Can We Optimize Toeplitz/Hankel Computations?

V.Y. Pan *

Department of Mathematics and Computer Science
Lehman College of CUNY, Bronx, NY 10468, USA
vpan@lehman.cuny.edu

Abstract. The classical and intensively studied problem of solving a Toeplitz/Hankel linear system
of equations is omnipresent in computations in sciences, engineering and communication. Its equiva-
lent formulations include computing polynomial gcd and lem, Padé approximation, and Berlekamp-
Massey’s problem of recovering the linear recurrence coefficients. To improve the current record
asymptotic bit operation cost of the solution, we rely on Hensel’s p-adic lifting. We accelerate its
recovery stage by exploiting randomization and the correlation between lifting and the computa-
tion of Smith’s invariant factors of the input matrix. Furthermore, for the average input, the 2-adic
version of lifting is sufficient, allowing entire computation in binary form, which promises to be
valuable for practical computations. Our resulting algorithms solve a nonsingular Toeplitz/Hankel
linear system of n equations by using O(m(n)nu(log n)) bit

operations (versus the information lower bound of the order of n?log n), where m(n) and pu(d)
bound the arithmetic and Boolean cost of multiplying polynomials of degree n and integers modulo
2¢ 41, respectively, and where the input coefficients are in n®®. Our algorithms can be applied to
a larger class of Toeplitz/Hankel-like linear systems.

Key words: Toeplitz matrices, Hankel matrices, linear systems of equations, polynomial gcd, Padé ap-
proximation, Berlekamp-Massey problem, Hensel’s p-adic lifting, rational number reconstruction, Smith
invariant factors, randomized algorithms, bit complexity.

1 Introduction

Toeplitz and Hankel matrices and, more generally, matrices with the structure of Toeplitz/Hankel type
are omnipresent in computations in sciences, engineering and communication. Solution of Toeplitz/Hankel
or Toeplitz/Hankel-like linear systems of equations is required in the shift register synthesis and linear
recurrence computation, inverse scattering, adaptive filtering, modelling of stationary and nonstation-
ary processes, numerical computations for Markov chains, solution of PDE’s and integral equations,
polynomial rootfinding and many other fundamental problems in computer algebra such as computing
resultants, Padé approximation, polynomial gcds and lems (see more items and further bibliography in
Kailath and Sayed [KS99], Pan [P00, Section 1.1] and Pan [P01]). Furthermore, the displacement trans-
formation approach of Pan [P90] enables reduction of computations with matrices having structures of
Cauchy, Vandermonde and other types to the Toeplitz/Hankel-like case.

Matrix structure can be exploited in devising the solution algorithms to decrease the solution cost
dramatically, from the order of n? flops in Gaussian elimination for a nonsingular Toeplitz/Hankel system
of n equations Mx = b to O(n?) in the “fast” algorithms by Levinson 1947/Durbin 1959 and by Trench
1964, and to O(n log? n) in the “superfast” BGY algorithm by Brent, Gustavson, and Yun [BGY80] and
the divide-and-conquer MBA algorithm by Morf 1974/1980 and Bitmead/Anderson 1980 (cf. [PO1]).

The more realistic measure is the bit operation cost. To each arithmetic operation performed over the
integers modulo g, that is, with d-bit precision, for d = [log, q], we assign the cost of u(d) bit operations
(hereafter log stands for log, unless specified otherwise), where

p(d) < Cetassd”, u(d) < Crd*® ?, u(d) < (Cssd log d)log log d, (1.1)

log 3 = 1.58496...,0 < Cguss < Cr < Css, and the above bounds are supported by the classical,
Karutsuba’s, and Schonhage-Strassen’s algorithms, respectively (von zur Gathen and Gerhard [GG99)).

According to Tyrtyshnikov [T94], Toeplitz/Hankel matrices tend to be ill-conditioned, which motivates
application of symbolic/algebraic methods for reducing the computational precision. The most popular
is application of the CRA (Chinese remainder algorithm). The input is integral (or made integral by

* Supported by NSF Grant CCR 9732206 and PSC CUNY Award 66383-0032

254 V.Y. Pan

scaling), and the computations are performed modulo distinct random primes ps,...,ps such that a
nonsingular matrix M is very likely to remain nonsingular modulo p1,...,ps. The output is recovered
first modulo p = p; ---ps by using the CRA, and then in rational form based on the rational number
reconstruction algorithms (see [GG99] and Pan and Wang [PW02]), provided that the product p; - - ps
exceeds 2d|v| for every rational output value v/§, > 1. This property enables recovery of each value v/§
from (v/6) mod p;,i = 1,...,s. The latter stage of rational number reconstruction is generally considered
quite hard but not for the MBA algorithm, which computes det M as by-product. The scaled output vector
(det M)x is an integer vector, and its reconstruction from ((det M)x) mod p is cost-free.

