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1 Adaptive Approximation Method

Algorithms in Computer Algebra base on algebraic concepts and aim at finding exact solutions. Computer
Analysis gives priority to algorithms using computer algebra systems (CAS) for finding controlled ana-
lytic approximate solutions for non closed solvable or only with not acceptable expense solvable problems.
In this sense Computer Analysis is the pendant to Numerical Mathematics. The analytic approximate
solutions should reflect inherent properties of the given problem and the possible influence of parame-
ters. All formula expressions should be simple and transparent, while maintaining an appropriate level
of precision. Approximate solutions without adequate error statements are worthless for the practical
application. Therefore it is important to control the accuracy by error estimations, which are computed
entirely by the computer program, the same way as approximations are determined without requiring
user interaction. Efficiency and quality of the algorithms developed in the Computer Analysis depend
in a high degree on the possibility to combine the tried methods of numerical computing with symbolic
procedures. Many algorithms have their roots in the past and are only now practicable because the fast
development of hardware and software technology gives the possibility to implement and improve them.

Finding analytic approximate solutions for differential equations is one of the main tasks of the
Computer Analysis. In the field of ODEs several algorithms could be developed and tried in the last two
decades [ 9, 10, 11, 13, 15 ]. In accordance with the purpose of Computer Analysis preference is given to
mathematical approximation methods allowing an automatic adaption to a given problem and giving a
transparent short formula expression at a reasonable expense.

Good results on this way could be achieved by a two - step concept. In the first step the given problem
will be adapted by an suitable chosen ”neighbor” problem whose exact solution can be determined
by means of Computer Algebra algorithms. The fundamental solutions form the base for an adequate
approximate ansatz in the second step.

Basic concept of the adaptive approximation [ 10, 14 ]:
Let be given a (linear or nonlinear) ODE of order n

L(y) = 0

with n linearly independent additional constraints (initial or boundary conditions)

Uk(y) = rk (k = 1(1)n)

In the first step (adaption step) L(y) is replaced by a differential operator
L̃(y; a0, ..., am) of sufficiently high order q > n with free parameters ai(i = 0(1)m), for which a general
method for constructing the exact solutions is known. For a good efficiency should be recommended to
choose L̃ in the form

L̃(y) =
m∑
i=0

aiL
ni

i (y),

where Lni

i (i = 0(1)n) are differential operators of the order ni ≤ q. The parameters ai(i = 0(1)m) are
computable by several ”adaption criterions”. Then it is possible to determine q linearly independent
fundamental solutions {ϕ1, ϕ2, ..., ϕq} of the adapted task with

L̃(ϕi) = 0 (i = 1(1)q).

These allow a linear ansatz

ỹ =
q∑
i=1

ciϕi.
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The parameter ci(i = 1(1)k) are computable by several ”approximation criterions” according to the
given problem under consideration of the additional conditions (approximation step). L̃ allows to adapt
the system of ansatz functions to the qualitative attributes of the solution (e. g. polynomial, rational
functions, exponential functions, trigonometric functions,...). Dividing the computation of approximate
solutions ỹ into two steps has several advantages. This concept allows a close problem adaption and offers
a wide field for the development of several algorithms depending first on the approximation criterions
used in both steps and second on the selected family of ”neighbouring” problems. The user has a double
possibility to control the accuracy of the approximate process.

2 ODEs with Polynominals Coefficients

A modification of this strategy results in an algorithm for the computation of approximate solutions for the
class of linear ordinary differential equations with polynomial coefficients. Based on efficient algorithms
for the finding exponential solutions or some subclasses of such solutions a relatively wide class of adapted
differential equations has been made available which may serve a basis for approximations. This class
consists of linear differential equations with polynomial coefficients, the relevant differential operators of
which are completely factorizable by differential operators of first order with exponential solutions.
The following procedure was developed by O. Becken. He defended his PhD-thesis to the topic ”On
adaptive approximation and D-finite functions” [3] two years ago.
Topic of the investigation is linear homogeneous ordinary differential equations of order n (singular or
regular) with polynomial coefficients

L(y) =
n∑
i=0

qiy
(i)(x) = 0 (2.1)

with qi ∈ K [x] , (i = 0(1)n)

qn �≡ 0, gcd(q0, q1, ..., qn) = 1.

