

ν=1
ων(mν − lν)

]−1

else Γ
(s)
lm := H

(s)
lm ; W

(s)
lm := 0

end if
end for all

6: W (s) :=
∑
l,m

|l|+|m|=s

W
(s)
lm

n∏
ν=1

xlν
ν ymν

ν ; Γ (s) :=
∑
l,m

|l|+|m|=s

Γ
(s)
lm

n∏
ν=1

xlν
ν ymν

ν

7: W (s) := subs(xν → 1√
2
(qν − ıην), yν → ı√

2
(−qν − ıην), W (s))

Γ (s) := subs(xν → 1√
2
(qν − ıην), yν → ı√

2
(−qν − ıην), Γ (s))

8: for j:=s + 1 to smax

Γ (j) := H(j) + (−1)δ

|k|>1
|k|<l<j
l=j−(s−2)|k|

∑ 1
k!

[(∂W (s)

∂q

)k (∂|k|H(l)

∂ηk

)
−
(∂W (s)

∂η

)k (∂|k|Γ (l)

∂qk

)]
.

end for
9: for j:=3 to smax do H(j) := Γ (j) end for

end for (2:)
end of procedure Normform

The implementation of the above procedure normform of reduction to a BGNF depends on a ratio between
frequencies ων . Birkhoff has proved [1] that if the frequencies ων of Hamiltonian (1) are incommensurable,
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there is a canonical transformation (q, p) → (ξ, η), such that in new coordinates the Hamiltonian Γ[0](ξ, η)
is the function of n independent integrals of motion Iν = 1

2 (ξ2
ν + η2

ν):

H[0](q, p) ⇒ Γ[0](ξ, η) =
n∑

ν=1

ωνIν +
∑
µ,ν

αµνIµIν + . . . . (8)

If the frequencies ων are commensurable, i.e. if there exist r resonance relations of the form

(B, ω) =
n∑

ν=1

bkνων = 0, k = 1, 2, ..., r, (9)

where matrix B = {bkν} has integer coefficients bkν and rank r, ω = {ω1, ..., ωn} is n-vector, then
Hamiltonian (1) cannot be reduced to the form (8). In this case, for BGNF Γ from (3), we have (n − r)
independent formal integrals of motion I

(2)
k′ of the form [2]

I
(2)
k′ =

n∑
ν=1

aνk′

2
(ξ2

ν + η2
ν), {I(2)

k′ , Γ} = 0, k′ = 1, 2, ..., n− r, (10)

with coefficients aνk′ being the solutions of the system of linear algebraic equations

(B, A) =
n∑

ν=1

bkνaνk′ = 0, k = 1, 2, ..., r, k′ = 1, 2, ..., n− r, (11)

where matrix A = {aνk′} has n − r columns consisting of n-vectors. After the substitution of solutions
aνk′ of the system of equations (11) into the formula (10), with the help of inverse transformation
(ξ, η) → (q, p) up to the given order smax − 2, one can calculate the (n− r) approximate formal integrals
of motion Ik′ (q, p), k′ = 1, n − r for the input Hamiltonian H[0] from (1), i.e. pb = {Ik′ , H[0]} = 0, up
to the order smax. As input data the frequencies ω and ratios between those given by matrix B of input
Hamiltonian from (1), and generating function W[0] calculated by the above procedure normform are
used here. The corresponding algorithm for the analytical calculation of approximate formal integrals of
motion up to the given order smax using an auxiliary construction of some n−r parametric formal integral
of motion I(2) =

∑n
ν=1 aν(η2

ν + ξ2
ν)/2, with coefficients aν = aνk′ satisfying (11), i.e. {I(2), Γ} = 0, as

local variables, are implemented by procedures Integral and Invert of the program GITAN at δ = 0,
which are introduced below.

