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Abstract. Let Aut��(x) be the Galois group of the transcendental degree one pure field extension
� ⊆ �(x). In this paper we describe polynomial time algorithms for computing the field Fix(H)
fixed by a subgroup H of Aut��(x) and for computing the fixing group Gf of a rational function
f ∈ � (x).

1 Introduction

Let K be an arbitrary field and K(x) be the rational function field in the variable x. Let AutKK(x) be
the Galois group of the field extension K ⊆ K(x).

In this paper we develop an algorithm for computing the automorphism group of an intermediate
field in the extension K ⊆ K(x). By the classical Lüroth’s theorem any intermediate field F between K
and K(x) is of the form F = K(f) for some rational function f ∈ K(x), see [3, 5] and for a constructive
proof [2]. Thus, this computational problem is equivalent to determine the fixing group Gf of a univariate
rational function f . We also present an algorithm for computing Fix(H), the fixed field by a subgroup
H < AutKK(x). Again, this is equivalent to find a Lüroth’s generator of the field fixed by the given
subgroup H . Both algorithms are on polynomial time if the field K has a polynomial time algorithm for
computing the set of roots of a univariate polynomial.

The algorithm for computing the fixing group of a rational function uses several techniques related
to the rational function decomposition problem. This problem can be stated as follows: given f ∈ K(x),
determine whether there exists a decomposition (g, h) of f , f = g(h), with g and h of degree greater than
one, and in the affirmative case, compute one. When such a decomposition exists some problems become
simpler: for instance, the evaluation of a rational function f can be done with fewer arithmetic operations,
the equation f(x) = 0 can be solved more efficiently, improperly parametrized algebraic curves can be
reparametrized properly, etc., see [8], [1] and [6]. In fact, a motivation for this paper is to obtain results on
rational functional decomposition. As a consequence of our study of Gf we provide new and interesting
conditions of decomposability of rational functions. Another application of this paper is to study the
number m of indecomposable components of a rational function f = f1 ◦ · · ·◦fm which is strongly related
to subgroup chains of Gf , see [7].

The algorithm presented for computing the field Fix(H) is based on Galois theory results and the
constructive proof of Lüroth’s theorem.

The paper is divided in four sections. In Section 2, we introduce our notations and the background of
the rational function decomposition. Section 3 studies the Galois group of K(x) over K, the fixing group
Gf and the field Fix(H), including general theoretical results, and their relation with the functional
decomposition problem. Section 4 presents algorithms for computing the fixing group and fixed field. We
also give, in this section, examples illustrating our algorithms.

2 Background on Rational Function Decomposition

The set of all non–constant rational functions is a semigroup with identity x, under the element-wise
composition of rational functions (symbol ◦ for composition): i.e., given non-constant rational functions
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g, h ∈ K(x), g ◦ h = g(h). The units of this semigroup are of the form ax+b
cx+d . We will identify these units

which the elements of the Galois group of K(x) over K and we denote this group by Γ (K) = AutKK(x).
Given a f ∈ K(x), we will denote as fN , fD the numerator and denominator of f respectively, assuming

that fN and fD are relatively prime. We define the degree of f as deg f = max{deg fN , deg fD}.
If g, h ∈ K(x) are rational functions of degree greater than one, f = g ◦ h = g(h) is their (functional)

composition, (g, h) is a (functional) decomposition of f , and f is a decomposable rational function,
otherwise f is indecomposable.

The following lemma describes some basic properties of rational function decomposition, see [1] for a
proof.

Theorem 1. With the above notations and definitions, we have the following:

– [K(x) : K(f)] = deg f .
– deg g ◦ h = deg g · deg h.
– The units with respect to the compositions are precisely the rational functions of degree one.
– Given f, h ∈ K(x) \ K, if there exists g such that f = g(h), it is unique. Furthermore, it can be

computed from f and h by solving a linear system of equations. ��
If f, h ∈ K(x) satisfy K(f) ⊂ K(h) ⊂ K(x), then f = g(h) for some g ∈ K(x). From this fact the

following natural concept arises:

Definition 1. Let f = g ◦ h = g′ ◦ h′. (g, h) and (g′, h′) are called equivalent decompositions if there
is a unit u such that h′ = u ◦ h (then also g′ = g ◦ u−1). ��

The next result is an immediate consequence of the Lüroth’s theorem.