K is some constant field with characteristic 0. Becken calls the solutions differentiably finite functions
(D-finite functions). The class of D-finite functions is an scientifically very interesting class and impor-
tant for many practical applications. It contains the commonly used analytic functions: the algebraic,
Bessel, cosine, Gaussian error, exponential, hypergeometric, logarithm, power, rational, sine and many
more functions are D-finite. D-finite functions form an algebra which is closed under sum and product,
substitution of algebraic functions, differentiation and integration. Each function can be uniquely defined
by an ODE (2.1) and n linearly independent linear boundary constraints

Ux0Y (x0) + Ux1Y (x1) = v (2.2)

with x0 ∈ R
⋂

K, x0 < x1, Y = (y, y′, ..., y(n−1))T

Ux0 , Ux1 ∈ (C
⋂

K)n×n

v = (v0, v1, ..., vn−1)T , vi ∈ C
⋂

K

or by a homogenous linear recurrence equation (RE) with polynomial coefficients

Ram =
r∑
j=0

pjF
jam = 0 (2.3)

with Fam = am−1, pj ∈ K[m], (j = 0(1)r)

p0 �≡ 0, pr �≡ 0.

It can be shown, that the generating function y(x) =
∑

i∈Z aix
i of such a RE is D-finite and that

reciprocally the sequence of Taylor coefficients of a D-finite function is solution of a RE [18].



Algorithms of Computer Analysis for Approximate Solutions of Linear ODEs 167

3 A Class of Adaptive Differential Operators

In preparation the adaption step it is necessary to choose the class of adaptive differential operators.
These operators should have the following properties:

– There should be a practicable algorithm to compute the fundamental system for each differential
operator.

– The fundamental system of each differential operator should consist of functions which are elementary
over K(x), i. e. they belong to an elementary extension of K(x) in the sense of differential algebra. It
is clear, non-elementary Liouvillian solutions are not practicable enough.

– The adaptive differential operators should be a subset of the linear differential operators with poly-
nomial coefficients.

These demands can be realized by the set of differential operators L which

– are linear differential operators of order n with polynomial coefficients
– are completely first order decomposable over K(x), i. e. L̃ can be written as L̃ = Ln...L2L1 where Li(i =

1(1)n) are linear differential operators of first order with coefficients in K′(x) (K′ is algebraic closure
of K)

– have for L̃(y) = 0 only elementary solutions over K(x).

The question, whether a given first order decomposable differential operator has only elementary
solutions over K(x), can algorithmically be decided by Risch integration. The class of differential operators
defined in this way is the biggest class of adaptive differential operators. In the past, some other classes
were already used [10, 14 ]:

POL = {L | V (L̃) ⊂ K′[x]}
RAT = {L | V (L̃) ⊂ K′[x]}

CON = {L̃ | ∃c1, ..., cn ∈: K′ : L̃ =
n∑
i=0

ciD
i}

EUL = {L̃ | ∃c1, ..., cn, x0 ∈ K′ : L̃ =
n∑
i=0

ci(x− x0)iDi}

(V (L̃) set of all solutions of L̃(y) = 0, Dy(x) = y′(x)).

POL, RAT, CON and EUL are proper subclasses of the class L of adaptive differential operators fixed
above. For instance, each Eulerian differential operator E ∈ EUL at the point x0 factors into

E = ((x− x0)D + en...((x− x0)D + e2)((x − x0)D + e1)

where the ei ∈ K′ (i = 1(1)n).

4 Adaption Step and Approximation Step

4.1 Getting Candidates for Approximate Solutions

After defining the class of adaptive differential operators L it is necessary to determine candidates for
approximate solutions in L or subclasses of L. This is possible by means of structure theorems of Com-
puter Algebra [3]:

Lemma 1: Each ODE (2.1) at any point x0 ∈ K′ can be written in a normalized standard form

L(y(x)) =
n∑
i=0

ψi(x− x0)iy(i)(x) = 0

with ψi =
b∑
j=0

cij(x− x0)j
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gcd(ψ0, ψ1..., ψn) = 1, x0, cij ∈ K′, ∃i : cib �= 0.

This standard form is the base for classifying the singular points at x0 : regular, singular, regular
singular, irregular singular.

Lemma 2: If the ODE (2.1) is regular or regular singular at the point x0, then there exist n linearly
independent solutions of the form

y(x) = (x − x0)λ(t0 + t1 ln(x − x0) + ...+ tn−1 ln(x− x0)n−1), (λ ∈ K),

where the ti ∈ K′[[x− x0]], (1 = 0(1)n− 1) are formal Taylor series at the point x0.

If the ODE (2.1) is irregular singular at the point x0, then there exist n linearly independent solutions
of the form

y(x) = (x− x0)λ(t0 + t1 ln(x− x0) + ...+ tn−1 ln(x− x0)n−1) exp(q)

λ ∈ K′, ri ∈ N \ {0} , w : C → C, w(x)ri = x− x0, q ∈ K′[1/w(x)]

where the ti ∈ K′[[w(x)]] (i = 0(1)n− 1) are formal Puiseux series

ti(x) =
∞∑
j=0

ajw(x)j (aj ∈ K′)

at the point x0.

