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Abstract. The paper discusses some problems of investigation of peculiarities of families of invari-
ant manifolds, which give a stationary value to the families of first integrals of differential equations
of motion of mechanical systems. The method of investigation is based on using the envelope of such
families of first integrals. Examples illustrating application of the method are given. The computer
algebra system MATHEMATICA was applied in computations.

One of the problems arising in the process of investigation of the phase space of systems of differential
equations, which assumes several first integrals, is finding out and analysis of qualitative properties of
peculiar sets of both these integrals and their families, in particular, the properties of invariant sets on
which some elements of the first integrals algebra reach their stationary values. Such sets will further
be called the invariant manifolds of steady motions (IMSMs). The latter statement is valid due to the
statements made in the spirit of the Routh-Lyapunov theorem asserting that – in the case of sufficient
smoothness and under some requirements of nonsingularity imposed on the equations of stationarity
of first integrals – their solutions are indeed the invariants sets (and, as a rule, are the manifolds) of
the initial system of differential equations. As far as co-dimension of one is concerned, the analysis of
peculiarities in first-integral algebra itself is also of substantial interest. Enveloping first integrals of such
families represent one of the simple forms of peculiarities for the families of first integrals.

Since not only one first integral can reach its stationary value on a given IMSM or on their family,
for the purpose of obtaining complete information on the IMSM’s properties it is desirable to know the
complete collection of such first integrals. This is especially useful in the case of algebraic first integrals.
Here we deal with some analogy of a construction with a field of rational functions on a surface (or on a
curved line) in algebraic geometry. Constructing of all first integrals, which reach their stationary values
on some family of invariant manifolds, represents a special serious problem even for the low-dimensional
problems of mechanics.

In the present paper we restrict ourselves to the problem of the construction and use of envelopes for
the families of first integrals.

Note only that other techniques (useful for the analysis of the families of IMSMs), which are needed
to the end of obtaining ”additional” first integrals for their one-parameter families, are also possible. For
example, let there be a one-parameter family of first integrals (with the parameter λ) for a system of
differential equations:

K = V1 + λV2 + λ2V3 = c1 + λc2 + λ2c3.

(Here c1, c2, c3 are constants of integrals V1, V2, V3). Then it is possible to construct, generally speaking,
two families of first integrals by solving the following equation with respect to λ.

(V1 − c1) + λ(V2 − c2) + λ2(V3 − c3) = 0.

As a result, we have

λ1,2 =
1
2
[−(V2 − c2) ±

√
(V2 − c2)2 − 4(V1 − c1)(V3 − c3)](V3 − c3)−1.

Often such ”dual” first integrals allow to obtain some additional information on IMSMs corresponding
to the initial family K in terms of arbitrary constants c1, c2, c3 of these integrals.

Let us turn back to our principal theme and give specific examples of the construction and application
of envelopes for the first integrals in problems of mechanics. Let us start with the case of quadratic first
integrals.
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The case of the Lagrange top in the force field of constant gravity As is well known, the
differential equations of motion for the Lagrange top [1]:

Aṗ = (A − C)qr0 + z0γ2, γ̇1 = r0γ2 − qγ3,

Aq̇ = (C − A)r0p − z0γ1, γ̇2 = pγ3 − r0γ1,

Cṙ = 0, γ̇3 = qγ1 − pγ2

have a one-parameter family of first integrals

K =
1
2
(Ap2 + Aq2 + 2z0γ3) − λ(Apγ1 + Aqγ2 + Cr0γ3) +

1
2
Aλ2(γ1

2 + γ2
2 + γ3

2). (1)

As it is obvious from the following steady-state equations, the stationary value to the elements of this
family

∂K

∂p
= A(p − λγ1) = 0,

∂K

∂q
= A(q − λγ2) = 0,

∂K

∂γ1
= −λA(p − λγ1) = 0,

∂K

∂γ2
= −λA(q − λγ2) = 0, (2)

∂K

∂γ3
= z0 − λCr0 + λ2Aγ3 = 0

is given by the elements of the family of invariant manifolds of regular precessions

p − λγ1 = 0, q − λγ2 = 0, z0 − λCr0 + λ2Aγ3 = 0. (3)

The first integral, which serves as the envelope for the family of the integrals (1), can easily be found
here by the standard algorithm, i.e. by computing the derivative of K with respect to λ and equating it
to zero:

∂K

∂λ
= −(Apγ1 + Aqγ2 + Cr0γ3) + λA(γ2

1 + γ2
2 + γ2

3) = 0.

