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Abstract. We consider monomial orderings specified by matrices of a special form and suggest a
new proof of the well-known fact that every monomial ordering can be obtained in this way. The
relations between matrices specifying the same ordering are discussed and the canonical form of a
monomial matrix is presented. We give some applications of this ordering presentation to Gröbner
bases of ideals. We also discuss orderings on differential variables and differential monomials. We
prove the property of well-ordering on differential monomials using only two source properties and
without any additional conditions.

1 Monomial Orderings

1.1 Introduction

A set of monomials in n variables can be considered as the set of the formal expressions Mn = {xi1
1 xi2

2 . . . xin
n |

i1, i2, . . . , in ∈ N0} w.r.t. the usual multiplication (addition of exponents). That is the so called multi-
plicative form of a monomial. We shall, however, also use an additive form: denote x = xα1

1 xα2
2 . . . xαn

n

by the vector α = (α1, α2, . . . , αn) ∈ Nn
0 . The product of monomials x · y corresponds to the sum of the

vectors α + β and vice versa.
Let a total ordering < on Mn = Nn

0 be fixed, i.e. any two different monomials are comparable and < is
irreflexible, asymmetric and transitive. We say that this ordering is a monomial ordering if the following
conditions hold:

(I) 0 < α ∀α �= 0, α ∈ Nn
0 ,

(II) α < β ⇒ α + γ < β + γ ∀α, β, γ ∈ Nn
0 .

One can prove that Nn
0 is well ordered with respect to any total ordering satisfying the first of these

conditions (see, for example, [2]).

Example 1. Lexicographic ordering (lex), total degree and then lexicographic ordering (deglex), total
degree and then reverse lexicographic ordering (degrevlex). See [2] for details.

1.2 Existence of Representation

One can find the proofs of the following Theorems 1, 2 and 4 in [4], [5], [6]. As it is mentioned in [4],
an abstract solution is proposed in [8] and a vectorial approach is presented in [3]. These results are
well-known, but we present our own proofs using only elementary methods.

Theorem 1. Let A = (aij) be an n by k matrix over R with the following two properties: the rank of the
matrix is n and for each row of A, the first non-zero element in this row is positive. Then, the ordering
on Nn

0 such that
α < β ⇔ αA <lex βA

is monomial.
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Proof. Let us check the properties of monomial orderings. Note that the second property of the matrix
can be formulated in this way: each row of the matrix A is lexicoghraphically greater than zero vector.
Using this fact, we get:

0A = 0 <lex βA ∀β ∈ Nn
0 , β �= 0,

αA <lex βA ⇒ (α + γ)A = αA + γA <lex βA + γA = (β + γ)A.

Therefore, this ordering is monomial.

Our aim is to prove the converse result in an elementary way. Let Rn
+ = [0, +∞)n \ {0} be the set of

all vectors with non-negative coordinates without the zero vector. By uv we denote the standard scalar
product of vectors u, v ∈ Rn and by vj we denote the jth coordinate of the vector v. Coefficients will also
be written with superscripts.

Theorem 2. Consider a monomial ordering < on Nn
0 . Then, there exists a vector v ∈ Rn

+ such that

α < β ⇒ vα � vβ ∀α, β ∈ Nn
0 . (1)

Proof. The proof is by reductio ad absurdum. We shall show that there exists a finite set of monomial
pairs (α, β), α < β such that each vector of Rn

+ changes the ordering of at least one pair. Then we shall
prove that under certain conditions there are exactly n such pairs. Using the properties of monomial
orderings, we shall obtain a contradiction: α � β.

Assume that the converse is true, i.e.

∀v ∈ Rn
+ ∃α, β ∈ Nn

0 , α < β, vα > vβ.

Consider the sets V(α,β) = {v ∈ Rn | vα > vβ}, α, β ∈ Nn
0 , α < β.

These sets are obviously open in Rn, because they form the semispaces without a hyperplane. However,

V =
⋃

α,β∈N
n
0

α<β

V(α,β) ⊃ Rn
+.

Let S+ be the non-negative part of the sphere Sn−1 in Rn: S+ = Sn−1 ∩ Rn
+. This set is obviously a

compact set in Rn and S+ ⊂ V . Hence, we get a finite number of the sets Vi = V(αi,βi) ∩ Rn
+, i = 1, m

such that S+ ⊂
m⋃

i=1

Vi.

Consider a vector v ∈ Rn
+. There exist α, β ∈ Nn

0 , α < β such that v ∈ V(α,β). It is clear that
cv ∈ V(α,β) c ∈ R, c > 0. It follows that v ∈ V(α,β) ⇔ v

‖v‖ ∈ V(α,β). However, v
‖v‖ ∈ S+ implies that

∃i ∈ 1, m : v
‖v‖ ∈ Vi. Hence,

∀v ∈ Rn
+ ∃i ∈ 1, m : v ∈ Vi. (2)

For all γ ∈ Nn
0 we have V(α,β) = V(α+γ,β+γ), because vα > vβ ⇔ v(α + γ) > v(β + γ). Thus, we can

assume that the second components of the pairs, βi, are the same. In fact, let us change Vi = V(αi,βi) for

V
(αi+

�m
j=1
j �=i

βj,
m�

j=1
βj)

.

We denote the second (common) component of the pairs by β.

Consider the set Vj such that Vj ⊂
m⋃

i=1
i�=j

Vi. Then, in (2), we can omit this set. Hence, we may assume

that for all sets Vj there exists a vector vj ∈ Vj := Vj \
m⋃

i=1
i�=j

Vi �= ∅. Clearly, Vi ∩ Vj = ∅, i �= j. The

vectors vi have the following properties:

viαi > viβ (3)

viαj � viβ ∀j = 1, m, j �= i. (4)
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We claim that the vectors vi, i = 1, m are linearly independent. Indeed, suppose that there is a
non-trivial linear combination

a1v1 + a2v2 + . . . + amvm = 0, ai ∈ R, i = 1, m.

Since the components of the vectors vi are non-negative and these vectors themselves are not equal to
zero, all coefficients ai cannot have the same sign. Moving negative summands to the right-hand side and,
possibly, renumbering vectors and coefficients, we obtain:

v := c1v1 + . . . + ckvk = dk+1vk+1 + . . . + dmvm, (5)

v �= 0, c1, . . . , ck, dk+1, . . . , dm � 0,

and v ∈ Rn
+. By assumption, there is a pair (αi, β), αi < β such that vαi > vβ. However, if 1 � i � k,

then

vαi = (dk+1vk+1 + . . . + dmvm)αi = dk+1vk+1αi + . . . + dmvmαi �
� dk+1vk+1β + . . . + dmvmβ = vβ,

since (4) holds. Similarly, if k + 1 � i � m, then

vαi = (c1v1 + . . . + ckvk)αi � (c1v1 + . . . + ckvk)β = vβ.

