
An Estimation of the Parallelization Quality of the Involutive

Basis Computation Algorithm�

V.A. Mityunin and A.S. Semenov

Moscow State University, Department of Mechanics and Mathematics, Laboratory of Computing Methods,
Vorobyovy Gory, Moscow 119899, Russia
vmit@metric.ru semyonov@mccme.ru

Abstract. We present an attempt to estimate the quality of the parallelization of the minimal
involutive bases construction algorithm. The problem of the possibility to parallelize the algorithm
is very important because of a big computational complexity. The estimation of the quality of the
parallelization of the minimal involutive bases construction algorithm, presented in this paper, was
never published before. It is shown that the minimal involutive basis algorithm is very sequential
like the Gröbner basis construction algorithm.

1 Introduction

In this work we present an attempt to estimate the quality of the parallelization of the minimal involutive
bases construction algorithm. The task of the classical Gröbner basis computation is very sequential as
Faugère has shown in [2], and, therefore, every attempt to parallelize it essentially breaks the original
algorithm. The main reason for this is that the result of the polynomial reduction often depends on
other polynomials, in particular, on the last reduced polynomial. Nevertheless, modifying the reduction
strategy we can achieve some acceleration. The estimation of the quality of the parallelization of the
minimal involutive bases construction algorithm presented in this work, was never published before.

Here we present an estimation done by the method proposed by Faugère. The main idea of this method
is that if the polynomial a is to be reduced with respect to a1, and b with respect to b1, and a1 and b1

are already computed, we can perform these two reductions simultaneously. This algorithm collects all
such cases and estimates the quality of the parallelization.

2 Basic Minimal Involutive Basis Algorithm

In paper [2] a general approach to the parallelization of the Buchberger-like algorithms was sketched, and
the parallelization of the classical Buchberger algorithm was presented. In our paper we use this approach
to the minimal involutive basis construction algorithm.

Below you can see the version of the minimal involutive basis construction algorithm presented in [6].
We used this interpretation to develop a parallel and the probabilistic versions of the algorithm.

Here NFL denotes the involutive normal form, NML the set of non-multiplicative variables, and
Criterion is the involutive modification of the standard Buchberger criterion.

Criterion(g, u, T) is true provided that if there is (f, v, D) ∈ T such that
lm(f)|Llm(g) and lcm(u, v) ≺ lm(g).

In the final basis some polynomials are initial polynomials and others are reduced non-multiplicative
prolongations of earlier computed ones.

A polynomial can migrate many times between T and Q, so its reductions sometimes are performed
in several portions (not all in one time, as in the Buchberger algorithm without interreductions).

� This work was supported by INTAS(project No. 99-1222) and RFBR grant 02-01-01033

222 V.A. Mityunin, A.S. Semenov

Algorithm Minimal Involutive Basis
Input: F , a finite polynomial set
Output: G, the minimai involutive basis of the ideal Id(F)
begin

F := Autoreduce(F)
choose g ∈ F with the lowest lm(g) w.r.t. ≺
T := {(g, lm(g), 0)}; Q := 0; G := {g}
for each f ∈ F \ {g} do
Q := Q ∪ {(f, lm(f), 0)}
repeat

h := 0
while Q �= 0 and h = 0 do
choose g in (g, u, P) ∈ Q with the lowest lm(g) w.r.t. ≺
Q := Q \ {(g, u, P)}
if Criterion(g, u, T) is false then h := NFL(g, G)

end
if h �= 0 then G := G ∪ {h}

if lm(h) = lm(g) then T := T ∪ {(h, u, P)}
else T := T ∪ {(h, lm(h), 0)}

for each f in (f, v, D) ∈ T s.t. lm(f) � lm(h) do
T := T \ {(f, v, D)}; Q := Q ∪ {(f, v, D)}; G := G \ {f}

while exist (g, u, P) ∈ T and x ∈ NML(g, G) \ P and, if Q �= 0,
s.t. lm(gx) ≺ lm(f) for all f in (f, v, D) ∈ Q do

choose such (g, u, P), x with the lowest lm(g)x w.r.t. ≺
T := T \ {(g, u, P)}⋃{(g, u, P ∪ {x})}
if Criterion(gx, u, T) is false then h := NFL(gx, G)