To specify the bit cost bound for the MBA algorithm (and similarly for the BGY algorithm), let m(n)
denote the arithmetic cost of multiplying two polynomials of degree n — 1,

2n — 1 < m(n) < (cunlog n)loglog n, (1.2)

for a constant ¢, (Cantor and Kaltofen [CK91]). In the introduction, for simplicity let all input values
lie in the range (—¢,q) for ¢ in n©M). (Later on, we relax this assumption.) Then the MBA algorithm
computes X = M ~'b by using O(nu(log n)m(n)log n) bit operations. Our new progress is twofold.

a) We decrease the randomized bit cost bound by roughly the logarithmic factor, thus reaching an
information lower bound up to roughly logarithmic factor, and

b) we perform all computations in the binary form, modulo a fixed power of two; furthermore, this power
of two is reasonably small on the average input; such an implementation is a substantial practical
advantage versus computations modulo one or several random primes of the order of logn.

Our progress should be viewed as surprising because we deal with a central problem of structured matrix
computations open and intensively studied since 1980. Moreover (see [BGY80], [P01]), the solution of
Toeplitz/Hankel linear system is equivalent to the computation of polynomial ged/lem and a fixed entry
of Padé table and is closely related to computing the resultant of a univariate polynomial; these are even
older problems, central and most intensively studied in computer algebra [GG99]. Berlekamp-Massey’s
problem of the recovery of the coefficients of a linear recurrence is another celebrated and intensively
studied equivalent formulation of the same problem [BGYS80].

Let us further specify our results. We rely on p-adic Hensel’s lifting. To its practical advantage versus
the MBA algorithm, only a single random prime p in n°(") is sufficient, and all lifting computations are
with two matrices of the same size n x n. Another advantage is that the bit cost of lifting decreases
to O(nm(n)u(log n)), thus approaching closer the lower bound of the order of n?log n. This many
bits are generally required already to represent the n output values, each with up to nlog n bits. The
algorithm amounts to multiplication of the input matrix and its inverse modulo p by two vectors per step;
these operations are quite simple for Toeplitz/Hankel-like matrices, and we arrive at the desired bit cost
estimate for lifting. Lifting, however, must be initialized and be followed by the recovery of the rational
output values from their truncated p-adic expansions. We study these problems here and in Pan [Pa].

At the stage of rational number reconstruction, det M is not available as by-product anymore, and until
very recently the known algorithms required the order of 73 log? n bit operations at this stage. In [PW02],
however, the asymptotic cost bound of the extended Fuclidean algorithm for integers has been improved
dramatically, implying acceleration of our rational number reconstruction to O(nu(nlogn)logn). This
theoretical progress enables us to match but still not to beat the BGY/MBA cost bound. To yield further
progress, we extend the approach of Pan [P87], Pan [P88], Abbott, Bronstein and Mulders [ABM99],
and Eberly, Giesbrecht and Villard [EGV00], which relates p-adic lifting to the computation of Smith’s
invariant factors of M. Now we recall the known trick of probabilistically computing the lem of several
integers ¢z, ..., g as the denominator of the random linear combination of the reciprocals 1/¢; (cf. Pan
[P92], Bini and Pan [BP94], Cooperman, Feisel, von zur Gathen and Havas [CFG99]) and exploit this
trick in a new context with a support from Smith’s leading factor s,. With this technique we decrease
the bit cost of the recovery and the overall bit cost to O(u(nlogn)logn). The output is represented as
a pair y, s,, where the components of the integer vector y = s,x are output as p-adic numbers for a
random prime p of the order of logn. For practical purpose, however, the binary representation of all
intermediate and output values or at least representation modulo a fixed (non random) prime or prime
power p are desired.

Our practical solution to this practical problem relies on our new binary version of Hensel’s lifting
(where the basic prime p can be two, even if det M is even). The power of this approach can be accentuated
by combining it with perturbation of the input matrix by small rank random matrices. This enables binary
computation of the output within the desired cost bound for an average Toeplitz/Hankel-like matrix M.

Can We Optimize Toeplitz/Hankel Computations? 255

(We cannot trace this solution and its techniques back to any previous works.) To initialize Hensel’s
lifting, we may apply a superfast (BGY or MBA) algorithm modulo a random prime p of the order
of logn. The bit cost is smaller than for lifting, but using a fixed prime or prime power p is desired
(preferably p = 29 for smaller g), and we elaborate upon this in Pan [Pa], where g is nicely bounded on
the average (but not for the worst) case input. In our Section 6, we propose two alternative methods,
which are performed modulo p = 29 and modulo any fixed odd prime, respectively; their bit cost is higher
than with the BGY/MBA algorithms modulo (random) p but still within the cost bound of lifting.

Our algorithms promise to be practical; moreover our work may even inspire reexamination of the
general method of using random primes, to avoid singularity, and may suggest using fixed prime or prime
power (e.g., p = 29) as an alternative. On the theoretical side, the techniques enable us to compute the
determinant and all Smith’s factors of an average general or structured matrix M at the same randomized
asymptotic bit cost as for solving linear systems.