Thus, we have a contradiction: vαi � vβ ∀i = 1, m. This means that the vectors vi are linearly independent
and, in particular, the number of pairs m � n. Let us show that m = n.

Introduce the notation

Ti = {α ∈ Nn
0 , α < β | ∀v ∈ Vi vα > vβ} ⊂ Nn

0 .

Since < is a well order on Nn
0 , there exists a minimal element in any non-empty subset of Nn

0 . Suppose
α̃i = min

α∈Ti

α. By construction, we have V(αi,β) ⊂ V(α̃i,β). Therefore, as in (2), we have

∀v ∈ Rn
+ ∃i ∈ 1, m : v ∈ Ṽi := V(α̃i,β) (6)

Now let γ ∈ Nn
0 be an arbitrary non-zero monomial. From the first property of monomial orderings,

it follows that
γ | α ⇐⇒ ∃δ ∈ Nn

0 : γ + δ = α =⇒ γ � α.

In particular, if γ | α̃i, vi ∈ Vi, then α̃i − γ < α̃i, and, hence, we obtain

α̃i − γ /∈ Ti =⇒ vi(α̃i − γ) � viβ ⇐⇒ viα̃i � viγ + viβ.

Thus, since viα̃i > viβ, we have
0 < viα̃i − viβ � viγ. (7)

Now consider the standard base vectors ej ∈ Rn
+ (all components except for the jth one are zeroes

and the jth component equals one). By assumption, for each such vector, there exists a number i = i(j) :
ej ∈ Ṽi. Suppose that there exists at least one non-zero component α̃k

i �= 0, k �= j, of α̃i. Formally, we
set γ = α̃k

i ek; i.e., γ is the projection of α̃i onto ek. By construction, γ|α̃i. Combining this with (7), we
obtain a contradiction:

0 < ejα̃i − ejβ � ejγ = α̃k
i ejek = 0 (j �= k) ⇒ 0 < 0.

This implies that the monomial α̃i, i = i(j), which corresponds to the vector ej , can be written as

α̃i = ajej, (8)

where aj ∈ N is a coefficient. This means that the number of pairs of monomials is m � n, because ajej

and aiei are different monomials, i �= j. On the other hand, by the aforesaid, m � n. Thus, we have
m = n and all monomials α̃i have the form as in (8).

For simplicity, in what follows, we write αi instead of α̃i. Let us embed the monomials αi in Rn and
construct a hyperplane Γ which contains these monomials. It is clear that the vector l = ( 1

a1 , . . . , 1
an ) ∈ Rn

+

is the normal vector to Γ , since lαi = 1, i = 1, m = n. If we have lβ � 1, then we get the contradiction
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immediately: there is no pair (α̃i, β) for l to change the ordering. This yields lβ < 1. We may represent
β as a linear combination:

β =
n∑

i=1

ciαi, ci =
βi

ai
∈ Q, ci � 0

(this is possible, since the vectors αi form a basis of Rn). In these terms,

C := lβ =
n∑

i=1

cilαi =
n∑

i=1

ci < 1.

We now set

pi :=
Mci

1 − C
� 0,

where M is a sufficiently large natural number such that all pi ∈ N0.
Consider the formal monomial

β := β +
n∑

i=1

pi(β − αi).

Some components of this vector may be negative. To make it meaningful, we may assume that we have
shifted the monomials αi and β along some large vector (monomial) δ. This shifting takes the vector β
to the vector β + δ, making its components positive integers. Note that our proof does not depend on δ.
Consequently we don’t do that. When we write β < β, we mean that β + δ < β + δ. We get:

β =
n∑

i=1

ciαi +
n∑

i=1

pi(
n∑

j=1

cjαj − αi)

=
n∑

i=1

ciαi +
n∑

j=1

(
n∑

i=1

pi)cjαj −
n∑

i=1

piαi =
n∑

i=1

(ci + ci
n∑

j=1

pj − pi)αi.

Let us look at the coefficients of this decomposition. We may write:

ci + ci
n∑

j=1

pj − pi = ci
(
1 +

M

1 − C

n∑
j=1

cj
)
− Mci

1 − C

= ci
(
1 +

MC

1 − C
− M

1 − C

)
=

ci

1 − C
(1 − C + MC − M) = ci(1 − M) ≤ 0,

since M � 1, ci � 0. By the previous formula we obtain the chain of monomial inequalities:

β | 0 ⇒ β � 0 < αi < β ∀i = 1, n.

At the same time, since β − αi > 0, we have

β = β +
n∑

i=1

pi(β − αi) > β.

Comparing this result with the previous one, we obtain by transitivity that β < β. But a monomial
ordering must be irreflexible. This contradiction concludes the proof.

Theorem 3. Let K ⊂ Nn
0 be a closed w.r.t. addition subset of monomials in n variables. Consider a

total ordering <K on K satisfying the following conditions:

α �K α + γ ∀α ∈ K, γ ∈ Nn
0 such that α + γ ∈ K, (9)

α <K β ⇒ α + γ <K β + γ (10)
∀α, β ∈ K, γ ∈ Zn such that α + γ ∈ K, β + γ ∈ K.

Then <K can be extended to the monomial ordering < on Nn
0 such that

α <K β ⇐⇒ α < β ∀α, β ∈ K.
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Proof. Consider the set of all non-ordered pairs of different monomials

P = {{α, β} | α, β ∈ Nn
0 , α �= β}.

This set is obviously countable. Let us number its elements. We must learn to compare the elements of
any pair in P and that comparison should be well-defined.

Suppose V1 = {β − α ∈ Zn | α, β ∈ K, α <K β} ∪ Nn
0 \ {0}. Consider the set of monomials

P1 = {{γ, γ + v} | γ ∈ Nn
0 , v ∈ V1, γ + v ∈ Nn

0} ⊂ P.

