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Abstract. Computation of homology or cohomology is intrinsically a problem of high combinatorial
complexity. Recently we proposed a new efficient algorithm for computing cohomologies of Lie
algebras and superalgebras. This algorithm is based on partition of the full cochain complex into
minimal subcomplexes. The algorithm was implemented as a C program LieCohomology. In this
paper we present results of applying the program LieCohomology to the algebra of hamiltonian
vector fields H(2|0). We demonstrate that the new approach is much more efficient comparing with
the straightforward one. In particular, our computation reveals some new cohomological classes for
the algebra H(2|0) (and also for the Poisson algebra Po(2|0)).

1 Introduction

Cohomology is defined by cochain complex

0 → C0 d0−→ · · · dk−2−→ Ck−1 dk−1−→ Ck dk−→ Ck+1 dk+1−→ · · · . (1)

Here Ck are linear spaces (more generally, abelian groups), graded by the integer number k, called
dimension or degree (depending on the context). The elements of the spaces Ck are called cochains.

The linear mappings dk are called differentials (or coboundary operators). The main property of these
mappings is “their squares are equal to zero”: dk ◦ dk−1 = 0.

The elements of the space Zk = Ker dk are called cocycles. The elements of the space Bk = Im dk−1

are called coboundaries. Note that Bk ⊆ Zk.
The kth cohomology is the quotient space

Hk = Zk/Bk ≡ Ker dk/Im dk−1.

There are many cohomological theories designed for investigation of different mathematical structures
and the space Hk carries important information about peculiarities in these structures. The only difference
between cohomological theories lies in the constructions of the cochain spaces and coboundary operator.
These constructions depend on the underlying mathematical structures.

The cohomology of the Lie (super)algebra A in the module X is defined via cochain complex (1)
in which (see, e.g., [1]) the cochain spaces Ck = Ck(A; X) consist of super skew-symmetric k-linear
mappings A × · · · × A → X, C0 = X by definition. Super skew-symmetry means symmetry with respect
to swapping of two adjacent odd cochain arguments and antisymmetry for any other combination of
parities for adjacent pair.

The differential dk takes the form1

(dkc)(a0, . . . , ak) = −
∑

0≤i<j≤k

(−1)s(ai)+s(aj)+p(ai)p(aj)c([ai, aj ], ao, . . . , âi, . . . , âj , . . . , ak)

−
∑

0≤i≤k

(−1)s(ai)aic(ao, . . . , âi, . . . , ak), (2)

where the functions c(. . .) are elements of cochain spaces; ai ∈ A; p(ai) is the parity of ai; s(ai) = i, if
ai is even element and s(ai) is equal to the number of even elements in the sequence a0, . . . , ai−1, if ai is
1 This version of formula for differential corresponds to the algorithm used in the program LieCohomology.
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odd element. In the case of trivial module (i.e., if ax = 0 for all a ∈ A and x ∈ X) one uses as a rule the
notation Hk(A).

In papers [2–5] we presented an algorithm for computation of Lie (super)algebra cohomologies. These
papers contain also the description of its C implementation and some results obtained with the help
of codes designed. This algorithm computes cohomology of Lie (super)algebra A over module X in a
straightforward way, i.e., for cochain complex (1) the algorithm constructs the full set of basis super
skew-symmetric monomials forming the space Ck, generates subsequently all basis monomials in the
space Ck+1, computes the differentials corresponding to these monomials to obtain the set of linear
equations determining the space of cocycles

Zk = Ker dk = {Ck | dCk = 0}, (3)

constructs the space of coboundaries

Bk = Im dk−1 = {Ck | Ck = dCk−1}. (4)

Finally, the algorithm constructs the basis elements of quotient space

Hk(A; X) = Zk/Bk. (5)

This last step is based on the Gauss elimination procedure.
The main difficulty in computing cohomology results from the very high dimensions of the spaces Ck:

for n-dimensional ordinary Lie algebra and p-dimensional module

dimCk = p
(

n
k

)
,

and for (n|m)-dimensional Lie superalgebra

dimCk = p

k∑
i=0

( n
k − i

)(m + i − 1
i

)
≡ p

(n
k

)
+ p

k∑
i=1

( n
k − i

)(m + i − 1
i

)
.

In many cases it is possibly to extract some easier to handle subcomplexes of the full cochain complex
(1). The partition of cochain complex for a graded algebra and module into homogeneous components is
a typical example. In many papers (see, e. g., [10–12]) more special subcomplexes were used successfully
to obtain new results in the theory of cohomology of Lie (super)algebras.2