For simplicity, we specify our algorithms and complexity estimates for Toeplitz matrices, but the ex-
tension to the Toeplitz/Hankel-like case is straightforward. Furthermore, our algorithms can be extended
to solving a consistent but singular general or Toeplitz/Hankel-like linear system Mx = b and computing
a vector from (or a basis for) the null space of a singular general or Toeplitz/Hankel-like matrix M. The
latter extensions are straightforward as soon as a nonsingular submatrix of M of the maximum size is
computed, and we may compute such a submatrix probabilistically by applying the MBA algorithm mod-
ulo a single random prime p in n°M" to a randomly preconditioned input matrix M [PO1]. The arithmetic
cost of the MBA algorithm is O(n log? n), so the bit cost is small as long as the algorithm is performed
modulo p, that is, with the precision of O(logn) bits. In our next paper [Pa] we specify the MBA processes
and detail the estimates for the error/failure probability due to the randomization as well as the resulting
record randomized bit complexity bounds for singular Toeplitz/Hankel-like computations. We also study
their implementation modulo 29.

The solution of singular but consistent Toeplitz linear systems actually covers the solution of the
equivalent problems of computing the gcd and lem of polynomials as well as a fixed entry of Padé
approximation table and recovering the linear recurrence coefficients from a sequence of the recurrence
terms (Berlekamp—Massey’s problem), whereas the computation of the determinant of a Toeplitz-like
matrix covers the computation of the univariate resultant [P01].

We organize our paper as follows. After definitions and preliminary results in the next section, we
recall and then modify Hensel’s lifting algorithm for a linear system of equations in Sections 3-5. In
Section 6, we apply the variable diagonal and modular continuation techniques to initialize lifting. As a
simple preliminary demonstration, we apply the algorithms of Sections 3 and 5 to selected 2 x 2 matrices
in Section 7.

We conclude this section with some comments on possibility of further asymptotic acceleration. The
factor of m(n) in our estimates comes from our basic operation of Toeplitz/Hankel matrix-by-vector
multiplication or, equivalently, polynomial multiplication. It is unlikely that any efficient algebraic com-
putation scheme for our tasks could dispense with this operation. (Try to imagine such a scheme, e.g., for
polynomial ged.) This informal argument suggests that improvement of our bounds by the factor m(n)/n
is unlikely. On the other hand, our basic operation can be viewed as multiplication of polynomials with
bounded integer coefficients, so the binary segmentation technique of Fischer and Paterson 1974 (cf. Bini
and Pan [BP94, Section 3.9]) could yield theoretical acceleration by the factor of (loglogn)logloglogn.
The resulting bit cost bound of O(nu(nlog n)), however, does not seem to be practically attractive unless
n is huge because the overhead constant Cj; is large, whereas with Cpqss and C in (1.1) the overall bit
cost bounds become n® for @ > 2.5.

2 Definitions and Basic Facts

2.1 Integers, Rationals, Matrices

Definition 2.1. Z is the ring of integers, Z, is the ring of integers modulo ¢, Q and R are the fields of
rational and real numbers, respectively. For z,q € Z,q > 1, we write z, = z mod q if g divides z — z4 and
if —q/2 < z¢4 < q/2. (Clearly, z = zq if —|q|/2 < z < |q|/2.) We write y = v(y)/(y) for two coprimes

k—1,0-1

v(y) (numerator) and 5(y) (denominator). M = (m;;); ;_y " is a k X | matriz.

Definition 2.2. [is the identity matriz of a proper size, I is the I X | matriz I. det M and adj M =

((—1)i+jdi7j)ﬁj_.:16k_l denote the determinant and adjoint (adjugate) of a kxk matriz M = (mi7j)§;:1bk_1,

256 V.Y. Pan

respectively, where d; ; is the determinant of the submatriz M; ;, obtained by deleting the i-th row and
j-th column of M. MT is the transpose of M.

Definition 2.3. |M| is the column norm of M, |M| = ||M||; = max; Y, |m; ;| for M = (m; ;). |v] is
the £y-norm . |v;| of a vector v .= (v;);.

The next well known estimate is an overestimate on the average, according to [ABM99].
Theorem 2.4. |det M| < |M|, |adj M| < k|M|*~! for a k x k matriz M.

Definition 2.5. vg < 2n2—n and ig arithmetic operations are sufficient to multiply a given n xn matriz
S by a vector and to invert it, respectively.

Definition 2.6. di = di (M), the k-th determinantal divisor of M, is the greatest common divisor (gcd)
of all k x k minors (subdeterminants) of a matric M € Z™*", k =1,...,n. We write s = dy = 1 and
define the k-th Smith invariant factor of M as s = sx(M) = dg/dk—1 for k=1,...,n.

We have s1,...,5, € Z and |det M| = s1 - - $p, s0 (cf. Theorem 2.4) we have

Sp < |det M| < |M|™. (2.1)

2.2 The Bit-Complexity of Rational Number Reconstruction

Hereafter, p(q) denotes the bit-operation cost of modular rational roundoff, that is, of recovering a rational
number z/y from three integers k, g, and r = (z/y) mod ¢ provided ¢ and y are coprime, x and y are
coprime, k is an integer, 1 <k < g, |z| < k,and 0 < y < q/k. (See [GG99] on conditions of existence of the
number z/y.) If in addition 2|x| < k, then the pair (z,y) is unique [GG99]. Clearly, x = |r|,y = 1,p(¢) =0
if k> 2|r|.

Likewise, p(d) denotes the bit operation cost of numerical rational roundoff, that is, of the recovery
of a unique rational number z/y from its approximation v/0 and a positive integer k, provided that
1 <y <k, x| <y,z and y are coprime, and |z/y — v/§| < 1/(2k?) for fixed v, and k.