Let us introduce the ordering on these pairs. We say that γ < γ + v if p1 ∈ P1, p = {γ, γ + v}. This
definition is well-defined and agrees with the ordering <K . Indeed, if v ∈ V1 then −v /∈ V1, and thus the
pair p cannot be represented as p = {γ, γ − v}. Therefore, for any such pair p, the vector v = β − α ∈ V1

is uniquely defined. If γ, γ + v ∈ K then γ + α, γ + β ∈ K and γ + α <K γ + β. Hence γ <K γ + β − α
(property (10)). At the same time if γ <K γ + β − α then α <K β and v = β − α ∈ V1.

It is clear that γ � γ + δ ∀γ, δ ∈ Nn
0 (if δ �= 0, then we may take v = δ ∈ V1). Besides that

γ1 < γ2 ⇒ γ1 + δ < γ2 + δ ∀γ1, γ2, δ ∈ Nn
0 . Actually, v = (γ2 + δ) − (γ1 + δ) = γ2 − γ1 ∈ V1. We see that

all properties of monomial orderings are satisfied.
Let the inequality P1 �= P hold; then we have not extended the ordering to all pairs yet. Take the

pair p = {α, β} with the minimal number in P \ P1. Let us say that α < β ⇔ α <lex β. Construct the
sets V2 = V1 � {β − α} and P2 = P1 � {{γ, γ + (β − α)}}. It is not hard to prove that for all pairs in P2

the conditions as above hold.
If we continue this process, we either stop at some step, or get a sequence P1, P2, P3, . . . with the

condition
∞⋃

i=1

Pi = P . We stress that for all pairs p of different monomials there exists a number m such

that p ∈ Pm, and, therefore, we are able to compare the elements of this pair. The ordering specified in
this way is monomial and agrees with <K .

Theorem 4. Consider a monomial ordering < on the set of monomials in n variables. Then there exists
a matrix A = (aij) over R of the size n by k and of the rank k such that

α < β ⇐⇒ αA <lex βA, (11)

and, moreover, the first non-zero element in each row of this matrix is positive.

Proof. We shall prove this theorem by induction on the number of variables. Since in the one-dimensional
case there is only one monomial ordering (by degree), any matrix A = (λ) λ > 0 of the size 1 by 1 satisfies
the theorem. Suppose we can find such matrix for any monomial ordering in n − 1 variables, n � 2. Let
us show that it is possible to construct a matrix for the case of n variables.

Take a vector v ∈ Rn
+ such that α < β ⇒ vα � vβ ∀α, β ∈ Nn

0 . The existence of the vector v is
guaranteed by Theorem 2. Consider the set of pairs of monomials which cannot be compared when using
vector v:

E = {(α, β) ∈ Nn
0 × Nn

0 | α < β, vα = vβ}.
If this set is empty, then we have already constructed the matrix (it consists of one column). Otherwise,
notice that monomials in each pair (α, β) ∈ E belong to a hyperplane (which, clearly, depends on pair).
This hyperplane is orthogonal to v. Consider the family of such hyperplanes which contain at least one
integer point in Nn

0 . By MΓ denote the set of all monomials in the hyperplane Γ and by αΓ denote the
minimal element of the set MΓ (it always exists, since our ordering is monomial).

Now suppose that there are only finitely many hyperplanes {Γ} such that the element αΓ belongs
to some coordinate axis, i.e. αΓ = (0, . . . , 0, ak

Γ = AΓ , 0, . . . , 0). Choose the maximal component A =
maxAΓ . We can find the hyperplane Φ in the family such that for all monomials in MΦ we have that at
least one of its components is greater than A. Let us evaluate the minimal monomial αΦ = (α1

Φ, . . . , αn
Φ)

in Φ. This monomial cannot belong to any coordinate axis. Moreover, αk
Φ > A for some k. Let us shift all

monomials in MΦ along the integer vector (−α1
Φ, . . . ,−αk−1

Φ , 0,−αk+1
Φ , . . . ,−αn

Φ). (Some monomials may
not remain non-negative; then we exclude them.) We claim that this shifting takes the hyperplane Φ to
some other hyperplane Φ′ such that the monomial αΦ is in the kth coordinate axis, and it remains minimal
in MΦ′ as before. This shifted monomial has the form (0, . . . , αk

Φ, . . . , 0), αk
Φ > A. This contradicts A

being maximal. Hence, there are infinitely many hyperplanes with the property as above. This means
that there exists a coordinate axis xm containing infinitely many monomials of the form αΓ . Let us fix
this value of m.
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Consider the family H of all v-orthogonal hyperplanes in {Γ} which intersect the xm axis in some
integer point βΓ . We claim that this point is the minimal monomial in Γ , i.e. βΓ = αΓ . Indeed, for any
hyperplane Γ ∈ H there exists a hyperplane Φ such that αm

Φ > βm
Γ by the above. Shifting along the

vector αΦ − βΓ , we obtain that βΓ is the minimal element in MΓ as well.
Now consider a projection along xm:

φ : H ∩ Nn
0 → Nn−1

0 .

Let α be in the hyperplane Γ ∈ H . Consider

α = (α1, . . . , αn) φ�→ α′ = (α1, . . . , αm−1, αm+1, . . . , αn).

Denote K = Im(φ) ⊂ Nn−1
0 . Now we can construct the ordering <K on K. Let α′, β′ ∈ K, α ∈

φ−1(α′), β ∈ φ−1(β′) and let α and β be in the same hyperplane (by construction of H , it is possible
to do so). We say that α′ <K β′ if α < β. This ordering is well-defined, since different elements of the
pre-image φ−1(α′) differ only in the mth component. Further, if (α1, β1) and (α2, β2) are different pairs
of the pre-images (α′, β′) and the elements of each pair are in the same hyperplane in H , then we obtain
(α2, β2) = (α1 + γ, β1 + γ) (or vice versa). By the second property of monomial orderings we get

α1 < β1 ⇔ α2 < β2 ⇒ α′ <K β′ is well-defined.

It is easy to prove that <K satisfies the conditions of Theorem 3. Indeed, we have that any element in
φ−1(0) is minimal in its hyperplane. This means that 0 �K α′ ∀α′ ∈ K. Furthermore, let α′ <K β′, γ′ ∈
Zn−1

0 and α′, β′, α′ + γ′, β′ + γ′ ∈ K. In this case for α′ + γ′ and β′ + γ′ we can find two pre-images of
the form α + δ, β + δ, δ ∈ Zn−1

0 . Evidently, α + δ < β + δ ⇒ α′ + γ′ <K β′ + γ′. Besides, if α′, β′ ∈ K,
then α′ + β′ is also in K, i.e. K is closed w.r.t. addition.

