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Abstract. This paper presents an algorithm for finding asymptotic solutions to singularly per-
turbed higher-order boundary value problems. The main idea is to regard an n-th order problem
as the combination of an initial value problem and a singularly perturbed second order boundary
value problem for which an extensive theory exists. An algorithm for finding asymptotic solutions
is implemented in Mathematica. It is illustrated by two worked examples.

1 Introduction

Higher order boundary value problems (of order greater than two) occur in different applications. For
example, the motion of thin liquid films subject to viscous, capillary and gravitational forces is governed
by the third-order boundary value problem. Other viscocapillary flows such as horizontal coating flow,
draining down a dry vertical wall, or liquid film falling on a vertical wall are just a few other examples
([1], [2], [8]). Many of such models are singular perturbation problems: the highest derivative is multiplied
by a small parameter, ε.

Numerical solutions to such singularly perturbed higher-order problems are not easy to find. Existing
software packages for solving boundary value problems fail for problems with sharp boundaries or thin
internal layers unless the mesh is accurately initialised. An effective MATLAB solver, bvp4c ([11]), cannot
find a solution to a simple third-order boundary value problem

εy′′′ = y′′2 − 1, 0 < t < 1
y(0) = A0, y

′(0) = A1, y
′(1) = B1

for ε ≤ 0.01 unless a good starting guess describing qualitative behaviour of the system is provided either
by the user or by the results of running bvp4c with higher values of ε. At best, numerical solver will yield
a single solution even for a multi-valued problem.

To determine whether a boundary value problem has a single solution, multiple or infinitely many
solutions, and to construct these solution(s) an analytical study of the system is required. This is the
case for the second order problems as well as for the higher-order ones. To author’s knowledge, there
have been few attempts so far to automate in Computer Algebra existing theoretical results regarding
finding asymptotics to singularly perturbed problems. One of examples, is a symbolic-numerical approach
to solving semilinear second-order systems ([10]) based on the theory from ([9]).

This paper considers a simple and direct approach for finding asymptotic solutions to higher order
boundary value problems based on the classical theory for second-order problems and differential inequal-
ities of higher order ([4]). An algorithm for tackling higher-order problems is considered and implemented
in Mathematica by the author. Algorithm provides conditions for the existence of solutions, and constructs
multiple piece-wise solutions for higher order boundary value problems. Such asymptotic solutions de-
scribe the system behaviour reasonably well. In the case when more accuracy is needed, asymptotic
solutions obtained from the algorithm can be used as a starting guess for the numerical solver.

2 Singular Perturbation Problems of Higher Order

Consider an n-th order (n ≥ 3) scalar singularly perturbed boundary value problem 0 < ε � 1):

εy(n)(t) = f(t, y, y′, y′′, . . . , y(n−1)), a < t < b
y(j)(a) = Aj , 0 ≤ j ≤ (n − 2)
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y(n−2)(b) = Bn−2. (1)

Under certain conditions outlined below, the asymptotic solution to such boundary value problem
exists and can be constructed ([4]). The main idea is to regard the given problem as the combination of
a singularly perturbed second-order problem and an unperturbed initial value problem. Let us rewrite
n-th order equation (1) as the following system:

y′
i = yi+1, yi(a; ε) = Ai−1, i = 1 . . . n − 3

y′
n−2 = z, yn−2(a; ε) = An−3

εz′′ = f(t, y1, . . . , yn−2, z, z′),
z(a; ε) = An−2, z(b; ε) = Bn−2. (2)

Asymptotic behaviour of scalar n-th order equation (1) is determined by the n-th order system (2), or
more precisely by its reduced system

Y ′
i = Yi+1, Yi(a; ε) = Ai−1, i = 1 . . . n − 3

Y ′
n−2 = z, Yn−2(a; ε) = An−3

0 = f(t, Y1, . . . , Yn−2, Z, Z ′),
Z(a; ε) = An−2, Z(b; ε) = Bn−2. (3)

When viewed in this light, the behaviour of the n-th order boundary value problem (1) is determined by
the behaviour of the second-order problem:

εz′′(t) = F(t, z, z′), a < t < b
z(a) = An−2, z(b) = Bn−2,

F(t, z, z′) = f(t, Y1, Y2, . . . , Y(n−2), z, z′). (4)

For problems of this type there are extensive theoretical results regarding existence of asymptotic solutions
and their construction (e.g. [3], [4], [5]).