Both of the recovery problems can be solved by applying the extended Euclidean algorithm to the
input pair rg,r; being ¢,r or v,d, respectively, and by stopping for the smallest positive ¢ such that
r; < k in the computed remainder sequence, ro, 71,72, ... [GG99], Zippel [Z93]. The classical Euclidean
algorithm supports the bit cost bounds p(q) < cd?, p(q) < @52, the algorithm in [PW02] yields

p(q) < Cu(d)logd, p(8) < Cu(d)logd, (2.2)

where p(d) is in (1.1), d = logq, d = logd, c < C, ¢ < C.

2.3 Toeplitz and Hankel Matrices

Definition 2.7. A matrizc T = (t; ;) is a Toeplitz matriz if t; ; = tiy1,j41 for every pair of its entries
ti; and tiy1 j41. Z(v) is the lower triangular Toeplitz matriz defined by its first column v. H = (h; ;)
is a Hankel matriz if h;; = hi—1 j41 for every pair of its entries h;; and h;—1 j4+1. The unit Hankel
(reflection) matric J = (jg.n), jgn-1—g =1, for g=0,....,n—1, jorn =0 for h+ g #n—1, reverses any
vector v = (vi)?z_ol, that is, Jv = (vn_i_l)?:_ol, J2=1.

For any Toeplitz matrix 7', there exist nonunique pairs (Z(w), Z(x)) such that T = Z(w) + Z7(x).
Furthermore, T'J and JT are Hankel matrices if T is a Toeplitz matrix, and H.J and JH are Toeplitz
matrices if H is a Hankel matrix. Therefore, the problems of solving Toeplitz and Hankel linear systems
of equations are immediately reduced to each other. We only specify the Toeplitz case.

The next well known theorem (cf., e.g., [P01, Chapter 2]) expresses the Toeplitz inverse via its products
with two fixed vectors.

Theorem 2.8. Let T = (ti,j)zj;lo be an n x n nonsingular Toeplitz matrix, let t_, be any scalar

(e'g'; t—n = 0)7 and write Pn = _1at = (ti—n)?;olap = (pz)?;ol = T_ltaq = (pn—i);l;017v =
T-1(1,0,...,0)T, u= ZJv. Then T-' = Z(p)ZT (v) — Z(v)Z" (q).

Can We Optimize Toeplitz/Hankel Computations? 257

Hereafter the pair of the above vectors p = p(t_,) (for a fixed ¢t_,,) and v is called a generator for
T~!. Theorem 2.8 reduces n x n Toeplitz inversion to solving two fixed Toeplitz linear systems (each of
n equations) and to multiplication of four triangular Toeplitz matrices by vectors.

Effective computations with Toeplitz matrices rely on fast multiplication of a Toeplitz matrix and its
inverse by a vector. Here are the arithmetic cost bounds.

Theorem 2.9. Given an m x n Toeplitz matriz T, its multiplication by a vector is a subproblem of
multiplication of two polynomials of degrees m + n — 2 and n — 1, whose coefficients are given by the
entries of the input matriz and vector, respectively. If T is triangular and m = n, then both of these
polynomials have degrees of at most n — 1.

Corollary 2.10. Annxn Toeplitz matriz T can be multiplied by a vector in 2m(n) arithmetic operations
form(n) in (1.2); the bound decreases to m(n) if T is a triangular matriz. 4m(n)+n arithmetic operations
suffice to multiply T by a vector provided that T is nonsingular and is given with its generator, that is,
with the vectors p and v in Theorem 2.8.

3 Hensel’s Lifting for General and Toeplitz/Hankel Linear Systems

In h steps of the next algorithm, p-adic expansion modulo p” of the solution of a linear system Mx =b
is computed by performing vy 4+ vy—1 lower precision arithmetic operations per step (see Definition 2.5,
Theorems 3.2 and 3.4, and Corollary 3.3).

Algorithm 3.1. Hensel’s lifting for a linear system [MCT79], [D82] (see Example 7.1).
INPUT: M € Z™*™, an integer p coprime with det M, b € Z", an integer h > 1, and Q = M ! mod p.
OUTPUT: x") = M~'b mod p".
INITIALIZE: r(® = b.
COMPUTATIONS: for i = 0,1,...,h — 1, compute

u® = Qr» mod p, r*Y = (@ — Mu®)/p.
Output x(") = Z?;OI uldpt,

Theorem 3.2. [D82].

a) v € Z" for all i;

b) MY upi =bmodp,j =1,2,...,h;

¢)rl) = (rj(.i))?:_ol, |r§i)| <nyp/(2p —2) for all i and j if M = (msj)ij,b = (bj); for alli and j, and
7y = max; j max{p, [m |, |b;|}.

Corollary 3.3. Algorithm 3.1 uses O((varp(log(ny))+vqu(log p))h) bit operations for u(d) in (1.1) and
vg of Definition 2.5, to output the vector x™) in p-adic form.

Let us next specify the integer parameters h and p and the bit cost of the recovery of the rational
solution from its truncated p-adic expansion.