Now, let us use Theorem 3. Let us extend the ordering <K to a monomial ordering <n−1 on Nn−1
0 .

By the inductive hypothesis, there exists a matrix B of the size n − 1 by s specifying <n−1. Inserting
zeros as the kth row and the vector v as the first column, we obtain the matrix A of the size n by s + 1.
This matrix specifies the ordering <.

In fact, we can compare monomials of different v-orthogonal hyperplanes at the first step. Let α and
β belong to the same v-orthogonal hyperplane. It is possible to find a hyperplane Γ ∈ H which is situated
above, and a monomial γ ∈ Γ such that α | γ. Let δ = β + (γ − α) ∈ MΓ . We get

α < β ⇔ γ < δ ⇔ γ′ <K δ′ ⇔ γ′ <n−1 δ′ ⇔
⇔ γ′B <lex δ′B ⇒ γA <lex δA ⇔ αA <lex βA.

On the other hand, if α > β, then β < α and βA <lex αA. Therefore, the matrix A specifies the
monomial ordering <. This completes the proof.

Remark 1. The matrix from this theorem is of the size n by m where m � n. Besides that, all its elements
are non-negative.

Remark 2. The condition that the first non-zero element in a matrix is greater than zero is necessary.
Let i be a number of the line with the opposite property; then xi > x2

i in the sense of this ordering.
Contradiction.

1.3 Classification of Monomial Orderings

Let us investigate the properties of the specification of monomial ordering described above. We shall
present the admissible transformations of the monomial matrices and give a classification of them. First
we consider a general case. We propose an independent proof of the fact presented in [5]. This classification
is covered by Theorem 6.

We also consider a special class of rational orderings. The equivalence in this case (in the case of
rational matrices) is given by Theorem 7. First of all, let us consider the lexicographic ordering. From
now we shall use a multiplicative form of monomials.

Definition 1. Two matrices C1 and C2 are said to be equivalent w.r.t. the monomial ordering < iff they
specify the same order as the above.
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It is absolutely clear that the identity matrix specifies the lexicographic ordering x1 > x2 > . . . > xn.
Let us denote this ordering by <lex. The following Lemma 1 and Lemma 2 describe all matrices which
specify <lex.

Lemma 1. Each upper-triangle matrix with positive elements in the main diagonal gives us <lex. Let us
denote such matrices by U .

Proof. Let C = (cij). Consider arbitrary monomials α = (α1, . . . , αn) and β = (β1, . . . , βn). Let us denote
by <lexC the order specified by the matrix C. Then α <lexC β ⇐⇒ αC <lex βC. It is equivalent to

(α1c11, α
1c12 + α2c22, . . . , α

1c1n + . . . + αncnn) <lex

<lex (β1c11, β
1c12 + β2c22, . . . , β

1c1n + . . . + βncnn).

If α1 < β1, then α <lex β. Let α1 = β1. We have

α1c12 + α2c22 < β1c12 + β2c22 ⇐⇒ α2c22 < β2c22 ⇐⇒ α2 < β2.

Continuing this process, we conclude that α <lexC β iff vector (β1−α1, . . . , βn−αn) has the first non-zero
coordinate being positive. This is equivalent to α <lex β.

Lemma 2. We can obtain <lex only by using matrices of the form described in Lemma 1. Multiplying
any lex-matrix by the matrix of the same type as U , we obtain a lex-matrix again.

Proof. Let us prove the first part of the lemma. Suppose we obtain <lex by the matrix C = (cij)
n
i,j=1.

Assume cij �= 0, i < j (∗). Consider the element cij such that j is minimum with the property (∗).
Then cij > 0, since this is the first non-zero element in the ith row. Then there exists k ∈ N such that
kcij < cjj . Because of the minimal property of j, we have xk

j <lexC xi, but i < j. Contradiction. Now, let
cii � 0 for some i. We have already proved that cij = 0 if i < j. Then cii = 0, otherwise cii < 0 is the first
non-zero element in the row. Contradiction again. Consider cii with this property and maximal i. Then
i < n (if cnn = 0, then xn and 1 are incomparable elements in the sense of <lex). Thus, we conclude that
cii+1 � 0, ci+1 i+1 > 0. Therefore, xl

i+1 <lex xi for some l ∈ N. Contradiction.
The second part of the proof uses the following fact: if we multiply two U -matrices, we obtain an

U -matrix again (it is easy to check).

We shall describe some matrices which do not change monomial orderings in the following sense:

Lemma 3. Let U be a matrix such as in Lemma 1 and C specifies a monomial ordering <. Then the
matrix CU specifies the same ordering <.

Proof.
α < β ⇐⇒ αC <lex βC ⇐⇒ (αC)U <lex (βC)U.

In these implications the matrix U is applied to the vector rather than to the monomial. This fact does
not contradict anything (lexicographic ordering on Rn does not have the property of a well-order only).
The lemma is proved.

Let us note that we can multiply the columns of monomial matrices by positive numbers and add
linear combinations of previous columns to a column. Indeed, a multiplication of a monomial matrix by
an U -matrix reflects all these transformations.

Definition 2. We shall say that a column of a monomial matrix is main iff it contains the first non-zero
element in some row. We shall call this element the main element in these column and row.

Notice that a column may have more than one main element.

Theorem 5. Each monomial ordering can be specified by a matrix with non-zero determinant and non-
negative elements.

Proof. Consider a monomial ordering <. By Theorem 4, there exists an n × m matrix C specifying <
such that all of its first non-zero elements in the rows are positive. By Lemma 3, we can multiply the
matrix C from the right by U -matrices. Let us choose the first non-zero column in the matrix C.
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Note that by Theorem 4 this column does not contain negative numbers. We have constructed a
linear system of columns independent on R. (It consists only of one non-zero column.) We shall follow
this tactics in the next steps of the algorithm.

Let us use the elementary transformations of the columns of matrix C. We have described above some
transformations that do not change the ordering. Let us walk through the matrix C column by column
from the left to the right. We shall add new columns, linearly independent with the previous ones, from
the matrix C to the system.