Corollary 1. Let f ∈ K(x) be a non–constant rational function. Then the equivalence classes of the
decompositions of f correspond bijectively to intermediate fields F, K(f) ⊆ F ⊂ K(x). ��

3 The Galois Correspondences in the Extension K ⊆ K(x).

We start defining our main notions and tools.

Definition 2. Let K be any field.

– Let f ∈ K(x). The fixing group of f is

Gf = {u ∈ Γ (K) : f ◦ u = f}.
– Let H be a subgroup of Γ (K). The field fixed by H is

Fix(H) = {f ∈ K(x) : f ◦ u = f ∀u ∈ H}.

��
Before we discuss the computational aspects of these concepts, we will need some properties based on

general facts from Galois theory and Theorem 1.

Theorem 2.

– Let H be a subgroup of Γ (K).
• H is infinite ⇒ Fix(H) = K.
• H is finite ⇒ K � Fix(H), Fix(H) ⊂ K(x) is a normal extension, and in particular Fix(H) =
K(f) with deg f = |H |.

– Given a finite subgroup H of Γ (K), there is a bijection between the subgroups of H and intermediate
fields in Fix(H) ⊂ K(x). Also, if Fix(H) = K(f), there is a bijection between components of f (up to
equivalence by units) and the subgroups of H.

– Given f ∈ K(x) \K, the order of Gf divides deg f . Moreover, for every K there is an f ∈ K(x) such
that 1 < |Gf | < deg f . For example if f = x2 (x − 1)2 then Gf={x,1-x}.

– If |Gf | = deg f then the extension K(f) ⊂ K(x) is normal. Moreover, if the extension K(f) ⊂ K(x)
is also separable, then K(f) ⊂ K(x) is normal implies |Gf | = deg f .
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– Gf depends on the field K: let f = x4, then for K = Q, Gf = {x,−x} but for K = Q(i), Gf =
{x,−x, ix,−ix}.

– If K is infinite, then f ∈ K⇔ Gf is infinite.
– Let f ∈ K(x) and u, v be two units and H < Γ (K).

• If f ′ = u ◦ f ◦ v, then Gf = v · Gf ′ · v−1.
• If Fix(H) = K(f) then for any u, Fix(uHu−1) = K(f ◦ u−1).

– It is possible that f is decomposable but Gf is trivial. For K = C, f = x2(x − 1)2(x − 3)2; for
K = Q, f = x9.

– It is possible that f has a non–trivial decomposition f = g(h) and Gf is not trivial but Gh is not a
proper subgroup of Gf . For K = C, f = (x2 − 1)(x2 − 3) ⇒ Gf = {x,−x}; for K = Q, f = x4 ⇒
Gf = {x,−x}. ��
Unfortunately, it is not true that [K(x) : K(f)] = |Gf |. However, some interesting results about

decomposability can be given.

Theorem 3. Let f be indecomposable.

– If deg f = p is prime, then either Gf
∼= Cp or Gf is trivial.

– If deg f is not prime, then Gf is trivial. ��
In order to calculate Fix(H), we can distinguish if H is infinite or finite. According to the above

theorem if H is infinite then Fix(H) is K. So, only rests when H is finite. Some times it is interesting to
see the elements of Γ (K) as matrices.

Proposition 1. The group Γ (K) is isomorphic to PGL2(K) = GL2(K)/D2(K) where D2(K) = {λI2 :
λ ∈ K∗}. Moreover, if K is algebraically closed, then it is also isomorphic to PSL2(K) = SL2(K)/{±I2}.

��
The study of the finite subgroups of Γ (C) has a long history. Any element of Γ (K) corresponds to

a rotation or reflection of the Riemann sphere, so the finite subgroups correspond to the regular solids
in three dimensions. Klein [4] gave the first geometric proof of the following classification of the finite
subgroups of Γ (C).

Theorem 4. [Klein] Every finite subgroup of Γ (C) is isomorphic to one of the following groups:

– Cn, the cyclic group of order n;
– Dn, the dihedral group of order n;
– A4, the alternating group on four letters or tetrahedral group;
– S4, the symmetric group on four letters or octahedral group;
– A5, the alternating group on five letters or icosahedral group. ��

In the case K = Q, the correspondence between functions and groups is not so good as in the complex
case, see Theorem 2. On the other hand, it is not difficult (personal communication of Prof. Walter Feit)
to obtain from Theorem 4 a classification of all finite subgroups of Γ (Q).