2.2 Procedure Integral

Input:
n is the number of degrees of freedom;
smax is the normalization order;
H(s) are homogeneous parts of degree s of the initial Hamiltonian H in the Cartesian coordinates (q, p) ∈
Rn × Rn ;
r is the number of relations between frequencies;
bkν are the components of matrix B from (9);
Output:
Ik′ is the array of formal integrals of motion;
pb is the Poisson bracket;
Local:
ν = 1, ..., n, k = 1, ..., r, k′ = 1, ..., n − r, s = 2, ..., smax;
I is an auxiliary homogeneous polynomial of second order;
aν are auxiliary coefficients;
HH is an auxiliary Hamiltonian
Global:
ξν , ην , are coordinates;
csnt(k′) are arbitrary coefficients;
z is an auxiliary cutting parameter: zs = {if s ≤ smax then zs else 0}.
1: for ν = 1 to n do pν,2 = zpν,0, qν,2 = zqν,0 end for



Programs for Normalization 151

2: for s = 3 to smax do call INVERT(s) end for

3: solving of system of equations
n∑

ν=1

bk,νaν = 0, k = 1, ..., r : aν
ν=1,n
:= aν(csnt(k′), k′ = 1, ..., n − r)

4: I :=
n∑

ν=1

aν

2
(η2

ν + ξ2
ν)

5: I := subs(ηµ
µ=1,n→ pµ,smax , ξµ

µ=1,n→ qµ,smax , I)

6: HH := subs(pµ
µ=1,n→ zpµ,0, qµ

µ=1,n→ zqµ,0,

smax∑
s=2

H(s))

7: I := subs(pµ,0
µ=1,n→ pµ, qµ,0

µ=1,n→ qµ, HH − I)

8: pb :=
n∑

ν=1

(
∂I

∂pν

∂(
∑smax

s=2 H(s))
∂qν

− ∂(
∑smax

s=2 H(s))
∂pν

∂I

∂qν

)
9: for k′ = 1 to n − r do Ik′ := subs(z = 1, csnt(k′) = 1, csnt(k �= k′) = 0, I) end for
end of procedure Integral

Procedure Invert
Input:
n is the number of degrees of freedom;
smax is the normalization order; s is a current number;
W (s) is the term of a generation function W ;
Output:
(pν,s, qν,s) as a function of (pν,s−1, qν,s−1)
Local:
ν, µ = 1, ..., n is the number of degrees of freedom; xν,0, xν,1, yν , wt are auxiliary functions;
Global:
z is an auxiliary cutting parameter: zs = {if s ≤ smax then zs else 0}.
1: for ν = 1 to n do wt:=subs(ην → zην , qν → zqν, W (s)) end for
2: for ν = 1 to n do xν,0 := yν end for;

3: for ν = 1 to n do xν,1 := subs(ηµ
µ=1,n→ xµ,0

z
, xν,0 − 1

z

dwt
dqν

) end for

4: repeat
for ν = 1 to n do xν,0 := xν,1 end for

for ν = 1 to n do xν,1 := subs(ηµ
µ=1,n→ xµ,0

z , xν,0 − 1
z

dwt
dqν

) end for

until
n∑

ν=1

(xν,1 − xν,0) �= 0

5: for ν = 1 to n do
pν,s := subs(qµ

µ=1,n→ qµ,s−1

z
, yµ

µ=1,n→ pµ,s−1

z
, xν,0);

qν,s := subs(qµ
µ=1,n→ qµ,s−1, ηµ

µ=1,n→ pµ,s−1, qν +
dW (s)

dην
);

end for
end of procedure Invert

The program GITAN including the above procedures Normform, Integral and Invert has been
implemented in REDUCE 3.7. As a set of input data we use the following: the number of degrees of
freedom n ≥ 2, the frequencies ω, r ratios between ω given by matrix B from (9), the input Hamiltonian
H[0] from (1), and the normalization order smax. The results of run of the program GITAN for ordinary
(δ = 0) and inverse (δ = 1) analytical construction of BGNF and the calculated approximate formal
integrals of motion up to the given order smax are displayed below.

3 Examples of Runs of GITAN Program

2D Hydrogen atom We consider the results of calculation of a normal form and approximate integral
of motion for a two-dimensional limit of the Saturnian Hydrogen atom (initially confined to the plane
z = 0 with no velocity component in the z-direction) in a circularly polarized electric field F and magnetic
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B fields (in atomic units) [27]

H̄0 =
1
2
p̄2

x +
1
2
p̄2

y − 1√
x̄2 + ȳ2

+
ωc

2
(−ȳp̄x + x̄p̄y) +

ω2
c

8
(x̄2 + ȳ2) + F (x̄ cosωf t + ȳ sin ωf t),

where ωc = eB/(mec) is the cyclotron frequency, and ωf is the electric field frequency. In a synodic frame
rotating with the field frequency ωf ,