Suppose that at some step of the algorithm the column is linearly dependent with the system already
constructed: (vk+1 = a1v1 + . . . + akvk). Then, making elementary transformations of the matrix C
(subtracting a linear combination of the first k columns from the (k+1)th column), we obtain the matrix
C1 = CU1U2 . . . Uk (Ui is an upper-triangle with 1 at the diagonal, i = 1, . . . , k), where the (k + 1)th
column is zero. Thus, we can exclude it from the matrix C1.

Continuing this process we obtain the matrix Cl of the rank l which consists of l columns.
Let us consider a linearly independent system of columns {v1, . . . , vl}. Suppose this system is the

result of the algorithm described above. Let us extend it in arbitrary way to a basis of linear space Rn.
We shall insert vectors obtained by such operation at the end of the matrix Cl (from the right-hand side).
We shall get the matrix C′, det(C′) �= 0.

Let us prove the second part of the theorem. Consider the first column of the matrix C′ (it is non-
negative). Multiplying it by sufficiently large positive number, we may add it to other columns. This
transformation does not change the ordering according to the lemma above. By continuing we shall
obtain a matrix with non-negative elements. The theorem is completely proved.

Example 2. Consider the monomial matrix

C =


1 2 1 0

2 4 1 −1
0 0 1 1


 .

According to the algorithm, consider the first column. It forms a system of columns C1. The second
column is linearly dependent with the first. We can subtract the first column, multiplied by 2, from the
second one. We obtain:

C2 =


1 2 1 0

2 4 1 −1
0 0 1 1







1 −2 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 =


1 0 1 0

2 0 1 −1
0 0 1 1


 .

Let us delete the second column from the system C2 (we obtain the matrix C3) and add the second
column of C3 to the third one. The matrix C is the output of the algorithm:

C3 =


1 1 0

2 1 −1
0 1 1


 , C =


1 1 1

2 1 0
0 1 2


 .

Thus, if we speak about a monomial matrix, we can assume that it satisfies the assertion of the
previous theorem. Now we shall investigate monomial matrices from another point of view. We shall
classify monomial matrices and provide the canonical form.

Corollary 1. We can assume that the columns of a monomial matrix are orthogonal.

Proof. The process of orthogonalisation of the finite number of vectors can be formulated in the language
of applying U -matrices. First, we work with the first column of the matrix, then apply it to the second,
etc.

Definition 3. The monomial matrix is a matrix specifying a monomial ordering.

First of all, let us transform the monomial matrix. We shall exclude non-necessary columns from this
matrix. Let the new matrix consist of the minimal number of columns of the source matrix and specify
the same ordering.

Remark 3. We shall build the system of minimal number of rows of the monomial matrix moving from
the left column to the right. We shall delete columns which do not differ new monomials.
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Lemma 4. Let A and B be monomial matrices which specify a monomial ordering < and satisfy all
previous conditions (they are orthogonal, of the length 1, etc.). Then the first columns of A and B are
equal.

Proof. This fact is easy to understand if we consider the 2 or 3-dimensional case and draw the pictures.
But we give the analytical proof.

Let a and b be the first columns of matrices A and B and α ∈ Qn. A and B specify the same ordering.
Then (α, a)(α, b) � 0. If a = b, then it is trivial. The idea of the proof is based on the density of Qn in
Rn. If a �= b, we can choose an a-orthogonal vector and obtain the contradiction with (α, a)(α, b) � 0.

More formally: let a′ be orthogonal to a, then the hyperplane L : {a1x1 +a2x2 + . . .+anxn = 0}, a =
(a1, a2, . . . , an), which is orthogonal to a, contains a′. Consider a sequence {αn}, αi ∈ Qn, i ∈ N with the
properties (α2k, a) > 0, (α2k−1, a) < 0, k ∈ N and lim

n→∞αn = a′. Using the inequality (α, a)(α, b) � 0,

we obtain that (α2k, b) � 0, (α2k−1, b) � 0, k ∈ N. Due to the fact that a scalar product is a continuous
function we conclude that ( lim

n→∞αn = a′, b) = 0. Since a and b are of the length 1 and (a′, b) = 0, we
conclude that a = b or a = −b. The latter case cannot appear, since a and b form the first columns in
the corresponding monomial matrices.

Theorem 6. Let A and B be monomial matrices specifying the monomial ordering <. Then we can
transform A to B and present the canonical matrix of <. This canonical matrix is uniquely determined.

Proof. First of all, let us apply Lemma 4 to A and B. We obtain that the first columns of A and B are
the same. At the next steps of comparing columns we may have problems.

At the first step we used the density of rational vectors. The collision is a consequence of the following
fact. The dimension over Q of all rational vectors which go to zero after the first step of the comparison
decreases rapidly. By this reason these vectors need to be compared by other columns. Let us note that
the corresponding dimension over R decreases only by 1 as a dimension of solutions of one non-zero linear
equation. We shall illustrate these facts in the example below.

By construction, the second column in our matrices is orthogonal to the first. Consider linear space
L over Q generated by linearly independent rational vectors, which become zeros after the first step (i.e.
which are orthogonal to the first column). Let us denote the corresponding linear space over R by M .

Let k = dimM − dim L � 0. If k is equal to zero, then we can apply the previous lemma, since the
property of density holds in this case. Consider the case k > 0. The idea is to make a projection of the
second column to L and apply the lemma to L. There will be no problems in this situation.

Consider an orthonormal system of k vectors, which are orthogonal to the first column and to L.
Let us insert them into our matrices between the first and the second columns. We obtain the matrices
specifying the same order, because these new columns annihilate all rational vectors, which need to be
compared by the second column. Now, using admissible upper-triangle transformations, we can make
these new columns orthogonal to all previous columns in the new matrix. Then we can apply the lemma.
Hence, the second column is uniquely determined.

Continuing all these operations for the whole matrix, we obtain the algorithm, which gives us the
canonical matrix. During the proof we obtain that the number of minimal columns is an invariant of the
order. The numbers of columns, which we need to insert in the matrix after each step, are also invariants.

Let us prove the second part of the theorem. By the proof, if two matrices specify the same ordering,
then their canonical matrix – orthogonal normal form – is uniquely determined. If two matrices specify
different orderings, then their canonical matrices cannot be equal, since we do not change order during
transformations.

Corollary 2. There are interesting invariants of monomial orderings such that the minimal number of
columns representing the order and the number of orthogonal vectors inserted in the matrix at each step
in the process of proving the theorem.

Corollary 3. We can operate with canonical monomial matrices. Different canonical matrices provide
different monomial orderings and we can distinguish monomial matrices.