Theorem 3.4. It is sufficient to choose h = [2nlog,(yn)] in Algorithm 3.1 and to perform O(np(p"))
bit operations to recover a unique solution x = M~ 'b to the linear system Mx = b from the vector

h—1
x(h) = Z u(i)pi = x mod p".
i=0

Proof. According to Section 2.2, we may uniquely recover the pair of coprimes v; = v(z;) and §; = 6(z;)
for a rational component z; = v;/§; of the vector x = M~'b if p" > ¢ = 2n|M|?*"~1 > |;|§; and
2 <26; < k=n|M|"! (see Theorem 2.4). So, every component z; can be recovered from x; mod p" if
p" > 2n|M >t > 2n(yn)?" 71, that is, if b > log,(2n) + (2n — 1)log,(yn) > 2nlog,(yn) forn > 1. O

The following simple theorem is the basis for faster randomized recovery.

Theorem 3.5. For a nonsingular matric M € Z™ ™ and its leading Smith’s invariant factor s, =
sn(M), we have s, M~ € Z"*".

258 V.Y. Pan

In Section 4, based on a nontrivial algorithm for computing s,,, we prove the next theorem.

Theorem 3.6. For a nonsingular matric M € Z™ ™ such that vyy > n, v in Theorem 3.2, and a
positive € < 1, it is sufficient to generate a random prime p in the range (a,na] (for a = (Cn/e¢)log|M]|
and a constant C') and K random vectors b c®) ¢ Zr (for k = 1,2,..., K, K = O(log(1/¢)), and

m = max n log , , that 1s, a total o n log(n log og(1l/e)) random bits, and in
{[V/n1ogTat]| . 4000}), tn I of O((nlog(nlog |M|))log(1/€)) random bits, and i

addition to perform insjpu(log p)+O((var-1 p(log p)+varp(logy))nlog, v+p(|M|["))log(1/€)) bit operations
(for u(h) in (1.1), p(q) in (2.2)) in order to compute a positive s, dividing s, = s,(M) and such that

Probability (s} = s,) > 1 —e.

Let us next specify the cost estimates in terms of n, |M|, and € , for general and Toeplitz matrices. For
a non-singular n x n matrix M, we have iy; = O(n?), v < 2n% — n,vp-1 < 2n? —n. If M is a Toeplitz
matrix, we have iy = O(m(n) log n),vy = O(m(n)),vpy-1 = O(m(n)), provided M~! is given with
its generator (see Corollary 2.10). Substituting these bounds, we observe that the lifting cost dominates
the cost of inversion modulo p and the recovery cost for both general and Toeplitz matrices M. So we
specialize Theorem 3.6 as follows.

Corollary 3.7. Let M € Z" ", detM # 0,|JM| > n, and 0 < e < 1. Then a divisor s
of the leading Smith factor s, such that s} = s, with a probability of at least 1 — € can be
computed by generating O((nlog(nlog|M]))log(1l/e)) random bits and in addition performing o =
O((n*p(log v)log, v)log(1/€)) bit operations for p = O((n?/€)log |M]), u(h) in (1.1), and ~y in Theorem
3.2. For a Toeplitz matriz M the bit operation cost is bounded by 3 = O((n log,v)m(n)u(log v)log (1/¢))
for m(n) in (1.2). If log,y = O(1) and 1/e = O(1), then a = O(n*u(log n)), B = O(m(n)nu(log n)).

Now, having s,, (bounded in (2.1)) and assuming for simplicity that
log |b| <n log [M]|, (3.1)

we compute the vectors x mod p” (by applying Algorithm 3.1 for the same prime p used in the compu-
tation of s,,) and then z = s,,x = (5,x) mod p" € Z". The pair s,,z defines x = z/s,, € Q™. The nearly
optimal overall bit cost of the solution of a linear system Mx = b is shown in the next theorem. It is
dominated by the estimates in Theorem 3.6 and Corollary 3.7.

Theorem 3.8. Given a nonsingular matric M € Z™*™, a vector b € Z" satisfying (3.1), and a positive
€, the bit cost bounds of Theorem 3.6 and Corollary 3.7 apply to the solution of the linear system Mx = b.
The solution may have an error with a probability of at most €. The bit operation cost bound covers the
cost of verifying correctness of the computed solution x.

4 Computation of the leading Smith factor

To support Theorem 3.6 for e = 1/2, we modify the algorithm Largest Invariant Factor in [EGV00,
Section 2] by changing its parameters m and 5. (We write m instead of M in [EGV00] and then M
instead of A in [EGV00].) As in [EGV00], the extension to any fixed ¢,0 < ¢ < 1, is by increasing the

parameter K by the factor of log(1/e).

Algorithm 4.1. The leading Smith Factor.

INPUT: A nonsingular matrix M € Z™*".

OUTPUT: A positive integer s dividing s,.

INITIALIZATION: m,p,b®*) and c¢®* are as in the Theorem 3.6 for K = 2, and h = 1 +
[21og, (2|M[*"~1m)] such that p" > 2|M[*"~Im.