From the resultant equation we obtain:

λ =
(Apγ1 + Aqγ2 + Cr0γ3)

A(γ2
1 + γ2

2 + γ2
3)

. (4)

After that, by substituting this value of λ into expression (1), as a result of elementary transformations
we have the formula for the first integral which envelopes the family (1):

2Λ = (Ap2 + Aq2 + 2z0γ3) − (Apγ1 + Aqγ2 + Cr0γ3)2

A(γ2
1 + γ2

2 + γ2
3)

= const.

It represents a rational function of first integrals, which enters the initial family K. The conditions of
stationarity for the integral Λ are as follows:

∂Λ

∂p
= A[p − (Apγ1 + Aqγ2 + Cr0γ3)

A(γ2
1 + γ2

2 + γ2
3)

γ1] = 0,

∂Λ

∂q
= A[q − (Apγ1 + Aqγ2 + Cr0γ3)

A(γ2
1 + γ2

2 + γ2
3)

γ2] = 0, (5)

∂Λ

∂γ1
= − (Apγ1 + Aqγ2 + Cr0γ3)

A(γ2
1 + γ2

2 + γ2
3)

A[p − (Apγ1 + Aqγ2 + Cr0γ3)
A(γ2

1 + γ2
2 + γ2

3)
γ1] = 0,

∂Λ

∂γ2
= − (Apγ1 + Aqγ2 + Cr0γ3)

A(γ2
1 + γ2

2 + γ2
3)

A[q − (Apγ1 + Aqγ2 + Cr0γ3)
A(γ2

1 + γ2
2 + γ2

3)
γ2] = 0,

∂Λ

∂γ3
= z0 − (Apγ1 + Aqγ2 + Cr0γ3)

A(γ2
1 + γ2

2 + γ2
3)

Cr0 +
(Apγ1 + Aqγ2 + Cr0γ3)2

A2(γ2
1 + γ2

2 + γ2
3)2

Aγ3 = 0.

Direct comparison of the latter equations with the conditions of stationarity (2) of the family K shows
that they formally coincide when the expression

(Apγ1 + Aqγ2 + Cr0γ3)
A(γ2

1 + γ2
2 + γ2

3)



On the Properties of Families of First Integrals 177

in (5) is replaced with λ.
When substituting the values of constants of the first integrals of squares and directional cosines

Apγ1 + Aqγ2 + Cr0γ3 = m, γ2
1 + γ2

2 + γ2
3 = 1,

into the formula (4), we obtain that the stationary value for the enveloping first integral is given only by
such invariant manifolds (3) for which the restriction of the form

λ =
m

A
.

is imposed on λ.
To the end of defining which part of IMSM (3) is represented by the solutions for the system (5), let

us use equations (5) in order to remove p, q from the square integral. As a result, we have:

Apγ1 + Aqγ2 + Cr0γ3 = m(γ2
1 + γ2

2) + Cr0γ3 = m − mγ2
3 + Cr0γ3 = m,

or
γ3(−mγ3 + Cr0) = 0.

Since from the latter equation (5) it follows that

γ3 =
mCr0 − z0A

m2
,

then for (−mγ3 + Cr0) the expression z0Am−1 is obtained, which can vanish only for z0 = 0 or m → ∞.
Consequently, for the precessions corresponding to the enveloping integral, γ3 = 0, and the precession
angular rate is λ = z0(Cr0)−1.

So, the enveloping integral reaches its stationary value on a special subset of the family of invariant
manifolds, which correspond to the initial set of first integrals K.