if h �= 0 then G := G ∪ {h}
if lm(h) = lm(gx) then T := T ∪ {(h, u, 0)}
else T := T ∪ {(h, lm(h), 0)}

for each f in (f, v, D) ∈ T with lm(f) � lm(h) do
T := T \ {(f, v, D)}; Q := Q ∪ {(f, v, D)}; G := G \ {f}

end
until Q �= 0

end

For the parallelization analysis we use a flow-protocol of the algorithm which reflects the history of
additions and reductions of the polynomials and their migrations from T to Q and back. This idea is due
to Faugère and was described in [2].

Each polynomial has a number, which reflects the order of its first appearance. The flow-protocol
consists of traces which have the form

[Number, OperationCode, . . .]

As we have four basic polynomial operations in the algorithm, the second parameter can admit one
of four indicators:

– Introduction of an initial polynomial and reducing it (0)
– Introduction of a prolongation and reducing it (1)
– Removing a polynomial from T to Q (2)
– Reintroducing a polynomial from Q and reducing it (4)

In every trace except for the third type the list of performed involutive reductions is also kept. (In
the second case this list is headed by the parent polynomial, as we assume that a prolongation takes
approximately the same time as one reduction.) Every polynomial is represented in a reduction list by
its number.

For example, if a polynomial u is a prolongation of the polynomial v and it was reduced with respect
to polynomials v1, ...vn, then the trace has the form

[u, 1, v, v1, . . . , vn]

An Estimation of the Parallelization Quality of the Involutive Basis Computation Algorithm 223

If then it was sent back to Q, and reintroduced to T after reductions with respect to w1, . . . , wm two
traces are to be added to flow-protocol

[u, 2]

and
[u, 4, w1, . . . , wm]

The traces are added into the flow-protocol following the order of their generation in the algorithm.
For example, if polynomial a was proceeded with the trace A, then polynomial b was proceeded with the
trace B and then again a was proceeded with the trace C, the flow-protocol will contain the sequence
A,B,C of traces.

We call the history of a polynomial the list of all its traces in their order. In our example, the history
of the polynomial a has the form {. . . , A, C, . . .}.

3 The Principles of Faugère’s Estimation

We can see that the flow-protocol gives us almost complete information about the algorithm proceeding
(and complete, if the method of involutive reduction is given explicitly).

The reduction list formed by all reductions of polynomial u (it is obtained when we merge all reduction
lists in the history of u) is called the aggregate list. If, in our example, no more reductions are done to u
during the whole algorithm, the aggregate list is

[v, v1, . . . , vn, w1, . . . , wm]

But for our model it will be more useful to keep in memory many small lists instead of one bigger,
as the order, in which different polynomials are reduced, plays a significant role. For example, if we have
such an order of traces

[u, 2] . . . [w1, 1, r1 . . . , rk] . . . [u, 4, w1, . . . , wm] . . . [w1, 2] . . . [w1, 4, q1, . . . , qz]

the polynomial u is reduced with respect to w1 in the algorithm although w1 is not completely computed
by that time.

4 Estimation Model

Consider the aggregate list of the polynomial number n. Denote its length by v. Denote by j the number
of elements in the list which go before the first occurrence of (n − 1)-th polynomial. Faugère uses the
coefficient p = j/n of a polynomial to measure its independence [2]. If p = 1 the polynomial is called
independent, and if p > 0.66 the polynomial is called almost independent. The large amount of (almost)
independent polynomials can be regarded as the indicator of good parallelization quality.

In our rough model we suppose that all the reductions take the same time. Of course, it is not true,
but if the initial ideal is not extremely complicated, this approximation seems to be sufficient.

Let us have N polynomials in flow-protocol, each of them is denoted by pi. The coefficient vi is the
length of the aggregate list of pi. The sequential time Tseq is the number of all the involutive reductions
performed (the prolongation operation itself is considered to be a reduction) and it equals

∑N
i=1 vi.

Each polynomial is represented in flow-protocol by its history, which can be obtained as the union of
all the traces.