COMPUTATION: For k = 1, 2, first compute in Z, the vectors x(*) and scalars y*), then compute the
integers t(*) and s* as follows:

L x® =zl = M—1p® e Zp,

2. yM) = cWTxk) = 51 cgk)xgk) €Z,,

3. tF) = §(y™), so 1 <t < |M|™,

4. 5% =lem (tM)),

Can We Optimize Toeplitz/Hankel Computations? 259

Clearly, s divides s,. To prove that s} = s, with a probability of at least 1/2, we combine the
proof of Theorem 2 in [EGV00] with the next lemma, which for every k validates using the denominator
() of a linear combination of xék), . x(k)l instead of the lem of all denominators 5(x(()k)), ce (5(1’551)1)

s U —

Hereafter, write | = ord ,(2) if p,z € Z,p > 1, p' divides z, but p'*! does not.

Lemma 4.2. Fiz k = 1 or k = 2 and write §*) = lem (5(x(()k)), .. ,5(x£lk_)1)), so tF) divides 6); §(F)
divides s,,. Then for any prime p,

a) Probability(ord 5(s,,) # ord 5(6®)) < max{1/m,1/p};

b) Probability(ord ;(t**)) # ord 5(6(*))) < max{1/m,1/p}.

Proof of Lemma 4.2. Part a) follows from Theorem 2 in [ABM99], but here is a simpler proof. We
have «" = Y (~1)"*9d; ;6" / det M, s, = |(det M)/d|,d = ged(ds ;)s.; for di; in Definition 2.2 and
bk = (bg-k))?zl. Write h; ; = ord;(d;;), h = ord 5(d) = min; ;j d; ;. We have h = ord 3(dy,,) for some
u,v; w.lo.g., let w = v = 0. Furthermore, write d;; = d; ;/d for all i and j. Then it follows that
snx(()k) = cZo,ob(()k) + r, where r = Z?;f(—l)jdayjb§k) € 7Z. Since ordz—,(daﬁo) = 0 and b(()k) is randomly
chosen in Z,,, part a) of the lemma follows.

To prove part b) first write x; = v;/d;,y = Z?:_()l civi/di, 00 = 6/6; = (lem (0;);)/d;, where v; and §;
are coprime, for all ¢. (We drop the superscripts k of xgk),ygk),cgk), 5k (k) 51@, and I/i(k), to simplify
the notation.) Clearly, min;{ord(c;)} = 0 for any prime p. W.l.o.g., let ord 5(o¢) = 0. If p divides vy,
then ord 5(do) = 0, so 0 = ord 5(6) > ord 5(¢) > 0, that is, ord 5(§) = ord 5(¢) = 0. It remains to cover the
case where

ord 5(vy) = ord 5(og) = 0. (4.1)
Observe that y = Y21} ;1304 /8i, s0 ord p(t) = ord (8) if ord »(X1" ¢;vi0) = 0. Under (4.1), the latter
equation holds with a probability of at least max{1/m,1/p} for ¢y randomly chosen in Z,. O

To prove Theorem 3.6 it remains to estimate from above the number of bit operations used in Algo-
rithm 4.1. We have the following upper bounds: iy u(log p) for computing M~ mod p at stage 1 (once
for all k); O((vpr-1p(logp) + varp(logy))h), where h = O(nlog,), in Hensel’s p-adic lifting applied for
each fixed k to compute M ~'b®) mod p" (also at stage 1), and O(u(nlog |M|)log(nlog |M]|)) for each k
at stage 3. The cost of lifting dominates the cost at stages 2 and 4 (recall our assumption that vy > n).
Summarizing, we complete the proof of Theorem 3.6.

5 Computations in Binary Form

Performing Algorithms 3.1 and 4.1 modulo a fixed (rather than random) prime or prime power p leads to
substantial benefits in practical implementation. The most desired choice is p = 29, which means binary
representation. We wish to have g of the word size, and we achieve this on the average, but not for the
worst case input because of the singularity problems.

Algorithms 3.1 and 4.1 can be applied with p = 2 if the Smith leading factor s, = s,(M) is odd. The
next algorithm extends the application to any s,,.

Algorithm 5.1. Linear solver in binary form via small rank perturbation (see Examples 7.2 and 7.3).

INPUT: A nonsingular matrix M € Z™*™ and a vector b € Z".

OUTPUT: Scalar s, = s,(M) and vector y = s, M ~'b, both in the binary form.

COMPUTATIONS:

1. Recursively generate 2¢ random Toeplitz matrices Uy, V,I € Z;’Xk for a fixed ¢ in n®W k =
1,2,...,1, and apply Algorithm 4.1 to compute Smith’s leading invariant factors s, = s,(Mjy) for the
matrices My = M — U Vi, k = 0,1,...,1. Stop for the smallest { for which s, ; = s,(M;) is odd. (This !
can be computed with a binary search.)

2) Apply the algorithms of the preceding sections, for p = 2 and for a fixed sufficiently small positive
h, to compute the n x [matrix MflUl = W; and the vectors u = lelb,v = lelUl(Il + ViW,) "W,
and finally x =u—v = M ~'b = (M, ' — M, 'U(I, + ViM; 'U;)"'ViM; ")b in the binary (2-adic) form.

The latter matrix equation relies on the (Sherman—Morrison—)Woodbury formula for M~ = (M, +
UV)~! (Golub and Van Loan [GL96]). We also need Lemma 3.2 and Theorem 3.13 in [EGV00] by
which with a high probability all matrices M}, are nonsingular and s,,_ (M) = ged (s, (M), sn(My)) for
k = 1,...,1. The nonsingularity property, together with the (Sherman-Morrison—)Woodbury formula,
implies correctness of the algorithm.