If the right-hand side of original equation (1) depends on y(n−2) but does not depend on y(n−1), the
corresponding system (4) is semilinear

εz′′(t) = F(t, z), a < t < b
z(a) = An−2, z(b) = Bn−2,

F(t, z) = f(t, Y1, Y2, . . . , Y(n−2), z). (5)

To solve such problem a theory of semilinear problems ([9], [10]) can be employed. These results are not
considered in detail in this paper. If the right-hand side of the original problem (1) does not depend on
either y(n−1) and y(n−2), the corresponding system (4) is linear

εz′′(t) = F(t), a < t < b
z(a) = An−2, z(b) = Bn−2,
F(t) = f(t, Y1, Y2, . . . , Y(n−2)). (6)

Special cases of quasilinear
f = y(n−1) + g(t, y, y′, . . . y(n−2))

and quadratic
f = (y(n−1))2 + g(t, y, y′, . . . y(n−2))

dependencies can also be considered ([3]).
This paper discusses an algorithm for a general class of nonlinear boundary value problems. This is

the case when the right-hand side in the original problem (1) depends on y(n−1), and the corresponding
second-order system (4) is nonlinear. To illustrate the approach outlined above, consider the case when
the second order boundary value problem has angular solutions.

3 Theory for 2nd-Order Boundary Value Problems

Consider the second order boundary value problem:

εy′′ = F (t, y, y′), a < t < b
y(a) = A, y(b) = B. (7)
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3.1 Angular Solutions

The classical Haber-Levinson theory states that if the assumptions below are satisfied, the system (7)
has a locally unique solution. Suppose that the corresponding reduced equation

0 = F (t, y, y′), a < t < b
y(a) = A, y(b) = B (8)

has a left solution uL valid on [a, tL] and a right solution uR valid on [tR, b], such that

uL(a) = A, uR(b) = B. (9)

Intersection condition. The solutions uL and uR are called angular if they intersect at a point t0 ∈ [a, b]
with unequal slopes

uL(t0) = uR(t0) = σ0

µL = u′
L(t0) �= u′

R(t0) = µR. (10)

Stability condition. The solutions uL and uR are stable in the sense that

Fy′(t, uL(t), u′
L(t)) ≥ k > 0, a < t < t0

Fy′(t, uR(t), u′
R(t)) ≤ −k < 0, t0 < t < b. (11)

Crossing condition holds for all λ between µL and µR

(µR − µL)F (t0, uL(t0), λ) > 0. (12)

Then, the original problem has a solution

y(t) =
{

uL(t) + ξL, a ≤ t < t0,
uR(t) + ξR, t0 < t ≤ b. (13)

where ξL and ξR are asymptotic angular corrections to the left and to the right of the turning point t0

ξL =
ε

k
(µL − µR)exp{−k

ε
(t0 − t)}, a ≤ t < t0

ξR =
ε

k
(µR − µL)exp{−k

ε
(t − t0)}, t0 < t ≤ b. (14)

Remarks: Needless to say that solving reduced equation (8) analytically is not always possible.
However, solving a reduced equation numerically is much easier that solving the original problem. The
reason being that the problems (8) for uL and uR with the respective condition (9) are initial value
problems of order one while the original problem (7) is a singularly perturbed boundary value problem
of order two.

3.2 Double Crossings.

Results similar to the above hold if reduced equation has more than two solutions on [a, b]. Consider the
case of three solutions. uL, uM and uR defined on [a, t1], [t1, t2] and [t2, b] respectively such that

uL(a) = A, uL(t1) = uM (t1),
uM (t2) = uR(t2), uR(b) = B.