Corollary: For each ODE of the form (2.1) at any regular or regular singular point x0 ∈ K′ there
exists at least one extended formal Laurent series solution of the form

y(x) = (x− x0)λ
∞∑

i=−∞
ai(x− x0)i (ai, λ ∈ K′) (4.1)

It is helpful and efficient to use corresponding recurrence equations for the
development of algorithms aimed at finding exact solutions or candidates for approximate solutions

of ODEs (2.1).

Lemma 3: In each regular or regular singular point a ODE of the form (2.1) corresponds to a RE
(2.3) at the point x0 of the form

Rx0am =
b∑
j=0

pjF
jam =

b∑
j=0

[
n∑
i=0

ciji!(
r−j

i )]am−j

with
Fam = am−1,m ∈ Z, am, λ ∈ K′, r = n+ λ

pj ∈ K[r], p0 �≡ 0, pb �≡ 0

Lemma 4: If there exists a solution of the form

y(x) = (x − x0)λ
β∑
i=α

ai(x− x0)i, α, β ∈ Z, x0, ai, λ ∈ K′, aα �= 0, αβ �= 0

for a ODE of the form (2.1), then the following condition holds for the corresponding RE at the point x0:

p0(λ+ α) = 0 and pb(λ+ β + b) = 0.
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O. Becken has analysed several algorithms with reference to usability for finding exponential solutions
of differential equations with polynomial coefficients [2, 3, 4]. He suggested an algorithm based on the
original algorithm of Beke with including results from Abramov, Bronstein, Schwarz and Singer [1, 6, 7,
16, 17].
The algorithm of Beke [5] finds all exact solutions of the form

y(x) = exp(
∫
u(x)dx) with u ∈ K′(x) (4.2)

(exponential function over K′). Let Kb(x) ⊂ K′(x) be a differential field with the minimal number of
algebraic extensions Θ1, Θ2, ..., Θs ∈ K′ such that u ∈ Kb(x). Using Hermite reduction and the Roth-
stein/Trager method y can be transformed into

y(x) = s exp(p+
c

d
)
∏
i

rci

i

with p, c, d ∈ Kb[x], ci ∈ K′, s, ri ∈ Kb(cj)[x].

p is called the polynomial part, the partial fractions of c
d are the irregular singular parts, because each

root of d is an irregular singular point of (2.1). With

t = s
∏

i:ci∈N
rci

i

y(x) can be written as

y(x) = t exp(p+
c

d
)
∏
i

rci

i

with p, c, d ∈ Kb[x], ci ∈ K′ \ N, t, ri ∈ Kb(ci)[x].

There rci

i are said to be the singular parts because each root of any ri ist a singular point of (2.1). The
algorithm has the following basic strategy:

step 1 - Bound the degree of the polynomial part.
step 2 - Determine the denominators of the irregular singular parts.
step 3 - Determine the singular parts which will be needed for bounding the degree of t.
step 4 - For all members of the set of possible combinations of singular parts determine the correspond-

ing t and the coefficients in p and c simultaneously.

It is not possible to describe the details of this algorithm in this paper. Many details base on handling
corresponding recurrence equations for the given ODE. This was done, because the main interest in
Beke’s algorithm came from finding approximate exponential solutions and instead of the search of an
exact polynomial t in step 4 can be applied Frobenius method [8], which needs the recurrence equation.
Mainly handling REs for the given ODEs allows to extend the algorithm in a natural way to find formal
exact solutions of the form

y(x) = (t0 + t11n(x− x0) + ...tn−11n(x− x0)n−1) exp(p+
c

d
)
∏
i

rci

i (4.3)

with ci ∈ K′, p, c, d, ri ∈ K′[x]

where the ti (i = 0(1)n− 1) are formal Laurent series of the from (4.1). These solutions determined by
means of the Frobenius method are exact in the sense that the REs describe exactly the coefficients of
the series. The solutions are only formal solutions because ad hoc nothing is known about convergence.
Truncating the Laurent series ti results in good candidates for approximate solutions in closed form.