In our estimation algorithm we don’t deal with polynomials themselves. The reduction operation of a
polynomial corresponds to such transformation of history list: (We assume that in a history list all traces
with empty reduction lists are removed): we take the first trace and delete the first polynomial number
from it. If this trace becomes empty, we erase it and make the next trace to be the first one.

For example, if polynomial u was once reduced by polynomials [v1, . . . , vn], then by [w1, . . . , wm] its
history is

[v1, . . . , vn][w1, . . . , wm]

After the first reductions it is transformed into

[v2, . . . , vn][w1, . . . , wm]

224 V.A. Mityunin, A.S. Semenov

After the reduction by vn, the history has the form

[w1, . . . , wm]

The imitation of sequential version of Minimial Involutive Basis Algorithm can be done as follows: let
t be the variable which indicates the time spent (at the beginning it is zero). We take traces according to
the order of their appearance. Having taken a trace we delete its members (”reduce it”), increasing the
variable t. Having finished the procedure, we have t = Tseq.

The idea of parallel estimation is the following one.
Let u and v be polynomials, and they are to be reduced at current step by polynomials u1 and v1,

respectively, where u1, v1 are already computed. Then we can reduce u and v simultaneously and in
estimation consider that it happens in one time cycle (causing only one increase of t).

How can we determine whether a polynomial u can be reduced with respect to a polynomial u1? In
the case when a polynomial is completely reduced at one time (has only one trace with reduction list
in history) the answer is clear: the history of u1 should be empty. But the Minimal Involutive Basis
algorithm is not of that kind. The reduction of one particular polynomial can be performed during many
times, interrupted by reductions of other polynomials. Let us consider the polynomial u which is to be
reduced with respect to v. Both polynomials are not completely reduced. The first traces in their histories
of u and v are Tu and Tv respectively. If Tv precedes Tu in flow-protocol that means that in the initial
algorithm u was reduced with respect to v after v was reduced with the trace Tv. This means that we
cannot reduce u in our simulation before the trace Tv is empty. On the contrary, we can reduce, when the
history of v is empty or Tu precedes Tv in flow-protocol. The function isReduced surveys the histories of
polynomials and answers whether the reduction can be performed in a sense described above.

Below we outline the estimation of parallelization quality. We can assume that the modular trace of
the computations is very similar to the integer trace (in fact this is true with a very high probability),
and use traces obtained in the modular computations. It is, however, also possible to use real integer
traces. We used modular traces in our estimations and compared the results of the estimations with the
real timings. The results were very similar, so the quality of the estimation was good. Having computed
the trace of histories, we can use the simple procedure presented below to estimate the parallelization
quality of the algorithm.

Algorithm Estimation of the Parallelization Quality
MaximalNumberOfProcessors = 0
Tpar = 0
while (not all histories are empty)

NumberAtCurrentStep = 0
for(c = 1; c <= N ; c + +)

if(polynomial number c can be reduced)
reduce(c)
NumberAtCurrentStep++

Tpar++
if(NumberAtCurrentStep > MaximalNumberOfProcessors)

MaximalNumberOfProcessors = NumberAtCurrentStep

Here the variable Tpar denotes the approximate parallel time measured in the elementary operations
(with the given assumptions). Variables NumberAtCurrentStep and MaximalNumberOfProcessors
denote the number of processor used simultaneously at the current step, and the maximal number of
processors used, respectively.

We can also introduce the average number of processors used, which equals Tseq/Tpar (the number of
all reductions devised by the parallel time). The meaning of this number is the number of processors we
can use efficiently during the computation process. While it is possible to perform computation using as
much processors as one can afford, it will not be any speedups using more than this number.