µL = u′
L(t1) �= u′

M (t1) = µM1,
µM2 = u′

M (t2) �= u′
R(t2) = µR. (15)

Stability conditions. Sign restrictions for left and right solutions must hold on the whole intervals,
while sign restrictions for the middle solution must only hold in a small neighbourhood of a turning
point:

Fy′(t, uL(t), u′
L(t)) ≥ k1 > 0, a ≤ t < t1

Fy′(t, uM (t), u′
M (t)) ≤ −k1 < 0, t1 < t < t1 + δ

Fy′(t, uM (t), u′
M (t)) ≥ k2 > 0, t2 − δ ≤ t < t2

Fy′(t, uR(t), u′
R(t)) ≤ −k2 < 0, t2 < t ≤ b. (16)
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Crossing conditions hold strictly for λ between µL and µM1

(µM1 − µL)F (t1, uL(t1), λ) > 0 (17)

and for λ between µM2 and µR

(µM2 − µR)F (t2, uR(t2), λ) > 0, (18)

Stability condition for middle solution. The middle solution is stable in the sense that there exists
a positive constant l such that

Fy(t, uM (t), u′
M (t)) ≥ l > 0, t1 + δ ≤ t ≤ t2 − δ (19)

Then, the original problem has a solution y(t)

y(t) =




uL(t) + ξL, a ≤ t < t1,
uM (t) + ξM1 + ξM2, t1 < t ≤ t2
uR(t) + ξR, t2 < t ≤ b.

(20)

where ξL, ξM , and ξR are asymptotic angular corrections defined as in (14). This result can be generalised
for any finite number of crossings.

3.3 Modified Stability

Some modifications of the conditions under which the system (7) has angular solutions have been consid-
ered in ([5]). For instance, a boundary value problem (7) will still have an angular asymptotic solution if
the requirement of Fy′ stability (11) is substituted by the requirement of Fy stability (22) provided Fy′

stability in a small neighbourhood of a turning point t0 holds:

Fy′(t, uL(t), u′
L(t)) ≥ k > 0, t0 − δ < t < t0

Fy′(t, uR(t), u′
R(t)) ≤ −k < 0, t0 < t < t0 + δ (21)

Fy stability condition is given by

Fy(t, uL(t), u′
L(t)) ≥ l > 0 a < t < t0 − δ

Fy(t, uR(t), u′
R(t)) ≥ l > 0 t0 + δ < t < b. (22)

This result holds for function f which satisfies

|F (t, y, y′)| → O(|y′|) as |y′| → ∞. (23)

4 Theory for Higher Value Boundary Value Problems

When the n-th order boundary value problem

εy(n)(t) = f(t, y, y′, y′′, . . . , y(n−1)), a < t < b
y(j)(a) = Aj , 0 ≤ j ≤ (n − 2)

y(n−2)(b) = Bn−2

is viewed as a system of initial value problem and a second order boundary value problem (2), the main
results concerning asymptotic solutions can be extended to higher order case. Let us now formulate
conditions under which the n-th order problem has an asymptotic angular solution.

4.1 Interior Layer Behaviour

Let the corresponding reduced equation have a left solution uL valid on [a, tL] and a right solution uR

valid on [tR, b] such that

u
(j)
L (a) = Aj , j = 0 . . . n − 2

u
(n−2)
R (b) = Bn−2. (24)
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As is the case for the second-order problems, solving the reduced equation (3) of order n− 1 analytically
is not always possible. However, obtaining numerical solution to an initial value problem of order n − 1
is easier than solving the original n-order boundary value problem.