If p, q, and γ3 are removed from the integral of squares with the aid of equations (3), then for λ we
obtain the fourth-degree equation:

A2λ4 − Amλ3 + Cr0z0λ − z2
0 = 0. (6)

Consequently, on the hypersurface of the level of the integral of squares for a fixed value of the constant
m there may be up to four regular precessions, for which the values of angular rates of the precessions
are real roots of the latter equation.

If equation (6) is rewritten in the form

Aλ3(Aλ − m) + z0(Cr0λ − z0) = 0,

then for Aλ−m = 0 this equation implies that the restriction λ = z0(Cr0)−1 is imposed into the angular
rate of the precession, and m in this case turns out to be equal to z0A(Cr0)−1.

The substitution of the latter value of m into equation (6) allows one to factorize the latter:

Cr0(A2λ4 − z0A
2

Cr0
λ3 + Cr0z0λ − z0) = (λ − z0

Cr0
)(A2λ3 + Cr0z0)Cr0 = 0.

Hence, it follows that besides the precession with λ = z0(Cr0)−1, γ3 = 0, on the hypersurface of the
square integral having the value of the constant m = z0A(Cr0)−1 there is another precession with the
angular rate of λ = 3

√
(−Cr0z0)A−2.

The case of Lagrange top in the central force field In the case of Lagrange top in the central
force field [2] the set of special regular precessions, which are separated by the enveloping first integral,
is substantially richer. The differential equations of motion of a body in this case are as follows:

Aṗ = (A − C)qr0 + z0γ2 − µ(A − C)γ2γ3, γ̇1 = r0γ2 − qγ3,

Aq̇ = (C − A)r0p − z0γ1 − µ(C − A)γ3γ1, γ̇2 = pγ3 − r0γ1, (7)
Cṙ = 0, γ̇3 = qγ1 − pγ2.

For these equations there is a one-parameter family of first integrals (7) similar to the family (1):

2K0 = [(Ap2 + Aq2 + 2z0γ3) + µ(Aγ2
1 + Aγ2

2 + Cγ2
3)] − 2λ(Apγ1 + Aqγ2

+ Cr0γ3) + A(λ2 − µ)(γ1
2 + γ2

2 + γ3
2). (8)
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The invariant manifolds of the system (7)

p − λγ1 = 0, q − λγ2 = 0, z0 − λCr0 + [µ(C − A) + λ2A]γ3 = 0 (9)

give the stationary value to the elements of the above family K0.
The latter directly follows from the equations

∂K0

∂p
= A(p − λγ1) = 0,

∂K0

∂q
= A(q − λγ2) = 0,

∂K0

∂γ1
= −λA(p − λγ1) = 0,

∂K0

∂γ2
= −λA(q − λγ2) = 0, (10)

∂K0

∂γ3
= z0 − λCr0 + [µ(C − A) + λ2A]γ3 = 0.

By equating the derivative of K0 with respect to λ to zero, we obtain the equation

∂K0

∂λ
= −(Apγ1 + Aqγ2 + Cr0γ3) + Aλ(γ1

2 + γ2
2 + γ3

2) = 0,

whence we find
λ =

(Apγ1 + Aqγ2 + Cr0γ3)
A(γ2

1 + γ2
2 + γ2

3)
.

When eliminating λ from equation (8) we obtain the envelope for the family of first integrals (8) of
the form

2Λ0 = [(Ap2 + Aq2 + 2z0γ3) + µ(Aγ2
1 + Aγ2

2 + Cγ2
3)]

− (Apγ1 + Aqγ2 + Cr0γ3)2

A(γ2
1 + γ2

2 + γ2
3)

− µA(γ2
1 + γ2

2 + γ2
3). (11)

Let us separate the invariant manifolds which give a stationary value to the first integral Λ0. The
stationary conditions in this case differ from the stationary conditions of the first integral Λ only by the
last equation. For Λ0 it writes:

∂Λ0

∂γ3
= z0 − (Apγ1 + Aqγ2 + Cr0γ3)

A(γ1
2 + γ2

2 + γ3
2)

Cr0 + [µ(C − A) (12)

+
(Apγ1 + Aqγ2 + Cr0γ3)2

A2(γ1
2 + γ2

2 + γ3
2)2

A]γ3 = 0.