The estimation of the quantity of parallelization are given in the following table.
Nind the number of independent polynomials
Nalmost the number of almost independent polynomials
Nall the number of all polynomials
Pmax the maximal number of processors
Paverage the average number of processors

An Estimation of the Parallelization Quality of the Involutive Basis Computation Algorithm 225

Name Nind/Nall Nalmost/Nall Tseq Tpar Pmax Paverage

assur44 44.49 49.35 18174 9666 326 1.88
boon 74.39 76.83 621 143 68 4.34
butcher 67.79 74.50 1482 460 126 3.22
butcher8 76.97 78.69 12404 5213 448 2.38
camera1s 85.00 86.67 857 302 54 2.84
caprasse4 71.43 71.43 686 190 48 3.61
cassou 38.89 40.74 1339 669 31 2.00
chandra6 61.67 63.33 1011 614 57 1.65
cohn2 76.25 77.50 1487 825 70 1.80
comb3000 57.89 59.65 440 175 39 2.51
conform1 60.00 60.00 2 1 0 2.00
cpdm5 23.08 23.08 6974 5259 86 1.33
cyclic2 100.00 100.00 0 1 0 0.00
cyclic3 75.00 75.00 4 4 1 1.00
cyclic4 71.43 71.43 26 13 3 2.00
cyclic5 38.89 55.56 658 312 31 2.11
cyclic6 21.00 42.00 5995 3101 98 1.93
cyclic7 23.84 47.45 285693 120776 877 2.37
d1 66.41 68.37 8439 2156 567 3.91
des18-3 45.93 45.93 1933 1016 57 1.90
des22-24 43.93 43.93 2177 1385 80 1.57
discret3 81.33 81.78 37703 15261 665 2.47
dl 61.37 61.80 142040 26533 3788 5.35
eco10 47.24 48.10 80772 57013 792 1.42
eco11 53.76 54.66 269387 169729 1409 1.59
eco5 58.82 64.71 135 83 14 1.63
eco6 50.00 55.88 453 296 27 1.53
extcyc5 45.87 47.71 27258 19809 104 1.38
eco7 46.73 50.47 1730 973 72 1.78
eco8 37.71 42.29 5865 3893 130 1.51
eco9 50.47 52.58 19428 14319 315 1.36
extcyc5 45.87 47.71 27258 19809 104 1.38
extcyc6 91.28 91.42 189034 62800 1336 3.01
f744 42.39 42.92 27212 7183 702 3.79

We can see that the parallel acceleration has a modest rate. Not very great amount of polynomials
are (almost) independent. The use of parallel model nevertheless seems to be profitable.

Our program complex supports both integer and modular field computations. It is implemented in
Microsoft Visual C++ 6.0 and can be compiled on many platforms. Parallelization is supported by means
of MPI 1.1 standard.

For the Minimal Involutive Basis algorithm we use the Janet involutive division.
We are grateful to Dr. E.V. Pankratiev and Dr. V.P. Gerdt for remarks and useful discussions.

References

1. Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C.: ”One sugar cube, please” or Selection strategies
in Buchberger algorithm. In: Proc. ISSAC ’91, S.M. Watt (Ed.), ACM Press, New York (1991) 49–54

2. Faugère, J.C.: Parallelization of Gröbner basis. In: Proc. PASCO’94, World Scientific Publishing Company,
Singapore (1994)

3. Siegl, K.: A parallel factorization tree Gröbner basis algorithm. In: Proc. PASCO’94, World Scientific Pub-
lishing Company, Singapore (1994)

4. Reeves, A.A.: A parallel implementation of Buchberger’s algorithm over Zp for p ≤ 31991. J. Symb. Comp.
26 (1998) 229–244

5. Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb. Comp. 6 (1988) 275–286

6. Gerdt, V.P., Blinkov, Yu.A.: Minimal involutive bases. Math. Comp. Simul. 45 (1998) 543–560

226 V.A. Mityunin, A.S. Semenov

7. Gerdt, V.P., Blinkov, Yu.A., Yanovich, D.A.: Construction of Janet Bases. In: Computer Algebra in Scientific
Computing/ CASC 2001, V.G. Ganzha, E.W. Mayr and E.V. Vorozhtsov (Eds.), Springer-Verlag, Berlin
(2001) 233–263

8. Mityunin, V.A., Zobnin, A.I., Ovchinnikov, A.I., Semenov, A.S.: Involutive and classical Gröbner bases con-
struction from the computational viewpoint. In: Proc. CAAP’2001, V.P. Gerdt (Ed.), JINR, Dubna (2002)
221-230

9. Mikhalev, A.V., Pankrat’ev, E.V.: Computer Algebra. Calculations in Differential and Difference Algebras,
Moscow State Univ., Moscow (1989) (in Russian)