Intersection condition. Two solutions of higher order value problem are called angular if they
intersect at a point t0 ∈ [a, b] so that

u
(j)
L (t0) = u

(j)
R (t0) = σj , j = 0 . . . n − 2

µL = u
(n−1)
L (t0) �= u

(n−1)
R (t0) = µR. (25)

Stability condition. For n-order problems, the stability is determined with respect to the highest
derivative on the right-hand side. The solutions uL and uR are said to be stable if

fy(n−1)(uL, u′
L, . . . , u

(n−1)
L ) ≥ k > 0, a ≤ t ≤ t0

fy(n−1)(uR, u′
R, . . . , u

(n−1)
R ) ≤ −k > 0, t0 ≤ t ≤ b. (26)

Crossing condition. The crossing condition holds for λ between µL and µR

(µR − µL)f(t0, σ0, σ1, . . . σn−2, λ) > 0 (27)

Then, the original problem (1) has a solution y(t; ε) such that

y(j) = Y (j) + O(ε), j = 0 . . . n − 3

y(n−2) =

{
u

(n−2)
L (t) + ξL, a ≤ t < t0,

u
(n−2)
R (t) + ξR, t0 < t ≤ b.

(28)

where ξL and ξR are asymptotic angular corrections defined by equation (14).

4.2 Shock Layer Behaviour

Solutions of (1) may also exhibit shock layer behaviour when the left and right solutions of the reduced
equation exist but do not satisfy intersection conditions (25). Namely,

u
(n−2)
L (t0) �= u

(n−2)
R (t0). (29)

Theory for shock solutions to nonlinear problems is restricted to quasilinear and semilinear problems.
Consider a quasilinear problem wherein the right-hand side of equation (1) is given by

f = h(t, y, y′ . . . yn−2)y(n−1) + g(t, y, y′ . . . , y(n−2))

The point of shock, t0, is determined from

J(t) =
∫ uL

uR

h(s, u, u′, . . . u(n−1))ds, J(t0) = 0. (30)

Free constants in the right solutions are determined from intersection conditions

u
(j)
L (t0) = u

(j)
R (t0) = σj , j = 0 . . . n − 3. (31)

In this case, (n − 2) derivatives transfer from one reduced solution to another discontinuously at a point
t = t0 with the asymptotic corrections are given by

ξsL =
1
2
(u(n−2)

R (t0) − u
(n−2)
L (t0)) exp{k

ε
(t − t0)}

ξsR =
1
2
(u(n−2)

L (t0) − u
(n−2)
R (t0)) exp{k

ε
(t0 − t)}. (32)

Here k is determined from the stability conditions:

h(t, u, u′, . . . , u(n−2)) ≥ k > 0, a ≤ t < t0
h(t, u, u′, . . . , u(n−2)) ≤ −k < 0, t0 < t ≤ b. (33)

System representation (2) can also be employed for the cases when reduced equation (3) does not
have closed-form solutions.
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4.3 Semilinear Problems

Consider briefly the semilinear case when function f in the right-hand side of (1) is independent of y(n−1).
The solution to this problem exists if the reduced problem has two angular solutions uL(t) and uR(t)
which satisfy (25) and crossing condition (27). In addition, f is stable in the sense that

fy(n−2)(u, u′, . . . , u(n−2)) ≥ k > 0 [a, b] (34)

Then, the asymptotic angular correction to the y(n−2) are given by

ξL(t; ε) =
√

ε

k
(µR − µL)exp{−

√
ε

k
(t0 − t)}

ξR(t; ε) =
√

ε

k
(µL − µR)exp{−

√
ε

k
(t − t0)}. (35)

In the semilinear case, solution can exhibit shock layer behaviour where the point of shock is determined
from (30) by changing h to f . Shock layer corrections are given by equations (32). The case of semilinear
systems have been considered in detail in ([9], [10]).