Similarly to the case of equations (5) for Λ, the stationary conditions for Λ0 coincide with the stationary
conditions (10) of the corresponding Λ0 of the family K0 of first integrals if the following substitution is
performed in these stationary conditions

(Apγ1 + Aqγ2 + Cr0γ3)
A(γ1

2 + γ2
2 + γ3

2)
= λ.

Furthermore, similarly to the case of the Lagrange top in the constant force field, in the case of the
enveloping integral there appears a relationship Aλ = m between the parameter λ and the constant of
the integral of squares.

If equations (10) are used to remove p, q, γ3 from the integral of squares, then we obtain the 5th
degree equation with respect to λ:

A3λ5 − A2mλ4 − 2µ(C − A)A2λ3 + A[Cr0z0 − 2µ(C − A)m]λ2

+{A[µ2(C − A)2 − z2
0 ] + C2r2

0µ(C − A)}λ − µ(C − A)[Cr0z0 (13)
+µ(C − A)m] = 0.

So, there may be up to five regular precessions (9) on the hypersurface of the integral of squares under
a fixed value of m in this integral. If one recalls the relationship Aλ = m between m and λ, which is
imposed on these parameters in the process of constructing the envelope integral, then after writing down
the equation (13) of the form

A2λ4(Aλ − m) − 2µ(C − A)A2λ3 + A[Cr0z0 − 2µ(C − A)m]λ2 + {A[µ2

×(C − A)2 − z2
0 ] + C2r2

0µ(C − A)}λ − µ(C − A)[Cr0z0 + µ(C − A)m] = 0
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and taking account of the above relationship, it is possible to obtain

ACr0z0λ
2 + [C2r2

0µ(C − A) − Az2
0 ]µ(C − A)Cr0z0 = 0.

The latter will determine two values of λ corresponding to precessions, on which the enveloping integral
reaches its stationary value. The first of the values of λ1 = −µ(C − A)Cr0(Az0)−1 (corresponding to
m1 = µ(C − A)Cr0(z0)−1 ) defines the following value for the directional cosine γ3:

γ3 =
λ1Cr0 − z0

µ(C − A) + λ2
1A

= − z0[µ(C − A)C2r2
0 + Az2

0 ]
µ(C − A)[µ(C − A)C2r2

0 + Az2
0 ]

.

For [µ(C − A)C2r2
0 + Az2

0 ] �= 0 one obtains

γ3 = − z0

µ(C − A)
.

This kind of regular precessions is distinguished in the family (9) by the property that there is the axis
of permanent rotation on the cone which describes the axis of body symmetry for the given precession.
This can readily be seen from the expression for

γ3 =
λ1Cr0 − z0

µ(C − A) + λ2
1A

when λ1 → 0.

In the case when the expression in square brackets is zero we have

C2r∗0
2 = − Az2

0

µ(C − A)
and λ∗

1
2 = −µ(C − A)

A
. (14)

The angle γ3 remains arbitrary in this case. Therefore, for r∗0andλ∗
1 defined by formulas (14), the precession

may be realized for any constant γ3.
In case of λ2 = z0(Cr0)−1 the equation for γ3 assumes the form:

[µ(C − A) + Aλ2
2]γ3 = λ2Cr0 − z0 or γ3[µ(C − A) +

Az2
0

C2r2
0

] = 0.

As a result, we have either precessions with γ3 = 0 or for C2r2
0 = −Az2

0(µ(C − A))−1, λ2 = −µ(C −
A)(A)−1 again, as in the previous case, the precession may be realized for any constant value of γ3.

Here, similarly to the previous case, the enveloping first integral Λ0 has given the possibility to separate
a subset of special precessions in the family of regular precessions giving the stationary value to K0.