The main idea of the new algorithm presented in [6–8] is to extract the minimal possible subcomplexes
from complex (1) and to carry out computations within these subcomplexes. There are two versions of the
algorithm. One of them is applied when the cochain spaces under consideration are infinite-dimensional
(or their dimensions are too large to fit the available memory), but the minimal subcomplexes contain
finite-dimensional spaces of k-cochains. Another version of the algorithm is applied when it is possible to
construct the full space Ck. Below we present this version in the pseudocode form.
Here the subalgorithm GenerateMonomials generates the full set Mk

g of super skew-symmetric mono-
mials

c(αi1 , . . . , αik
; ξι) ≡ c(αi1) ∧ · · · ∧ c(αik

) ⊗ ξι ≡ α′
i1 ∧ · · · ∧ α′

ik
⊗ ξι

forming basis of the cochain space Ck in the grade g; αij ∈ A and ξι ∈ X are basis elements of algebra
and module; α′

i is the dual to αi element. The subalgorithm ChooseMonomial takes some monomial
mk

g ∈ Mk
g . This monomial is a starting monomial for constructing the subcomplex s by the subalgorithm

ConstructSubcomplex. The subalgorithm ComputeCohomologyInSubcomplex computes basis
cohomological classes BHk

g,s in the subcomplex s by the straightforward algorithm described above.

2 Computation of H�
�
(H(2|0))

In this section we present the results of computation of cohomology in the trivial module for Lie algebra
H(2|0) of formal hamiltonian vector fields on the 2-dimensional symplectic manifold. We describe also

2 The main trick consists in imposing some restrictions on the elements of Ck and proving the invariance of these
restrictions with respect to the differential.
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Algoritm: ComputeCohomology

Input: A, Lie (super) algebra; X, module;
k, cohomology degree; g, grade

Output: BHk
g , set of basis cohomological classes

Local: Mk
g , full set of k-cochain monomials (basis of Ck

g );

s, current subcomplex: Ck−1
g,s

dk−1
g,s−→ Ck

g,s

dk
g,s−→ Ck+1

g,s ;

mk
g ∈ Mk

g , starting monomial for constructing subcomplex s;
Mk

g,s, set of k-cochain monomials involved in subcomplex s;

BHk
g,s, set of basis cohomological classes in subcomplex s

1: BHk
g := ∅

2: Mk
g := GenerateMonomials(A, X, k, g)

3: while Mk
g �= ∅ do

4: mk
g := ChooseMonomial(Mk

g )
5: {s, Mk

g,s} := ConstructSubcomplex(mk
g)

6: BHk
g,s := ComputeCohomologyInSubcomplex(s)

7: if BHk
g,s �= ∅ then

8: BHk
g := BHk

g ∪ BHk
g,s

9: fi

10: Mk
g := Mk

g \ Mk
g,s

11: od

12: return BHk
g

the cohomological classes up to grade 8 for the Poisson algebra Po(2|0) which is a central extension of
the algebra H(2|0).

The hamiltonian algebra H(2n|m) is an algebra of vector fields (see, e.g., [9]) acting on the (2n|m)
supermanifold and preserving the following 2-form

n∑
i=1

dpi ∧ dqi +
m∑

j=1

dθj ∧ dθj ,

where p1, . . . , pn; q1, . . . , qn and θ1, . . . θm are even and odd local variables on the supermanifold, respec-
tively. The elements of H(2n|m) can be expressed in terms of generating function f(p1, . . . , pn; q1, . . . , qn;
θ1, . . . θm) by the formula

n∑
i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
− (−1)p(f)

m∑
j=1

∂f

∂θj

∂

∂θj
, (6)

where p(f) is parity of the function f (this function is called usually hamiltonian). Thus one can consider
the formal hamiltonian vector fields as linear combinations of monomials in the variables pi, qi and
θj (except for the monomial 1). Considering these monomials as basis elements of H(2n|m) and using
prescribed ZZ-grading for the variables pi, qi and θj one can impose ZZ-grading gr() on the algebra H(2n|m).
The standard grading is gr(pi) = gr(qi) = gr(θj) = 1. For the standard grading the grade of algebra
element corresponding to some monomial is equal to the grade of this monomial minus 2 (due to two
differentiations in the terms of expression (6)).

Since the hamiltonian algebra is very important in both classical and quantum physics many efforts
were applied to the investigation of its cohomology. Most advanced results were obtained for the finite-
dimensional algebras of the form H(0|m) [13, 14]. Nevertheless the hamiltonian algebras on supermanifolds
with nonzero even dimension are more important in applications but computation of their cohomologies
is a much more difficult task. Some results about cohomologies of such algebras were obtained in [10–12].
In the paper [10] some elements of Hk

g (H(2|0)) were calculated by considering special subcomplexes (and
using computer partially). We present here all cohomological classes (without discussing their meaning
and interpretation) from Hk

g (H(2|0)) up to grade 8.
The computed results are summarized in Table 1. The boxes of this table corresponding to cochain

degree k and cochain grade g contain the following information: dim Ck
g , dimension of the full space

of k-cochains in grade g; number of minimal subcomplexes Ck−1
g,s

dk−1
g,s−→ Ck

g,s

dk
g,s−→ Ck+1

g,s extracted by the
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algorithm from the full complex; maxdim Ck
g,s, maximum dimension of the subspace of (k, g)-cochains

among all subcomplexes. The empty box means that dimCk
g = 0, i.e. the space of (k, g)-cochains is empty.