4.4 Boundary Layer Behaviour

Consider now boundary value behaviour. Note, that for functions f of the type |f(t, y, y′)| = O(|y′|n),
n > 2, y′ → ∞ the boundary layer behaviour is not possible ([7]). Suppose uL(t) is the solution to the
reduced problem (3) which satisfies initial conditions

y(j)(a) = Aj , j = 0 . . . n − 2. (36)

Function f is continuous with respect to (t, y, y′ . . . , y(n−1)) and grows at most linearly as a function of
y(n−1):

|f(t, y, y′ . . . yn−2)| = O(|y(n−1)|) as y(n−1) → ∞. (37)

In addition, the derivative is required to be positive along the solution of the reduced problem:

fy(n−1)(t, uL, u′
L, . . . , u

(n−1)
L ) ≥ k > 0, a ≤ t ≤ b. (38)

Then, the original problem (1) has a solution y(t; ε) which exhibits boundary layer behaviour. Asymptotic
correction to y(n−2) is given by

ξBR(t; ε) = (Bn−2 − u
(n−2)
L (b))exp{−k

ε
(b − t)}. (39)

In the case of quadratic dependence of function f on y(n−1)

|f(t, y, y′, . . . , y(n−1))| = O(|y(n−1)|2) as y(n−1) → ∞ (40)

solution exhibits boundary layer behaviour if there exists a positive constant k > 0 such that

∂f

∂y(n−1)
≥ 0,

∂f2

∂2y(n−1)
≥ k > 0. (41)

Thus, the asymptotic boundary layer correction is given by

ξ2BR(t; ε) = kε ln[(b − a)−1(b − t+
(t − a) exp{−(ε/k)|Bn−2 − u

(n−2)
L (b)|} (42)

Given the above results for interior and boundary layers, let us now formulate an algorithm for finding
asymptotic solutions to higher order singularly perturbed boundary value problems.
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5 Algorithm

– Find the order of equation, n.
– Determine the type of problem: nonlinear, semilinear, quasilinear, quadratic, linear.
– Solve two initial value problems

y(k) = g(t, y, y′, . . . , y(l)), l ≤ k, y(j) = Aj (43)

and
y(k) = g(t, y, y′, . . . , yl), l ≤ k, y(j) = Bj (44)

where y(k) = g(t, y, y′, . . . , yl) is a solution of an algebraic equation f(t, y, y′, . . . , y(k)) = 0 with respect
to its highest derivative y(k). The solutions to the right problem (44) contain unknown constants to
be determined later.

– If a closed-form solution to the initial value problem (43) is not found, an algorithm can be adapted
to incorporate numerical part.

– Select stable solutions and find their intervals of stability. Depending on the problem type different
types of stability is investigated (fy(n−1) or fy(n−2)). In the case of a nonlinear equation, left solution
uL(t) is said to be stable if

∂f

∂y(n−1)
|y=uL(t) ≥ k > 0, uL(a) = A

and right solution is stable if

∂h

∂y(n−1)
|y=uR(t) ≤ −k < 0, uR(a) = B.

For the semilinear type of problem, a solution u(t) is said to be stable if

∂f

∂yn−2
|y=u(t) ≥ k > 0.

– Find minimums of corresponding partial derivatives.
– Find the type of interior crossings: if left and right solutions satisfy condition (14), the crossing is

angular. Shock layer behaviour is only possible for quasilinear and semilinear problems. In the latter
case, the point of shock is determined from (30).

– Check that crossing conditions (27) are satisfied.
– Construct a piece-wise path from t = a to t = b from stable pieces of solutions using algorithm

developed for semilinear systems ([10]).
– Construct asymptotic solutions by adding corresponding asymptotic corrections of the correct type

to the path.

6 Examples

An algorithm for finding asymptotic solutions to higher-order boundary value problems has been im-
plemented Mathematica by the author. Let us consider two simple examples whose solutions display
behaviour outlined above.

7 Examples

7.1 Example 1

Consider a third-order boundary value problem:

example1 = εy′′′(t) = (y′′)2 − 1
y(0) = 1, y′(0) = 1/2, y′(1) = 1 (45)

HigherOrderEqns[example1, y[t], t, 0, 1]
Third order nonlinear quadratic equation
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Solving Reduced Equation. . .
raw solutions:

{{y[t]− >
t2

2
+ C[1] + tC[2], y[t]− > − t2

2
+ C[1] + tC[2]}}

stable left solutions :{{1 +
t

2
+

t2

2
}} on [0, 1]

stable right solutions :{{C[1] + t − t2

2
}} on [0, 1]

angular intersection

t =
1
4
, C[1] =

15
16

crossing conditions holds true
asymptotic solutions with boundary layer at t = 1

u = 1 +
t

2
+

t2

2
− 2tε

+
2

(
1 − t + e−

3
4 ε t

)
ε log

[
1 − t + e−

3
4 ε t

]
−1 + e−

3
4 ε

angular solution

uL = 1 +
t

2
+

t2

2
− 1

2
e−

2t−1
2 ε ε2, 0 ≤ t <

1
4

uR =
15
16

+ t − t2

2
+

1
2

e−
1−2t
2 ε ε2

1
4

< t ≤ 1

Boundary value problem (45) was attempted to be solved numerically by bvp4c solver ([11]). For
ε <= 0.01 the solver fails to converge. The continuation technique when a result from the problem with a
higher value of ε is used as a starting guess for smaller ε yields only one solution rather than two solutions
found by an algorithm (see Figure 1).

0.2 0.4 0.6 0.8 1
t

1.2

1.4

1.6

1.8

2

y@tD Example 1

Fig. 1. Two solutions to example1 (45): a solution with a boundary layer at t = 1 and an angular solution with
intersection point t = 1/4. ε = 0.01.
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7.2 Example 2

Consider now an example with a shock layer behaviour:

example2 = εy′′′[t] = y′[t] − y′[t]y′′[t]
y[0] = 1, y′[0] = 1/2, y′[1] = 1 (46)

HigherOrderEqns[example2, y[t], t, 0, 1]
Third order quasilinear equation
Solving Reduced Equation
raw solutions:

{{y[t]− > C[1], y[t]− > − t2

2
+ C[1] + tC[2]}}

stable left solutions :{{1 − t

2
+

t2

2
}} on [0,

1
2
]

stable right solutions :{{C[1] +
t2

2
}} on [0, 1]

shock at
t =

1
4
, C[1] =

7
8

asymptotic solutions: shock layer behaviour

uL = 1 − t

2
+

t2

2
+

ε

8
− 1

8
e−

1
4 ε ε, 0 ≤ t <

1
4

uR =
7
8

+
t2

2
− ε

8
+

1
8

e−
1

4 ε ε,
1
4

< t ≤ 1.

An asymptotic solution with a shock layer is presented on Figure 2.

0.2 0.4 0.6 0.8 1
t

0.9

1.1

1.2

1.3

y@tD Example 2

Fig. 2. Asymptotic solution to example2 (46) with a shock layer at t = 1/4 is shown. ε = 0.005.

8 Summary

This paper discusses finding asymptotic solutions for higher order boundary value problems. The algo-
rithm presented in this paper determines the leading asymptotic solution which can either be found in
a fully analytical form or a symbolic-numerical one. In both cases, the task of finding a solution to a
higher order boundary value problem is simplified to solving an initial value problem of an order lower
than the one for the original problem and the second-order boundary value problem. For many problems,
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asymptotics is close enough to exact solution. If more accuracy is needed, asymptotics can then be used
as an initial guess for the boundary value solver.

The current algorithm can be applied to general nonlinear type of higher-order boundary value prob-
lem. The algorithm can easily be extended to systems of higher-order initial boundary value problems.
Cases of generalised and weak stability should also be added. In cases, when the closed-form solution of
reduced solution cannot be found, a numerical method based on the presented algorithm can be envisaged.

The boundary conditions for the considered problems have been of Dirichlet type. The algorithm can
be extended to non-Dirichlet types of separate boundary conditions. Asymptotic solutions to problems
with Robin or Neumann type of boundary conditions

y(j) = Ai, i = 0, . . . , n − 3
p1y

(n−2)(a) − q1y
(n−1)(a) = An−2, p1 + q1 > 0

p2y
(n−2)(b) + q2y

(n−1)(b) = Bn−2, p2 + q2 > 0

can be found in a similar way applying the results for the second order problems from ([6]).
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