Let us illustrate the previous theorem. We shall show that temporary insertion of the columns in the
monomial matrix is necessary. Consider the following

Example 3. Let us investigate two matrices:

A =


 1 0√

2 0
0 1


 , B =


 1 1√

2 0
0 1


 .
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They specify the same monomial ordering. Their first columns are equal. The monomials that cannot
be distinguished by the first column differ only in the third component. Thus, the second columns of
these matrices distinguish them.

Two columns of A and the second column of B form the basis of R3. That is why we cannot transform
A using U -matrix. The dimension over R decreases by 1 and over Q by 2 after applying the first column.
Hence, we can insert one orthogonal column in A and B. By the projection along this vector we obtain the
second column of canonical matrix. (Let us first make A and B orthogonal.) The extended and canonical
matrices are:

C′ =


1/

√
3 1/

√
3 0√

2/3 −√
2/3 0

0 0 1


 , C =


1/

√
3 0√

2/3 0
0 1


 .

Remark 4. We can canonically determine the additional columns. They are the solutions of a system of
linear equations. Then, let the first vector be the extension of the free solution 1, 0, . . . , 0 (free variables),
etc.

1.4 Consequences

Proposition 1. The cardinality of all monomial orderings in a fixed number of variables is continuum.

Proof. One can give an independent proof of this fact, but let us apply the results obtained above.
Note that each monomial ordering can be specified by a matrix in Mn(R). Thus, the set of all monomial

orderings has the cardinal type not greater than continuum. Let us prove the reverse inequality. Consider
the family of monomial matrices:

M = {C ∈ Mn(R) | C =
(

1 0
a 0

)
, a ∈ R \ Q}.

This set is a continuum set and each M specify different ordering. This is the case due to Theorem 6,
according to which we can represent each matrix in a canonical form, but the canonical monomial matrix
is uniquely determined.

Proposition 2. If a monomial matrix A which specifies a monomial ordering on monomials in n vari-
ables consists of k columns and k < n, then A has at least one irrational element.

Proof. The proof uses the fact that k rational columns are always linearly dependent on Q (k < n). We
can clear out denominators in the equation of a linear dependence. We can also represent each element in Z

as the difference of two natural numbers. Thus, there exist two monomials which cannot be distinguished.
This contradicts the definition of a monomial ordering.

1.5 The Applications

Corollary 4. If we try to reduce the number of columns in a rational monomial matrix, we loose the
ability to present the monomial ordering in the computer.

Proposition 3. There are monomial orderings which cannot be presented in the computer.

Proof. Let us consider the example:

C =
(

1 0
π 0

)
.

Using Corollary 1, we obtain the result: the first column of this matrix forms the minimal system of
columns specifying this ordering. (First column distinguishes all monomials, but this is an invariant
property of an ordering.) That is why this matrix cannot be represented in a two-column minimal form.
But we noted above that rational matrices must contain at least n = 2 columns.

Remark 5. If the degrees of polynomials in our computations are restricted by some natural number, we
can represent the irrational elements of a monomial matrix with the necessary precision in the computer
and use this approximation in our particular task.
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In [4], the fan and walk of Gröbner bases are discussed. These notions give us some information about
the distribution of different reduced Gröbner bases. The set of monomial ideals generated by the leading
terms of Gröbner bases of an ideal w.r.t. different monomial orderings is proved to be finite ([4, Lemma
2.6]).

So the set Gröbner bases of an ideal with fixed set of leading terms is proved to be finite.
To use a fixed Gröbner basis, we need to know the leading term of each member of the basis. ”To use”

means to do the reduction process and other applications of Gröbner bases. Let G be the Gröbner base
w.r.t. a monomial ordering <. We have proved that < can be represented by its canonical orthogonal
matrix form. The first column in the matrix could appear to have irrational entries and cannot be
represented precisely in the computer.

This problem can be solved by means of the Gröbner fan. The main idea has been formulated in [4],
Theorem 2.7 (a) and (d), which says that the interior of the cone Di

∗ is a nonempty subset of Rn. As
defined in [4], Di

∗ consists of all vectors in Rn which can correctly distinguish the monomials of elements
in the Gröbner basis of an ideal according to <. Union of all cones Di

∗ covers Rn
+ (for complete definitions

and assertions see [4]).
Hence, we can choose a rational vector from this cone and use it instead of the vector which has some

irrational components. We shall call this vector irrational. First, we should compute the Gröbner basis
of the ideal I and then use the approximation of the irrational vector.

On the other hand, to compute Gröbner bases, we can use rational vectors instead of irrational vectors.
The idea is based on the Gröbner walk technique. First of all, we should choose a rational vector as near
as possible to irrational one. Suppose that we have a precise representation of this irrational vector in
the computer. Multiple application of this procedure for computing this vector can be very expensive.
Hence, we cannot use it in the Gröbner bases computations, but we can construct a segment from the
end of the rational vector and to the end of the irrational one.

Then, we should compute the Gröbner basis G using rational numbers and find the intersection points
of our segment with the cones CG. These points are the solutions to the linear equations in the parameter
t on the segment

x(t)LT (g) = x(t)NL(g). (12)

In these equations, NL(g) denotes a nonleading term of g and t is a parameter on the segment. We should
do this operation for each element g of the Gröbner basis G of I and for any its nonleading term.

We may approximately find the solutions to equations (12) under the condition that the approximate
solution must be inside the segment. This work being completed, we choose a rational vector which is
nearer to the irrational one than these solutions. In this way, either we obtain a rational vector which
gives us the same Gröbner basis as the irrational one or there exist solutions to (12). In the latter case,
we must recompute once the Gröbner basis.

Thus, we can use the monomial matrices with rational elements in many cases. Let us classify the
admissible transformations for these orderings.

Theorem 7. If the monomial matrices A, B ∈ Mn(Q) specify the same monomial ordering <, then we
can use only U -type transformations to walk from A to B. Only upper-triangle transformations with
positive elements on the diagonal are admissible for these matrices.

Proof. In the conditions of the theorem (it is important) we obtain that C = A−1B specify the lexico-
graphic order. Let a = αA, b = βA. We have: α < β ⇐⇒ a <lex b. Then a <lex b ⇐⇒ aA−1 <
bA−1 ⇐⇒ aA−1B <lex bA−1B.

Thus, according to Lemma 2, the matrix C is an upper-triangle matrix U with positive elements in
the diagonal. Hence, A−1B = U and B = AU .