In conclusion consider the construction of an envelope integral for the family of non-quadratic integrals.

The case of the S.V.Kovalevskaya top In the case of the S.V.Kovalevskaya top on the Delaunay
manifold

p2 − q2 − x0γ1 = 0, 2pq − x0γ2 = 0,

which is the stationary set for the S.V.Kovalevskaya integral [3]

V = (p2 − q2 − x0γ1)2 + (2pq − x0γ2) = k2,

the differential equations

2ṗ = qr, 2q̇ = −rp + x0γ3, ṙ = −2pq, γ̇3 = −q(p2 + q2)
x0

have a one-parameter family of first integrals

2L = 4p2 + r2 − 2ν(rγ3 + 2
p(p2 + q2)

x0
) + ν2(γ2

3 +
(p2 + q2)2

x2
0

). (15)

Stationary conditions for the function L are

∂L

∂p
= 2(1 − ν

x0
p)(2p − ν

x0
(p2 + q2)) = 0,

∂L

∂q
= −2

νq

x0
(2p − ν

x0
(p2 + q2)) = 0, (16)

∂L

∂r
= r − νγ3 = 0,

∂L

∂γ3
= −ν(r − νγ3) = 0.
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As it is obvious from the structure of the left-hand sides of the latter equations, their solutions are
represented by invariant manifolds, which form two one-parameter families:

1) 2p − ν

x0
(p2 + q2)) = 0, r − νγ3 = 0,

2) q = 0, p =
ν

x0
, r − νγ3 = 0.

If the variables p, q, γ3 are eliminated from the integral of squares, narrowed onto the Delaunay
invariant manifold,

rγ3 + 2
p(p2 + q2)

x0
= m, (17)

with the aid equations, which define the 2nd type of invariant manifolds, then we obtain the following
relation between m and ν:

m = ν +
x2

0

ν3
. (18)

The latter expression implies that there may be up to four 2nd type invariant manifolds for a fixed m
on the surface of the integral level (17). It can be easily verified that for m2 < 16x0/3

√
3 all the roots

of equation (18) are complex. Consequently, for the corresponding values of constant m, the invariant
manifolds which are of interest for us do not exist. In the case of the 1st type of invariant manifolds, the
relation between m and ν is simpler: m = ν.

Let us construct the enveloping first integral for the family (15). Having obtained ν from the expression
of the derivative of L with respect to ν:

∂L

∂ν
= rγ3 + 2

p(p2 + q2)
x0

− ν[γ2
3 +

(p2 + q2)2

x2
0

] = 0,

we have

ν =
rγ3 + 2p(p2 + q2)x−1

0

γ2
3 + (p2 + q2)2x−2

0

.

Having substituted this value of ν into expression (15), we obtain the desired enveloping integral for the
family (15) of the form

2Λ0 = (4p2 + r2) − [rγ3 + 2
p(p2 + q2)

x0
]2[γ2

3 +
(p2 + q2)2

x2
0

]−1.

Let us write down the equations defining the stationary set for the latter integral:

∂Λ0

∂p
= 2[1 − rγ3 + 2p(p2 + q2)x0

−1

γ2
3 + (p2 + q2)2x−2

0

p

x0
][2p − rγ3 + 2p(p2 + q2)x−1

0

γ2
3 + (p2 + q2)2x−2

0

× (p2 + q2)
x0

] = 0,

∂Λ0

∂q
= −2q[rγ3 + 2p(p2 + q2)x−1

0 ]
x0[γ2

3 + (p2 + q2)2x−2
0 ]

[2p − (rγ3 + 2p(p2 + q2)x−1
0 )

(γ2
3 + (p2 + q2)2x−2

0 )

× (p2 + q2)
x0

] = 0,

∂Λ0

∂r
= r − rγ3 + 2p(p2 + q2)x−1

0

γ2
3 + (p2 + q2)2x−2

0

γ3 = 0,

∂Λ0

∂γ3
= −rγ3 + 2p(p2 + q2)x−1

0

γ2
3 + (p2 + q2)2x−2

0

[r − rγ3 + 2p(p2 + q2)x−1
0

γ2
3 + (p2 + q2)2x−2

0

γ3] = 0.