But it is more important that Beke’s method can also be used for finding approximate exponential
solutions with free parameters. After determining the set P of candidates for polynomial parts p and
the set S of candidates for the singular parts rci

i with their corresponding irregular singular parts each
function f ∈ P × S has to be multiplied with a monic polynomial t with free coefficients. In this way the
functions ft are candidates for approximate exponential solutions (4.2) with free parameters.
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4.2 Adaption

After finding candidates for approximate exponential solutions for ODEs of the form (2.1) the adaptive
differential operator L̃ ∈ L to a given differential operator L has to be determined. One important
property of exponential solutions is that they are solutions of ODEs (2.1) of first order. This property of
the candidates can be used in a recursive procedure to split up approximate right first-order factors of
L. The rest terms appearing in the right remainders are minimized by applying adaption criterions.
Adaption - Algorithm (L, R)

(L, R are ODEs of the form (2.1). The algorithm computes linearly independent approximate solutions
Φ = {ϕ1, ϕ2, ..., ϕq} for L,R. The fundamental system of R is known).

1. Use structure theorems of Computer Algebra for determining candidates ỹj for possible approximate
exponential solutions of L. Each ỹj contains free coefficients. Assign Φ the empty sequence.

2. for each ỹj ∈ {ỹj}
(a) Compute a ODE L1 (2.1) of first order with free parameters

c1, c2, ..., cm and L1(ỹj) = 0

(b) Compute the right quotient Q of the form (2.1) and the right remainder such that

pL = QL1 + r and p, r ∈ K′[c1, c2, ..., cm][x].

(c) Determine the coefficients c1, ..., cm in L1 and ỹj by applying adaption criterions to r.
(d) Determine a fundamental system of L1R by d’ Alembert reduction. Denote by ϕ the function,
which is in the fundamental system of L1R but not in the fundamental system of R.
(e) if ϕ is elementary and det(WΦ,ϕ) �= 0 then Φ := Φ,ϕ.
(f) ψ: = Adaption - Algorithm (Q,L1R)
(g) for each ϕ ∈ ψ
if det(WΦ,ψ) �= 0 then Φ := Φ,ψ.

3. return Φ

The algorithm should be started with Adaption - Algorithm (L, I), where I is the dentity differential
operator.
WY (x) is the notation of the Wronskian matrix for a sequence of functions Y = {y1(x), y2(x), ..., yk(x)}.
The result of the whole adaption step is a fundamental system of L̃ in form of a sequence of q linearly
independent functions Φ = {ϕ1, ϕ2, ..., ϕq} The adaptive differential operator L̃ is not necessary in an
explicit form, but L̃ can easily be computed by

L̃(y) =
det(Wϕ1,ϕ2,...,ϕq,y)

det(Wϕ1,ϕ2,...,ϕq)
.

The fundamental system of L̃ was computed using d’ Alembert reduction method. The integration routine
decides whether the integrals are elementary functions or not.

It is usual to determine the free parameters by minimizing the defect function L(ỹ). But minimizing
the right remainder r is more advantageous, because pL(ỹ) = QL1(ỹ) + rỹ shows minimizing the defect
function would mean minimizing ỹ, too. Additionally, this adaption strategy has the great advantage that
the adaption criterions should be applied to polynomials.
There are many possibilities to choose suitable criterions for the adaption L̃ to L. It depends on the kind
of the task. If a boundary value problem is given, then a good approximation in a whole segment is of
interest. If an initial value problem is given, then a good approximation near the initial point will be
important. Possible adaption criterions are least square method with integral norms, collocation, complete
Taylor approximation.

4.3 Approximate Solutions

The approximation step aims at combining the ”best” functions from the q linearly independent functions
ϕ1, ϕ2, ..., ϕq with L̃(ϕi) = 0 (i = 1 (1) q) to get an approximate solution ỹ for the ODE (2.1). There are
two possibilities. The usually applied procedure consists of making a linear ansatz
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ỹ(x) =
q∑
i=1

ciϕi.

Substitution ỹ into the constraints determines n of the q coefficients. The other q − n coefficients
are determined by applying approximation criterions to ỹ. But this is only useful as long as q is not
much greater than n and each function ϕi(i = 1(1)q) has a simple structure. A linear combination of all
functions with a lot of nonzero coefficients ci will give a very complex expression. This is in contradiction
to the demand for short transparent expressions in the Computer Analysis.
The other way is based on the property, that each function in Φ is the result of some optimization process
in the adaption step and therefore is an optimal approximation in the sense of adaption criterions to a
fundamental solution of the given differential operator L. Therefore the approximation step is reduced
to the task to sort the functions ϕ1, ϕ2, ..., ϕq by applying an approximation criterion to each of them.
Possible criterions are the same once used in the adaption step.
For each function ϕi ∈ Φ (i = 1 (1) q) has to be computed the linear monic differential operator L1 of
first order with L1(ϕi) = 0. Then it is possible to compute the right remainder r with L = QL1 + r, r ∈
K′[ln(x)](x). Finally, approximate criterions are applied to r and its norm is computed. After sorting the
functions of the fundamental system Φ by increasing norm of the corresponding r the best n functions are
selected for a linear ansatz ỹ =

∑n
i=1 ciϕi. Substituting it into the constraints determines the coefficients

ci (i = 1 (1) n). In this procedure the norms of r are not computed for minimizing them, but for comparing
one with another. Because r may by more complicated as in the adaption step and because the norms
are not necessary in high precision, it is advisable to compute the norms numerically.