Remark 6. An easy example shows that previous theorem will became wrong if we omit the condition
A, B ∈ Mn(Q):

A =
(

1 1√
2 0

)
, B =

(
1 0√
2 1

)
.

Thus, A−1B does not specify <lex.

2 Differential Orderings

In the previous case we considered the monomials in a finite set of variables. But in differential algebra
we often have to consider infinite sets of differential variables, which are well ordered by some rankings.
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A ranking < is a total ordering on a set of differential variables DV with the basic set of derivation
operators δj, j ∈ Nm and basic variables yi, i ∈ Nn

0 , satisfying the following conditions:

1. the property of translation: (α, i) < (β, j) ⇐⇒ (α + γ, i) < (β + γ, j);
2. the property of positivity: (α, i) � (0, i).

The notation (α, i) = (α1, . . . , αm, i) is used for the differential variable δα1
1 . . . δαm

m yi. Any ranking well
orders the set DV . The proof of this fact and examples of rankings could be found in [3]. Some approaches
to classifications of all rankings were made in [1] and [7]. Below we shall call differential variables simply
variables.

Now let us construct the monomials in set DV and consider the orderings on them. We mean that
only finitely many variables can occur in monomial. We begin with some definitions. If yi, i ∈ Nn

0 , are
basic variables and δj , j ∈ Nm, are basic derivation operators, then every monomial can be represented as
t = ud1

1 · . . . · uds
s , where uk = θkyik

= δpk1
1 . . . δpkm

m yik
are different determinates and dk are their degrees.

But we may consider DV as an infinite well-ordered set of algebraically independent variables. In other
words, we may disregard the differentiations of variables. Denote by DM the set of all monomials.

The orderings on such sets of monomials applied in many practical problems should satisfy the fol-
lowing two properties:

1. the restriction of this ordering to variables must be a ranking, i.e. the properties of translation and
positivity must hold;

2. this ordering must be consistent with multiplication by monomials: t1 � t2 ⇐⇒ t1s � t2s ∀ s ∈
DM .

Note that in [9] four additional properties of the so called differential term-orderings were formulated.
But we shall prove the following result without using any additional conditions, which played an important
role in [9].

Theorem 8. The set DM is well ordered w.r.t. any linear order satisfying Properties 1 and 2.

Proof. According to Property 1, the set DV is well ordered.
We prove the theorem by reductio ad absurdum. Suppose that there exists an infinite sequence {si}

strictly decreasing w.r.t. a given order <; i.e., i < j ⇐⇒ si > sj. We need to obtain a contradiction to
this fact.

The following definitions and lemmas are needed below.

Definition 4. Let s be a differential monomial, u be a differential variable. The tail of the monomial s
w.r.t. u is the monomial Tu(s) constructed of the variables from s which are strictly lower than u. In this
definition we take these variables in corresponding powers. By analogy, the head Hu(s) of s w.r.t. u is
the monomial constructed of the variables which are not lower than u. And if x < y are variables then
the medium part of s is the monomial Mx,y(s) = s

Hx(s)Ty(s) = Hy(s)
Hx(s) = Tx(s)

Ty(s) .
It is evident that Hu(s)Tu(s) = s ∀s, u ∈ DM .

Remark 7. This terminology does not contradict the common sense, since we write variables in monomials
starting from the smallest. Then the head is the first part of a monomial and the tail is the last one.

Definition 5. The hyperdegree G(s) of the monomial s is the sum of its degree and the number of
variables occurring in s. Note that G(Hu(s)) + G(Tu(s)) = G(s) ∀s, u. Also note that 2 deg s � G(s) >
deg s ∀s ∈ DM .

Definition 6. Let us imagine that we count variables in a monomial taking into account their powers.
Let S and T be multisets of variables occurring in s and t respectively. We shall say that monomial s
majorises monomial t iff there exists an injective map φ : T → S such that ∀t ∈ T t � φ(t). It is clear
that if s majorises t, then s � t. For example, if x < y, then xy majorises x2.

Remark 8. Note that if all variables in s are greater than any variable in t, and deg s � deg t, then s
majorises t. It is evident that if t divides s then s majorises t.

Lemma 5. Let {si} be a sequence of differential monomials such that {G(si)} is bounded. In other words,
there exist N, D ∈ N such that every element {si} depends on at most N variables, and the degree of each
element does not exceed D. Then, this sequence cannot strictly decrease w.r.t. <.
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Proof. The proof is by induction on N .
Base of induction. Note that we can extract a subsequence of monomials from {si} with the following

property: the degree of every monomial is the same (say, equals to K � D). We can assume that elements
{si} already satisfy this property. The case N = 1 is clear: all elements of the sequence are variables
raised to the power K: uK

1 > uK
2 > . . . > uK

n > . . .. Hence, u1 > u2 > . . . > un > . . ., but this sequence
cannot strictly decrease, because the set of variables DV is well ordered according to Property 1.

Step of induction. Suppose that the statement is proved for all N ′ < N and is not valid for a sequence
{si}, where si depends on N variables.

Let us use the inner induction on D. The case D = 1 corresponds to N = 1 and has been considered
above. Let D > 1. Suppose there exist a variable u and a subsequence {sik

} such that u occurs in each
sik

. Then we can divide all monomials in this subsequence by u. We obtain a strictly decreasing sequence
such that the degree of each monomial in this sequence is lower than D − 1. In this case we can use the
inductive assumption. Hence, it is sufficient to consider the following case: for each variable u there exist
only finitely many monomials in {si} containing u.

We do not need the induction on D in this case. As above, we can suppose that all monomials in {si}
have the same degree K. Denote by R the set of the highest variables occurring in monomials {si}. Since
the set DV ⊃ R is well ordered, there exists a minimal element x in R. Assume that x corresponds to sk.
Cutting off the beginning of the sequence we may assume that k = 1. As above, we can suppose that no
other element from {si} contains x (we shall exclude the finite set of monomials which contain x). Let
us consider two cases.

Case 1. There exists a monomial sq > s1 such that all variables occurring in sq are greater than x,
i.e. Hx(sq) = 1. Obviously, in this case the variables of sq are higher than the variables of s1. Since the
degrees of the monomials are the same, we obtain the contradiction sq � sk which proves the theorem.