260 V.Y. Pan

We now assume a random integer input matrix M, for which equations s, _; = 1 are likely to hold for
all but O(logn) smallest values of k [EGVO00], and deduce that I = O(logn) from the above expression
of s,,—x(M) as the ged.

To estimate the arithmetic cost of the computation, observe that the matrices My, have displacement
rank 3, so the definition of a generator of the inverse and Corollary 2.10 are extended (see the definition
of the displacement rank and proofs in [P01]) to yield that va, < 4m(n) + n and Upt < 6m(n) + 2n
for vg in Definition 2.5.

Now, reexamination of Algorithm 4.1 (with Uy, replaced by UyJ or JUy in the Hankel-like case) leads
us to the following estimates.

Theorem 5.2. For random average (general or Toeplitz) integer matriz M, the asymptotic cost bounds
of Corollary 3.7 (up to the factor of loglogn) apply to the bit cost of performing Algorithm 5.1, except
that O(n) additional random entries of the matrices Uy, Vi, k = 1,...,1, for | = O(1), must be generated
n Zg,q € nPW) . The same bounds cover the bit cost of computing all Smith invariant factors of the
average M and, consequently, det M.

Let us extend Hensel’s lifting by relaxing the assumption that the basic prime p is coprime with det M.

h steps of the generalized version of Hensel’s lifting below lift the input solution vector modulo p? to
output the solution modulo p9**" where g, h, k and p — 1 are four positive integers such that s, (M)/p? is
an integer coprime with p. The latter condition holds with a high probability for random integer matrix
M and reasonably small nonnegative g. Generalized lifting combined with Algorithm 5.1 can be applied
if s, (M)/p? is an integer coprime with p. This condition is very likely to hold for random M and
relatively small g and [. The generalized lifting is still performed with a quite low precision of the order
of (k + g)logp bits.

Algorithm 5.3. Lifting without coprimality (cf. Examples 7.2 and 7.3).

INPUT: M € Z™*™, a prime p, the integer g = ord ,(s,(M)), two positive integers h and k, and a
matrix Q € Z™*"™ such that MQ = p91 mod pI**.

OUTPUT: x") € Z™ such that x») = pI M ~'b mod pI*+h.

INITIALIZE: r(®) = b.

COMPUTATIONS: for i =0,1,...,h — 1,

compute u'? = Qr® mod p9t*, r(i+1) = (p9r® — Mu)/pItk.

Output x(") = Zf:ol uldphi,

For g =0 and k = 1, Algorithm 5.3 turns into Algorithm 3.1.

Theorem 5.4. (Cf. Theorem 3.2.)
a) vt ¢ 77
b) Mx(") = p9b mod pI*t*h;
¢) all components rg»l) of all vectors vV satisfy |7“j@| < nyp*/(2p* — 2) for v in Theorem 3.2.

Proof. a) p9r®) — Mu® = (p9I — MQ)r mod p9t*, and the claim follows because M Q = p91 mod pI**.
b) Mx®) — Z?:_ol Mu(i)pki _ Z?:_ol (pgr(i) _ pg-l-kr(i-i-l))pki =pIb — pg—i-khr(h) = p9b mod p9tFh.

¢) By definition, all components ug»i) of all vectors u'® satisfy 2|u§»i)| < pFt9. and so pk+9|r§.i+1)| <

p9|r§-i)| + n'y|u§-i)| < p9|r§i)| + nyp*t9/2. The claim now follows by induction on 4.

Corollary 5.5. Algorithm 5.3 outputs x™ in p-adic form by performing O((varp(log(ny)) +
vou(log(p?™*))h) bit operations for u(d) in (1.1) and vs in Definition 2.5.

For p = 2 the entire algorithm can be performed in binary form. If ¢ = g(M) is larger than the word
length, then we may shift to the matrices My = M — Ug Vg, k = 1,2, ..., defined in Algorithm 5.1, and
combine Algorithms 5.1 and 5.3 (see Example 7.3 b)). This solves the problem probabilistically except
for a smaller class of matrices M, for which s,,_x(M)/29 is even for large k and g.

The input matrix) defines the integer g. To compute), we may apply the algorithms in the next
section. An alternative way is to apply some fast or superfast algorithm modulo a random prime p in
n®M log | M|, keeping computational precision in O(log(nlog|M])). Then the bit cost at this stage is
dominated at the lifting stage. If we fix p = 2 or p = 29 (instead of choosing a random p), then some
complications arise where det M is even, but for the average input matrix M, we handle the problem by
extending the techniques of Algorithms 5.1 and 5.3 (see [Pal).

Can We Optimize Toeplitz/Hankel Computations? 261

6 Initialization of Hensel’s Lifting with Variable Diagonal and Modular
Continuation

Let us next show two alternative algorithms for computing generator for M ~! mod p given a Toeplitz
matrix M. This task requires the solution of two linear systems with matrix M, and we show how to
solve such a system.

Algorithm 6.1. Initialization of Toeplitz—Hensel’s lifting with variable diagonal (cf. [P00]).