5 Error Estimation

The development of practicable error estimations is a central problem of the Computer Analysis. Ap-
proximate solutions without adequate error statements are worthless for the practical application. It is
important that error estimations have to be completely computable by means of the hard- and software
available at present.
The following procedure is based on a proposal by N. J. Lehmann [12]. He developed a general concept to
compute upper bounds for the error function of an approximate solution computed by any approximate
method. The error equation uses the Green function to the given differential operator and the defect of
the approximate solution with reference to the given ODE as only information about the quality of the
approximate solution. But the Green function is unknown and has to be estimated.
Applying this concept to our problem is relatively easy because the ODE (2.1) is linear and the Green
function to the adaption operator L̃ is computable.
Let ỹ ∈ Cn[x0, x1] be an approximate solution of the linear ODE (2.1) which fulfils the constraints (2.2).
Then the error function f(x) = y(x) − ỹ(x) is determined by

L(f) = L(y) − L(ỹ) = −L(ỹ)

and with the Green function G(x, s) to L and (2.2) in the form

f(x) = −
∫ x1

x0

G(x, s)L(ỹ(s))ds.

Applying the inequality of Schwarz gives with the integral norm the estimation

| f(x) |≤‖ G(x, •) ‖‖ L(ỹ(s)) ‖ .1

On the other hand, let g ∈ C(0)[x0, x1] be an aribitrary function. With G̃ (x, s) as Green function to L̃

u(x) =
∫ x1

x0

G̃(x, s)g(s)ds (5.1)

is the unique solution of L̃(u) = q and the homogeneous constraints to (2.2). From L(u) = L�(u) + g

with L� = L− L̃ is concluded

u(x) =
∫ x1

x0

G(x, s)[L�(u(s)) + g(s)]ds

1 The point in G(x, •) points at the variable concerned by the norm computation.
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=
∫ x1

x0

G(x, s)g(s)ds+
∫ x1

x0

G(x, s)L
(s)

� (
∫ x1

x0

G̃(s, t)g(t)dt)ds. (5.2)

If the dermination of L̃ secures that L� is of an order less then L it is possible to interchange n - 1 times
differentiation of L� with the integration.

Since g was arbitrarily chosen and regarding (5.1) and (5.2) after interchanging L� and the integration
sign one concludes

G(x, s) − G̃(x, s) = −
∫ x1

x0

G(x, t)L
(t)

� (G̃(t, s)dt.

The usual norm estimation gives together with the triangle inequality the following error estimation:

Provided K =

√∫ x1

x0

∫ x1

x0

| L (x)

� (G̃(x, s)) |2 dxds < 1

(i. e. the approximation should be reasonably good), then

| y(x) − ỹ(x) |≤ ‖ G̃(x, •) ‖
1 −K

‖ L(ỹ(x)) ‖ ∀x ∈ [x0, x1]. (5.3)

If the constraints (2.2) are in particular initial conditions

y(ν)(x0) = vν or y(ν)(x1) = vν , (ν = 0(1)n− 1)

then G̃(x, s) can be substituted by the right Green function or the left Green function to G̃(x, s).

6 Conclusion

The algorithms were implemented in Maple V Release 5. The package includes not only procedures for
finding approximate solutions of ODEs (2.1) but also exact solutions in the form of finite Laurent series,
polynomials , rational functions and exponential functions. The implementation is restricted to the case
K = Q[

√−1].
Many test computations have shown the usability of the adaptive approximation concept. A comparison
with other approximation algorithms was not possible because it could not be found other packages,
which compute approximate solutions of ”simple” differential equations in closed form.

The construction of approximate analytic solutions for differential equations will be of a great practical
importance in future too. Many differential equations generally cannot be exactly integrated. Moreover,
even in those cases when a closed form solution can be obtained it is often too cumbersome and inefficient
to be used for practical purposes.
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12. N. J. Lehmann. Fehlerschranken für Näherungslösungen bei Differentialgleichungen. Numerische Mathematik,
10, S. 261 - 288, 1967

13. N. J. Lehmann. Die Analytische Maschine - Grundlagen einer Computer- Analytik. In Sitzungsberichte
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