H̄0 = K̄ =
1
2
p̄2

x +
1
2
p̄2

y − 1√
x̄2 + ȳ2

− (ωf − ωc

2
)(−ȳp̄x + x̄p̄y) − F x̄ +

ω2
c

8
(x̄2 + ȳ2),

after scaling coordinates and momenta x = ω
2/3
c x̄, y = ω

2/3
c ȳ, px = ω

−1/3
c p̄x, py = ω

−1/3
c p̄y we find the

Hamiltonian

H0 = K =
1
2
p2

x +
1
2
p2

y − 1√
x2 + y2

− (Ω − 1
2
)(−ypx + xpy) − εx +

1
8
(x2 + y2),

where K = K̄ωc
−2/3, Ω = ωfω−1

c and ε = Fω
−4/3
c , K is the Jacobi constant. The corresponding Hamil-

tonian H in the Levi-Civita variables p, q on the energy manifold determined by H =
√

2/ − K
√

x2 + y2

apart from the change of time variable t → τ with dt/dτ =
√

2/ − K has the oscillator form [38]

H =

√
2

−K
=

1
2
(p2

1 + p2
2 + q2

1 + q2
2) + a1(−q2p1 + q1p2)(q2

1 + q2
2) + a2(q2

1 + q2
2)3 + b1(q4

1 − q4
2), (12)

where b1 = F
√−2K/(8K2), a1 = (Ω − 1

2 )/(−4K), a2 = 1/(128K2). As a result of executing GITAN at
δ = 0, the BGNF Γ =

∑smax

k=2 Γ (k) at smax = 8 is obtained:

Γ (2) = I1, Γ (3) = Γ (5) = Γ (7) = 0,

Γ (4) =
3b1

2
I1I2 + a1I1I3, (13)

Γ (6) = −a2
1

2
I1I

2
3 − 7a1b1

2
I1I2I3 +

a2

2
(5I3

1 − 3I1I
2
3 ) − 17b2

1

16
(I3

1 + 3I1I
2
2 ),

Γ (8) =
a3
1

2
I1I

3
3 +

b1a
2
1

16
(4I3

1I2 + 127I1I2I
2
3 ) +

3
2
a1a2(3I1I

3
3 − 5I3

1I3) +
375b3

1

32
(I3

1I2 + I1I
3
2 )

+
b2
1a1

16
(12I1I

3
3 + 315I1I

2
2I3 + 107I3

1I3) +
3b1a2

8
(−55I3

1I2 + 21I1I2I
2
3 ),

where

I1 =
1
2
(η2

1 + η2
2 + ξ2

1 + ξ2
2), I3 = (ξ1η2 − ξ2η1),

I2 =
1
2
(η2

1 − η2
2 + ξ2

1 − ξ2
2), I4 = (ξ1ξ2 + η1η2).

Note that the above normal form representation is not unique with regard for the relation I2
1 = I2

2 +I2
3 +I2

4 .
We are now in a position to give an example to show how the inverse GITAN at δ = 1 is proceeded

to BGNF Hamiltonians. We take as the input a BGNF Hamiltonian Γ[1] = Γ (2) + Γ (4) from (13). For
example, if we choose the auxiliary homogenous polynomials c(3) = 0 and c(4) with arbitrary complex-
valued coefficients, then we find that the Hamiltonian H(4) consists of 188 monomials. Therefore, we
choose the real polynomial c(4) and extract a class of real-valued Hamiltonians H = H(2) + H(3) + H(4)

at smax = 4:

H(2) =
1
2
(p1

2 + p2
2 + q1

2 + q2
2), H(3) = 0,

H(4) = q4
2(−

1
3
c
(4)
0,0,2,2 − c

(4)
0,0,0,4 − b1) − 1

2
q2

3p1a1 +
1
2
q2

2q1p2a1 + q2
2p2

2c
(4)
0,0,2,2 −

1
2
q2q1

2p1a1

−1
2
q2p2

2p1a1 − 1
2
q2p1

3a1 + q1
4(−1

3
c
(4)
2,2,0,0 − c

(4)
0,4,0,0 + b1) +

1
2
q1

3p2a1 + q1
2p1

2c
(4)
2,2,0,0 (14)