Suppose that K is finite, that is, K = Fq where q is a power of a prime p. We denote the set of all
linear polynomials with coefficients in Fq as Γ0(Fq) = {ax + b : a ∈ F∗q , b ∈ Fq}.
Theorem 5. With the above notation, we have the following:

– |Γ0(Fq)| = q2 − q, |Γ (Fq)| = q3 − q.
– Γ0(Fq) is a non-normal subgroup of Γ (Fq).
– The group Γ (Fq) is generated by Γ0(Fq) and the linear rational function 1/x, Γ (K) =< Γ0, 1/x >.
– Fix(Γ0(Fq)) = Fq(f0), where f0 = (xq − x)q−1.
– Fix(Γ (Fq)) = Fq(h(f0)), where h = xq+1+x+1

xq . ��
As a consequence of Theorem 5 we have the following theoretical result:

Theorem 6. The extension K ⊂ K(x) is Galois if and only if K is infinite. ��

4 Algorithms

Now, we have all ingredients to give a computational solution to both problems.
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4.1 Algorithm for Computing the Fixed Field

As the next theorem shows, it is easy to compute a generator for the fixed field of an explicitly given
group (suggested by Dr. Peter Müller).

Theorem 7. Let H = {g1, . . . , gm} < Γ (K) be a finite group. Let

P (t) =
m∏
1

(t − gi) ∈ K(x)[t].

Then any non–constant coefficient of P (t) generates Fix(H). ��
The following example illustrates the algorithm over the field C.

Example 1. Let

H = {± t− i

t + i
,± t + i

t − i
,±1

t
,±t,± i(t− 1)

t + 1
,± i(t + 1)

t − 1
} < Γ (C)

which is isomorphic to A4. All the symmetric functions in the elements of H are in Fix(H), and any
non–constant symmetric function generates it. We compute those functions:

– σ1 = σ3 = σ5 = σ7 = σ9 = σ11 = 0 by symmetry in the group.

– σ2 = σ10 =
−1 + 33t4 + 33t8 − t12

t10 − 2t6 + t2
.

– σ4 = σ8 =
−33t4 − 66t2 − 33

t4 + 2t2 + 1
.

– σ6 =
2 − 66t4 − 66t8 + 2t12

t2 − 2t6 + t10
.

– σ12 = 1.
So,

Fix(H) = K(σ2) = K(σ4) = K(σ6).

��
Obviously the complexity of this method is dominated by computing the polynomial P (t), that is, the

number of arithmetic operations required to multiply m linear rational functions, where m is the order
of the group. A bound for this is O(m2).

4.2 Algorithm for Computing the Fixing Group

The most straightforward method of computing the fixing group of a rational functions is solving a
polynomial system of equations. Given

f =
anxn + · · · + a0

bmxm + · · · + b0

we have the system given by equating to 0 the coefficients of the numerator of

f ◦
(

ax + b

cx + d

)
− f(x).

We can alternatively solve the two systems given by

f ◦ (ax + b) − f(x) = 0, f ◦
(

ax + b

x + d

)
− f(x) = 0.

This method is simple but inefficient; we will present another method that is faster and will allow us to
extract useful information even if the group is not computed completely.

We will assume that K has sufficiently many elements; if it is not the case, we can work in an extension
and check later which elements are in Γ (K).

Definition 3. Let f ∈ K(x). We say that f is in normal form if deg fN > deg fD and fN (0) = 0. ��
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Theorem 8. Let f ∈ K(x). If K has sufficiently many elements, there exist units u and v such that
u ◦ f ◦ v is in normal form. ��

The complexity of the computation in Theorem 8 is that of the evaluation of a polynomial.

Theorem 9. Let f ∈ K(x) be in normal form and u = ax+b
cx+d such that f ◦ u = f .

– a �= 0 and d �= 0.
– fN (b/d) = 0.
– If c = 0 then an = 1 where n = deg f .
– If c �= 0 then fD(a/c) = 0. ��

In order to compute Gf , we use the previous theorem to compute the polynomial and rational units
separately.