Case 2. Suppose that all monomials in the sequence except for s1 can be written in the form si = piqi,
where the monomials pi = Hx(si) and qi = Tx(si) are non-trivial, depend on at most N − 1 variables
and all variables in pi are lower than x and variables in qi are higher than x. We can apply the induction
hypothesis to monomials qi. Thus, in the set {qi} there exists a minimal element qm1 . We have the
following inequalities:

pjqj = sj < sm1 = pm1qm1 � pm1qj ∀j > m1,

hence, pj < pm1 ∀j > m1.
Consider the set {qi | i > m1} and find in this set the minimal element qm2 . We can write the similar

inequalities for m2 > m1 and, in particular, for pm2 < pm1

plql = sl < sm2 = pm2qm2 � pm2ql < pm1ql ∀l > m2.

Thus, we have pl < pm2 < pm1 ∀l > m2. Continuing this process, we obtain a strictly decreasing
sequence {pmk

} of monomials depending on at most N − 1 variables and whose degrees are bounded. By
the induction hypothesis, we have a contradiction, which completes the proof.

Lemma 6. Let z < x be variables from DV , s, t ∈ DM be monomials and

G(Mz,x(s)) > 2G(Hz(t)).

Then Hx(s) majorises Hz(t), and, in particular, Hx(s) � Hz(t).

Proof. Since Hx(s) = Hz(s)Mz,x(s), we get Mz,x(s) � Hx(s) and Hx(s) majorises Mz,x(s). Thus, it is
sufficient to prove that Mz,x(s) majorises Hz(t). We have

2 deg(Mz,x(s)) � G(Mz,x(s)) > 2G(Hz(t)) > 2 deg(Hz(t)),

and deg(Mz,x(s)) > deg(Hz(t)). To complete the proof, note that every variable occurring in Mz,x(s) is
greater than any variable occurring in Hz(t) according to Definition 4.

Proof of Theorem 8. According to Lemma 5, it is sufficient to show that, for every strictly decreasing
sequence {si}, the sequences {Ni} (the number of variables in the ith monomial) and {Di = deg si} are
bounded. Moreover, it is sufficient to show that the sequence {G(si) = Ni + Di} is bounded.

Assume the contrary. Then we can extract a subsequence {sik
} from {si} such that {G(sik

)} is strictly
increasing. Without loss of generality, we may suppose that {si} already satisfies this property. We need
the following proposition which we shall prove a bit later:
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Proposition 4. For all such sequences {si} and for all x ∈ DV we can extract a strictly increasing
subsequence from the sequence {G(Tx(si))}.
Remark 9. Notice that extracting a subsequence from {si} does not change the validity of the properties
mentioned above and this proposition. That means that we may work with any subsequence {sik

} instead
of {si}. We shall use this remark below.

We claim that this proposition is sufficient to prove the theorem. Indeed, denote by R the set of the
highest variables occurring in {si} as in Lemma 5. Let us also denote by y the minimal element in R.
Let s be the corresponding monomial, and D be its degree. Cutting off the beginning of the sequence, we
may assume that this monomial is the first one, s = s1. According to the proposition, we can choose for
x = y the monomial sm, such that m > 1 and G(Tx(sm)) � 2 deg s. We obtain that deg Tx(sm) � deg s.
Since all variables in Tx(sm) are higher than in s, we get that sm majorises s. Thus, sm � s = s1 while
m > 1, i.e. we obtain a contradiction.

Now let us prove the proposition.

Proof. We shall use the principle of transfinite induction. It can be formulated in the following way: if
(for all x ∈ X) the validity of a property A(x) can be derived from the validity of the properties A(y) for
all y < x, then the property A(x) is valid for all x ∈ X, where X is a well-ordered set. We shall apply
this induction to the set DV .

If x is the minimal element in X then the statement is valid. In fact, we assumed that {G(si)} strictly
increases, but G(si) = G(Tx(si)). Thus, the base of induction is completed.

Now suppose that the statement is valid for all y < x, but is not valid for x. More precisely, assume
that for some M ∈ N and for all m ∈ N the inequality G(Tx(sm)) < M holds. Since {G(si)} strictly
increases and G(si) = G(Hx(si)) + G(Tx(si)), we can extract a subsequence {sik

} from {si} such that
{G(Hx(sik

))} strictly increases. We may assume that {si} already satisfies this property.
Our aim is to transform that sequence in such a way that no element si contains x. Let us imagine that

it is impossible to extract a subsequence with this property from {si}. Then we can extract a subsequence
{sij} from {si} such that {degx sij} is constant or increases (maybe not strictly) and {si1} contains x.
Dividing sij by the highest power of x occurring in it, we obtain a sequence with the same properties as
{si}. Indeed, this new sequence strictly decreases, because {si} does. If the hyperdegrees of its elements
are bounded, we immediately apply Lemma 5 and get a contradiction. Else we may again consider a
subsequence with strictly increasing hyperdegrees. The hyperdegrees of the tails w.r.t. x have not been
changed after dividing, and thus are bounded by assumption. As before, without loss of generality we
may suppose that {si} is exactly this sequence.

Now we have that x does not occur in the elements of {si}. Let n1 = 1. Consider the highest variable
z in Hx(sn1). Then z < x, and, hence, the proposition is valid for z. Thus, there exists an index n2 > n1

such that
G(Tz(sn2)) > M + 2G(Hx(sn1)).

At the same time, G(Tx(sn2)) < M by assumption. Hence,

G(Mz,x(sn2)) = G(Tz(sn2)) − G(Tx(sn2)) > 2G(Hx(sn1)).

Since z is the highest variable in Hx(sn1) and x does not occur in the sequence, we have Hx(sn1) =
Hz(sn1). Applying Lemma 6 to the monomial sn2 , we obtain that Hx(sn2) majorises Hz(sn1) = Hx(sn1).
Let us denote pi = Hx(sni), qi = Tx(sni). Then p2 � p1, but sn2 = p2q2 < p1q1 = sn1 , because n2 > n1.
This immediately implies that q2 < q1. Now we can repeat the same reasoning for the monomial sn2

instead of the monomial sn1 . We obtain that there exists a monomial sn3 = p3q3, n3 > n2 > n1 such that
q3 < q2 < q1. Arguing as above, we construct a strictly decreasing infinite sequence {qi}. But qi = Tx(sni),
and G(qi) < M by assumption. We have a contradiction with Lemma 5 for the sequence {qi}. Hence, the
step of induction has also been completed.

It has been shown above that the proof of the theorem follows immediately.
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