+
1
2
q1p2

3a1 +
1
2
q1p2p1

2a1 + p2
4c

(4)
0,0,0,4 + p1

4c
(4)
0,4,0,0
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Setting c
(4)
0,4,0,0 = c

(4)
0,0,0,4 = 0 in Hamiltonian (14) in the case a1 = 0, H becomes [38]

H = (q2
1c

(4)
2,2,0,0 +

1
2
)p1

2 + (q2
2c

(4)
0,0,2,2 +

1
2
)p2

2 +
1
2
q1

2 − (
1
3
c
(4)
2,2,0,0 − b1)q1

4 +
1
2
q2

2 − (
1
3
c
(4)
0,0,2,2 + b1)q2

4.

Note that H turns out to be a Hamiltonian of Liouville type, which is well known to admit the separation of
variables in its associated Hamilton-Jacobi equation [39]. In such a way it has been shown [6, 7] that if the
perturbed harmonic oscillators with a homogeneous cubic-polynomial potential and with a homogeneous
quartic-polynomial potential share the same BGNF up to degree four, then the both oscillators satisfy
the Bertrand–Darboux integrability conditions (BDIC) [40].

One can indeed examine that for the Hamiltonian H given by (12) at a1 = 0 the second exact integral
of motion I in involution with H , i.e. {H, I} = 0, has the form

I = b1(q2
1 + p2

1) − a2(−q2p1 + q1p2)2 + 2a2b1q
2
1(q2

1 + q2
2)

2 + 2b2
1q

4
1 . (15)

Fig. 1 shows the 3D plots of the above exact integral I(a) and the approximate integral Ia(b)-(d) in
coordinates p2, q2 calculated by GITAN at δ = 0 till eighth order2 (smax = 8) with fixed K, ωc, F and
three sets of parameters a1, a2, b1. One can see a qualitative agreement in the exact and approximate
isolines of Poincaré sections, which can be improved taking into account higher-order calculations(smax ≥
8) that are needed to describe similar but non-integrable systems having both discrete and continuous
spectrum [29]. For the 2D hydrogen atom a further analysis of the above approximate integrals and normal
forms connecting convergence to Liouville-integrability can use some approaches in this line [10–15].
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Fig. 1. The 3D plots of the exact integral of motion I and the approximate ones Ia (smax = 8) for Hamiltonian
(12) at K = −1.071 ·10−3 , ωc = 1.472 ·10−5 , F = −3.389 ·10−6 , b1 = 6.974 ·10−2 , a2 = 2.457 ·10−2 are displayed
in (a) and (b) – (d), respectively. Parameters ωf = 7.36 · 10−6 and a1 = 0 for (a) and (b), ωf = 8.464 · 10−6 and
a1 = 1.051 · 10−2 for (c), and ωf = 9.936 · 10−6 and a1 = 2.453 · 10−2 for (d)

3D Hydrogen atom As an example we consider the 3D Hydrogen atom in parallel electric F and
magnetic γ fields. In [26] this task has been reduced to a four-dimensional one with a two-parametric

2 the integral of motion Ia evaluated by GITAN at smax = 8 consists of 237 monomials and is not displayed
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Hamiltonian

H =
1
2

4∑
j=1

(q2
j + p2

j) −
4F

ω3
(q2

1 + q2
2 + q2

3 + q2
4)(q

2
1 − q2

2 − q2
3 + q2

4) (16)

−4γ

ω4
(q2

1 + q2
2 + q2

3 + q2
4)(q

2
1 + q2

4)(q2
2 + q2

3),

where ω2 = 4γLz − 8E, at a given value of an integral Lz and energy E. With the help of the program
GITAN at δ = 0 the BGNF at smax = 6 is obtained, but is displayed here till smax = 43:

Γ (2) =
1
2

4∑
j=1

(η2
j + ξ2

j ), Γ (3) = 0, (17)

Γ (4) = − 3F

2ω3
(ξ2

1 + ξ2
4 + η2

1 + η2
4)

2 +
2F

ω3
(η1ξ4 − η4ξ1)2

+
3F

2ω3
(ξ2

2 + ξ2
3 + η2

2 + η2
3)

2 − 2F

ω3
(η2ξ3 − η3ξ2)2.