Thus, if we can compute the roots of any polynomial in K[x], we have the following algorithm:

Input: f ∈ K(x).
Output: Gf = {u ∈ K(x) : f ◦ u = f}.
A. Compute units u, v such that f ′ = u ◦ f ◦ v is in normal form. Let n = deg f . Let L be an empty set.
B. Compute A = {α ∈ K : αn = 1}, B = {β ∈ K : f ′

N(β) = 0} and C = {γ ∈ K : f ′
N (γ) = 0}..

C. For each (α, β) ∈ A × B, check if f ′ ◦ (ax + b) = f ′. In the affirmative case, add ax + b to L.
D. For each (β, γ) ∈ B × C, let w = cγx+β

cx+1 and compute all values of c for which f ′ ◦ w = f ′. For each
solution, add the resulting unit to L.

E. Let L = {w1, . . . , wk}. Then, RETURN {v ◦ wi ◦ v−1 : i = 1, . . . , k}. ��

The above algorithm briefly described requires to compute roots of a univariate polynomial. The
complexity of this algorithm is dominated by step B. So, if we suppose that in the field K there is a
polynomial time method for computing the roots, then the algorithm is polynomial in the degree of the
rational function. This the case when K = Q, the rational number field or when K = Fq, the finite field
with q elements. However, in the Maple implementation, it seems that the most of the time is spent in
step C checking if the corresponding linear rational functions are good candidates or not.

Example 2. Let

f =

(−3 x + 1 + x3
)2

x (−2 x − x2 + 1 + x3) (−1 + x)
∈ Q(x).

First we normalize f : let u = 1/(x − 9/2) and v = 1/x − 1, then

f ′ = u ◦ f ◦ v =
−4x6 − 6x5 + 32x4 − 34x3 + 14x2 − 2x

27x5 − 108x4 + 141x3 − 81x2 + 21x − 2

is in normal form.
The roots of the numerator and denominator of f ′ in Q are {0, 1, 1/2} and {1/3, 2/3} respectively.

The only sixth roots of unity in Q are 1 and −1; as char Q = 0 there are no elements of the form x+ b in
Gf ′ . Therefore, there are two polynomial candidates to test: −x + 1/3 and −x + 2/3. It is easy to check
that none of them leaves f ′ fixed.

Let

w =
cβx + α

cx + 1
.

– α = 0, β = 1/3 : the unit cx/3
cx+1 does not leave f fixed for any value of c.

– α = 1, β = 1/3 : the unit cx/3+1
cx+1 does not leave f fixed for any value of c.

– α = 1/2, β = 1/3 : the unit cx/3+1/2
cx+1 leaves f fixed for c = −3/2.

– α = 0, β = 2/3 : the unit 2cx/3
cx+1 does not leave f fixed for any value of c.

– α = 1, β = 2/3 : the unit 2cx/3+1
cx+1 leaves f fixed for c = −3.

– α = 1/2, β = 2/3 : the unit 2cx/3+1/2
cx+1 does not leave f fixed for any value of c.
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Therefore,

Gf ′ = {x,
−x + 1
−3x + 2

,
−2x + 1
−3x + 1

}
and

Gf = v · Gf ′ · v−1 = {x,
1

1 − x
,
x − 1

x
}.

From this group we can compute a proper component of f using Theorem 7, and we obtain

h =
−3 x + 1 + x3

(−1 + x) x

which is indeed a component for f , since f = g ◦ h with

g =
x2

x − 1
.

��
Now we present an example illustrating the algorithm over a finite field.

Example 3. Let K = F2 and

f =
(x2 + 1)(x6 + x4 + x2 + 1 + x3)

x8 + x4 + 1 + x5 + x3
.

First we normalize f : let u = x+1
x and v = 1

x + 1. Then

f ′ = u ◦ f ◦ v =
(x + 1)4x4

(x2 + x + 1)(x4 + x + 1)
.

Since B = {0, 1} and C = ∅, we only have to check the unit x + 1. As it leaves f ′ fixed, we have that
Gf ′ = {x, x + 1} and

Gf = v · Gf ′ · v−1 = {x,
1
x
}.

Therefore, a generator of Fix(Gf ) is

h = x +
1
x

which is also a component of f : indeed f = g ◦ h with

g =
x4 + x

x4 + x + 1
.

��
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