The boxes marked by the bullet • contain nontrivial 1-dimensional cohomological classes. For example,

Table 1. Computation of Hk
g for (k, g) ∈ [1, . . . ,∞) ⊗ [−2, . . . , 8]

k\g -2 -1 0 1 2 3 4 5 6 7 8

1
2
2
1

3
3
1

4
4
1

5
5
1

6
6
1

7
7
1

8
8
1

9
9
1

10
10
1

11
11
1

2
1
1 •
1

6
4
2

11
5
3

22
6
5

33
7
7

52
8
9

71
9
11

100
10
14

129
11
17

170
12
20

211
13
23

3
3
3
1

10
4
3

30
7
8

60
8
13

116
9
22

200
10
34

326
11
52

502
12
72

752
13
100

1078
14
133

1515
15
177

4
3
3
1

14
6
4

45
7
11

108
8
22

242
11
44

466
12
78

857
13
135

1468
14
210

2426
15
326

3820
16
478

5872
17
698

5
1
1 •
1

12
6
3

41
7
9

128
10
25

315
11
59

706
12
117

1432
13
222

2748
16
391

4949
17
671

8568
18

1078

14240
19

1710

6
4
4
1

23
7
5

90
10
18

264
11
50

688
12
114

1580
15
246

3382
16
483

6734
17
916

12766
18

1619

23074
19

2806

7
6
5 •
2

32
8
7

135
11
25

412
12
70

1128
15
180

2730
16
396

6132
17
842

12818
18

1649

25488
21 •

3148

8
4
4
1

33
9
7

138
10
25

479
13
79

1388
16
207

3606
17
510

8546
18

1125

18963
21

2391

9
1
1
1

20
8
4

99
11
17

396
14
62

1260
15
188

3576
18
489

9104
19

1188

10
5
5
1

46
10
8

217
13
35

818
16
120

2578
17 •
358

11
10
7
2

70
10
12

350
15
54

12
10
7
2

the box corresponding to the pair (k, g) = (7, 8) tells that dimC7
8 = 25488, the number of subcomplexes is

21, maxdimC7
8,s = 3148 and dimH7

8 = 1. More detailed information about computation in (k, g) = (7, 8)
is given in Table 2. In this table the columns dimZk

g,s, dimBk
g,s and dim Hk

g,s contain the dimensions
of cocycle, coboundary and cohomology spaces in subcomplexes, respectively. On can see that there are
10 pairs of subcomplexes with repeated structure and the only single subcomplex containing nontrivial
cohomological class.

The full set of nontrivial (1-dimensional) cohomological classes is: H2
−2, H

5
−2, H

7
0 (computed earlier)

and H7
8 , H10

6 (computed by the new program). As to the Poisson algebra Po(2|0), the part of its coho-
mological classes up to grade 8 coincides with those for H(2|0) except for H2−2.3 Hk

g≤8(Po(2|0)) contains

3 The cocycle H2
−2 describes the central extension of the algebra H(2|0) to Po(2|0).
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Table 2. Subcomplex structure for (k, g) = (7, 8)

dim Ck−1
g,s dim Ck

g,s dim Ck+1
g,s dimZk

g,s dim Bk
g,s dim Hk

g,s repeated

0 1 1 0 0 0 2

12 17 11 9 9 0 2

72 80 54 43 43 0 2

223 243 167 130 130 0 2

507 540 375 292 292 0 2

909 976 702 520 520 0 2

1406 1536 1120 813 813 0 2

1928 2117 1578 1114 1114 0 2

2382 2652 1992 1387 1387 0 2

2695 3008 2286 1568 1568 0 2

2806 3148 2391 1640 1639 1 1

also four additional classes: H6
−4, H

8
−2, H

8
6 , H11

6 . But all these classes are multiplicative consequences of
the classes H5

−2, H
7
0 , H7

8 , H10
6 . These classes can be expressed in the form Hk

g = Hk−1
g+2 ∧ c(Z) due to the

general property [4] of cohomology of algebras containing central element Z.

3 Conclusion

Our new algorithm demonstrates a substantially higher efficiency in comparison with the old one. For
example, the program described in [2] computes the case (k, g) = (6, 5) in 35 min 45 sec = 2145 sec whereas
the new program takes 54 sec for this task. For both runs we used PC Pentium III, 667MHz, 256MB
RAM. The superiority of the new program grows with increasing of the task complexity. Nevertheless,
due to rapidly increasing computational complexity the presented results are not sufficient to derive any
general idea about the structure of cohomology ring H∗∗ (H(2|0)). Our computation was carried out over
the field of rational numbers Q. As profiling shows, the most time consuming part of computation by the
program LieCohomology is multiprecision arithmetic. This is common difficulty for almost all problems
in computer algebra. It seems that carrying out computation over the finite fields, say ZZp, we can go to
the grade 40–50 for the problem considered here, but the results obtained in this way can be considered
merely as hints.
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