There are 3 resonance relations between frequencies in the Hamiltonian (17): ω1 = ω2 = ω3 = ω4 = 1, i.e.
n = 4, r = 3, n−r = 1, therefore, there is a single integral of motion in the form (10): I1 = Γ (2). According
to transformation (ξ, η) → (q, p) (see the above procedure Invert), a rather cumbersome expression for
the decomposition of an approximate integral of motion I1 has been calculated by GITAN at δ = 0, but
it is not displayed here4. The examination of this integral decomposition by means of testing the Poisson
bracket pb = {H, I1} has been evaluated successfully, pb = 0, by the procedure Integral.

4 Description of Program QUANTGIT

4.1 The Example of Quantization of 2D Hydrogen Atom

Semiclassical quantization schemes of the 2D limit case of the hydrogen atom in magnetic field have been
considered in detail in [19, 22, 34]. To illustrate the run of our program QUANTGIT for a semiclassical
quantization of BGNF and to have a comparison of results with a known quantum spectrum, we consider
here the 2D hydrogen atom with the charge Za in the electric field of a distant point charge Zb with
Hamiltonian

H =
1
2
(p2

1 + p2
2 + q2

1 + q2
2) +

1
2
(−2E)−3/2(q4

1 − q4
2)

Zb

R2
(18)

−1
4
(−2E)−2(q2

1 + q2
2)(q

4
2 − 4q2

1q
2
2 + q4

1)
Zb

R3
+ ...,

where R is a distance between charges Za and Zb, at a fixed value of energy E < 0. As a result of
executing of GITAN, the BGNF, Γ =

∑smax

k=2 Γ (k), at smax = 10 has been calculated. We present only a
few expressions5

Γ (2) =
1
2
(η2

1 + η2
2 + ξ2

1 + ξ2
2),

Γ (4) =
Zb

R2
(−2E)−3/2 3

16
f((η2

1 + ξ2
1)2 − (η2

2 + ξ2
2)2), (19)

Γ (6) = − 1
64

(−2E)−2(ξ2
2 + ξ1

2 + η1
2 + η2

2)[5(ξ2
2 + η2

2)2 + 5(ξ1
2 + η1

2)2 −

− 8(ξ1
2 + η1

2)(ξ2
2 + η2

2) − 12(η1η2 + ξ1ξ2)2]
Zb

R3

− 17
128

(−2E)−3((ξ1
2 + η1

2)3 + (ξ2
2 + η2

2)3)
Zb

2

R4
.

3 Γ (6) consists of 169 monomials
4 the correction for integral of motion I at smax = 6 consists of 190 monomials
5 the corrections Γ (8) and Γ (10) consist of 35 and 190 monomials, the corrections Γ (k) at odd k are equal to zero
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Each even term G(2κ) is here a sum of homogeneous polynomials Gj(2κ) of order 2κ, i.e. G(2κ) =∑2κ−2
j=κ R−jGj(2κ). The program QUANTGIT converts a normal form in the complex variables zk =

1√
2
(ηk + iξk), z∗k = 1√

2
(ηk − iξk) and with the help of the Weyl substitution

zm
k z∗n

k −→ 1
2m

m∑
l=0

m!
l!(m − l)!

â+l
k ân

k â+ m−l
k , [ak, a+

l ] = δkl, (20)

transforms it to the quantum BGNF in terms of the operators a, a+. Then the eigenvalue problem

Γ |λ〉 = λ(E)|λ〉 (21)

concerning the spectral parameter λ(E) is solved by using the eigenvector definition:

|k1, k2〉 = (
√

k1!k2!)−1(â+
1 )k1(â+

2 )k2 |0, 0〉, â1|0, 0〉 = â2|0, 0〉 = 0,

where k1, k2 = 0, 1, 2, ... are the oscillator quantum numbers. For solving the eigenvalue problem (21)
we expand the Hamiltonian Γ in the sum Γ =

∑
PjR

−j, where Pj =
∑j

κ=[j/2]−1 Gj(2κ). An action

of operator Pj on eigenvector |k1, k2〉 has the form Pj |k1, k2〉 =
∑[(j−1)/2]

κ=−[(j−1)/2] α2κ|k1 − 2κ, k2 + 2κ〉.
Decomposing the eigenvector |λ〉 by basis |k1, k2〉, we have:

λ(E) = k1 + k2 + 1 +
3Zb

4R2
(−2E)−3/2(k1 + k2 + 1)(k1 − k2)

− Zb

8R3
(−2E)−3/2(k1 + k2 + 1)(5(k1 − k2)2 − 4k1k2 − 2k1 − 2k2 + 3) + ....