Formally, the equations obtained again coincide with equations (16) when the following substitution is
performed in them:

rγ3 + 2p(p2 + q2)x−1
0

γ2
3 + (p2 + q2)2x−2

0

= ν.

The latter relation and the values of the first integral constants, which occur in this formula, imply
the dependence between m and ν:

ν = m.



On the Properties of Families of First Integrals 181

This dependence is incompatible with the conditions of existence of the 2nd type invariant manifolds (18).
Therefore, the enveloping first integral has only the 1st type invariant manifolds, whose co-dimension is
smaller than that of the 2nd type invariant manifolds, in the capacity of its stationary set.

In conclusion it is expedient to note that for the quite integrable systems, as well as for those close to
them, rather typical is the situation, which is considered above on the examples from rigid body dynamics,
when a family of first integrals is put in correspondence to a family of IMSMs. In this case, constructing
the enveloping first integral not only leads to finding out the peculiarities in the co-dimension of one but
also allows one to obtain some additional information on the structure of the respective family of IMSMs.

When the aids of computer algebra are available, the technique proposed allows one to investigate
systems of rather high dimensions. For example, the above approach has been employed for finding out
peculiar IMSMs of a system of rigid bodies with the carrier [4], whose lagrangian writes:

2L =
3∑

α=1

3∑
β=1

Jαβ(q)wαwβ + 2
n∑

k=1

3∑
α=1

ekα(q)wα q̇k +
n∑

i=1

n∑
j=1

cij q̇iq̇j + 2U(q), (19)

where wα (α = 1, 2, 3)are the projections of the carrier body’s angular rate onto the axes bound up
with this body; qi, q̇i (i = 1, . . . , n) are the generalized coordinates and velocities which determine the
orientation of the carried bodies with respect to one another and to the carrier’s body; U(q1, . . . , qn) is
the force function.

According to [4], the system of differential equations, which is defined by the lagrangian (19) and
complemented with Poisson’s equations for the directional cosines, assumes the one-parameter family of
first integrals:

2K2 =

[
3∑

α=1

J1α(q)wα +
n∑

k=1

ek1q̇k

]2

+

[
3∑

α=1

J2α(q)wα +
n∑

k=1

ek2q̇k

]2

+

[
3∑

α=1

J3α(q)wα +
n∑

k=1

ek3q̇k

]2

− 2λ

{[
3∑

α=1

J1α(q)wα +
n∑

k=1

ek1q̇k

]
γ1 (20)

+

[
3∑

α=1

J2α(q)wα +
n∑

k=1

ek2q̇k

]
γ2 +

[
3∑

α=1

J3α(q)wα +
n∑

k=1

ek3q̇k

]
γ3

}

+ λ2[γ2
1 + γ2

2 + γ2
3 ].

Here γi (i = 1, 2, 3) are the directional cosines for the ”vertical” in the axes bound up with the carrier’s
body.

It can readily be verified – by writing out the necessary conditions of extremum for K2 – that the
stationary value for the elements of the family of first integrals K2 may be provided by the elements of
the family of IMSMs defined by the following equations:

3∑
α=1

J1α(q)wα +
n∑

k=1

ek1q̇k − λγ1 = 0,

3∑
α=1

J2α(q)wα +
n∑

k=1

ek2q̇k − λγ2 = 0, (21)

3∑
α=1

J3α(q)wα +
n∑

k=1

ek3q̇k − λγ3 = 0.

Here, similarly to the above examples for the Lagrange and Kovalevskaya tops, an envelope for the
family of first integrals (20) has been constructed, and with the aid of the first integral thus obtained
the peculiar IMSMs from the family (21) have been found. The computations have been conducted for a
fixed n. The results of the investigation will not be given since they are rather bulky.
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