To calculate the energy E < 0 in parabolic quantum numbers n1, n2 = 0, 1, 2, ... we will use the substi-
tution k1 = 2n1, k2 = 2n2. The quasi classical spectrum of energy E = En1,n2 of the problem (18) is
calculated from the algebraic equation λ(E) = Za

√−2/E with the aid of a standard iteration routine

En1,n2 = − Z2
a

2n2
+

3Zb

2ZaR2
nd +

n2Zb

2Z2
aR3

(n2 − 6d2 − 1) (22)

− n4Z2
b

64Z4
aR4

(68n2 − 12d2 + 85) − n3dZb

64Z3
aR4

(156n2 − 436d2 − 227) + ...,

where n = n1 + n2 + 1/2, d = n1 − n2. The above algorithm has been realized with procedures [35, 36]
as part of program QUANTGIT. In [35] the energy spectrum for 2D Hydrogen atom has been calculated
by an ordinary algebraic perturbation theory method with the help of program POINTFIELD6

Ee
n1,n2

= − Z2
a

2n2
+

3Zb

2ZaR2
nd +

n2Zb

2Z2
aR3

(n2 − 6d2 − 1) (23)

− n4Z2
b

64Z4
aR4

(68n2 − 12d2 + 67) − n3dZb

64Z3
aR4

(156n2 − 436d2 − 227) + ....

One can see that a difference between these relations is only in the free terms in the brackets, which is
a consequence of the known arbitrariness in the quasi classical correspondence rules. We examined that
the Weyl substitution (20) realized in the basic procedure Quantconvert of the program QUANTGIT
provides a minimal difference in the above results as compared to the symmetrized or the Iordan ones.
Note the quasi classical formulas give a better description of an upper part of the spectrum as compared
with the pure quantum perturbation ones. Below we present the procedure Quantconvert only.

4.2 Procedure Quantconvert

Input: n is the number of degrees of freedom;
smax is the normalization order;
ων are frequencies;
Γ (s) are the terms of a BGNF Γ ;
6 We do not allow the constant term Za(Zb − 1)/R.
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Output:
Γ̂ (s) are the terms of a quantum BGNF operator;
G(s) are the actions of operator Γ (s) by eigenfunctions |k1, k2, ..., kn〉 of operator Γ̂ (2);
Local:
ν = 1, ..., n is the number of degrees of freedom;
zν , z∗ν , are auxiliary variables;
l, m, m′ are the parameters of the Weyl transformation;
Global:
ξν , ην , are current coordinates and momenta;
â+

ν , âν are creation and annihilation operators;
|k1, k2, ..., kn〉 are the eigenfunctions of harmonic oscillator Γ̂ (2);
kν are quantum numbers;
1: for s:=3 to smax do

2: Γ (s) := subs(ην → 1√
2
(zν + z∗ν), ξν → 1√

2
(zν + z∗ν), Γ (s))

3: Γ̂ (s) := subs(zm
ν z∗m′

ν → 1
2m

m∑
l=0

m!
l!(m − l)!

â+l
ν âm′

ν â+ m−l
ν , Γ (s))

4: G(s) := Γ̂ (s)|k1, k2, ..., kn〉
5: while G(s) ⊃ â, â+ do

G(s) := subs(â+
ν | , kν , 〉 → √

kν + 1| , kν + 1, 〉, âν | , kν , 〉 → √
kν | , kν − 1, 〉, G(s))

end while
end for(1:)

end of procedure Quantconvert

5 Conclusion

We have demonstrated the efficiency of the proposed recursive symbolic algorithm GITAN for the gen-
eration of both ordinary and inverse BGNF and formal integrals of motion as well as the calculation of
perturbation series by means of algorithm QUANTGIT, which are needed to solve the specific applied
problems in atomic and laser physics [29, 28]. Developing such an approach with the quantization proce-
dures [34] similar to the normal form perturbation method [24] and polynomial Lie algebra to [25] is in
line of our interest too.

The further long write-up of GITAN program, the development of its algorithm based on Lie trans-
formations [8, 9] and corresponding comparison are beyond the subject of this talk and will be published
elsewhere.
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