INPUT: M € Z™*" b € Z" satisfying (3.1), an integer p > 2, and two sufficiently large integers h and
[(specified later on).

OUTPUT: g = max;(ord ,(§(M~'b);)) and x) = (pIM ~'b) mod p'.

INITIALIZE: Compute the matrices My = M + p'I and Q = p~ I, so QMy — I = p~'M. Write
Zy) = O, rg = b.

COMPUTATIONS:

1. Recursively compute the vectors z; 11 — z; = Qr; = p*lri,riﬂ =b— Myz;y1 =r; — MyQr; =
—p~!Mr;,i=0,1,...,h— 1.

2. Recover z = M(flb from z; by using the rational roundoff algorithm in Section 2.2.

3. Compute gy = max;(ord ,(§(M; 'b);)). If go < I, output g = go and x) = (p9M; 'b) mod p'.
Otherwise double [and reapply the algorithm.

Stage 1 is the customary residual correction algorithm for iterative improvement of approximation to
z [GL96]. We have
zZ— Zj, = Mo_l(b — Mozp) = Mo_lrh,

vy =—p '‘Mry,_y = (—p~'M)"ro = (—p~'M)"b.
So |z — zp| < (p~'|M])"b| /| My|.

Let p > 2,
I =1+ max{1,[2log, |M]|],|2log, |b||} > g. (6.1)
Then |M| < p'/2,|b| < p/2, |Mo| > p* — p!/? > (p!/? — 1)p"/?, and
|z — zp,| < p~h/2, (6.2)
Therefore, every iteration step in Stage 1,
Zis1 — 2 =p ‘T, T = —p 'Mr;,

contributes [/2 additional correct p-digits in the p-adic representation of z. Rounding the components
of r;11 to (say) ! leading p-digits may destroy at most a single correct p-digit per component, whereas
the computational precision would stay bounded to O(llogp) bits. This argument is a simplification of
the routine error analysis of the iterative improvement algorithm (see Skeel [S80], Higham [H96]); in our
simplified case @ is in a very special form of p~'1I.

Now to ensure correct recovery of z with using rational roundoff, it is sufficient to approximate z by
zp, within the error norm less than 1/(n|Mg|?*"~1). Due to (6.1),(6.2), we achieve this as soon as

phl/2 > n(pl _|_pl/2)2n—1 > n|M|2n—1,

that is, as soon as
(h1/2)logp > (2n — 1) log(2p') + logn.

This inequality holds for h > 4n — 2 + (4n — 2 + 2logn)/logp'. Therefore, the arithmetic and Boolean
bit cost of performing stage 1 are bounded by

§ = O(hm(n)) = O(nm(n)), n=¢p(llog p), (6.3)

respectively. Under (6.1), we express the bit cost in terms of |M| + |b| and n as follows,
n = O(nm(n)u(log(|M| + [b] +2))). (6.4)

Let us also express 7 in terms of n, g and p. If initially [< g, then finally, g <1 < 2g, so

n = &u(glogp) = O(nm(n)u(glogp)). (6.5)

262 V.Y. Pan

Numerical rational roundoff at Stage 2 requires O(u(d)logd) bit operations per an entry of z for d =
nlog |My| = nlog |M +p'I| = O(nllogp). To decrease the overall bit cost of the recovery below the lifting
cost, we employ our techniques of Sections 3 and 4 again. That is, we first apply Algorithm 6.1 with
randomization to computing s,, = s, (M) probabilistically (by using random vectors b(*) and ¢*) as in
Sections 3 and 4), and then all components of the vector s,z become integers and are recovered cost-free.
Thus the asymptotic bit cost bounds (6.3)—(6.5) cover the entire cost of performing Algorithm 6.1.

The next algorithm, similar to Algorithm 6.1, first computes M, ! mod ¢ for a fixed prime ¢ distinct
from p and then M(;l mod ¢", M(;lb and M(;lb mod p. Its analysis is simpler, but for p = 2 this algorithm
requires computations modulo a fixed odd prime ¢ (say ¢ = 3 or ¢ = 5), whereas Algorithm 6.1 performs
all computations with binary numbers.

Algorithm 6.2. Initialization of Toeplitz—Hensel’s lifting with modular continuation.

INPUT: M € Z™*" b € Z", satisfying (3.1) and an integer p > 2.

OUTPUT: g = max;(ord ,(6(M~'b);)) and (pY M ~'b) mod p.

INITIALIZE: Choose an integer ¢ > 1 coprime with p. (Sample choices are given by p,q € {2,3,5} or
by p and ¢ being powers of 2,3, or 5.)

COMPUTATIONS:

1. Compute s = p~! mod ¢,t = ¢~ mod p, and the matrix My = pl + qM, so Q = MO_1 mod q = s1.

2. Apply Algorithm 3.1 for M and p replaced by M, and g, respectively, to compute Mo_lb mod ¢".
Choose h sufficiently large and recover M p.

3. Compute and output g = max;(ord ,6((M; 'b);)) and p9(M, 'b) mod p = (tp? M ~'b) mod p.

Including Algorithm 6.2 as a block in the parallel algorithm in [P00] (with Newton’s lifting replacing
Hensel’s lifting) enables dramatic simplification because most part of [P00] is devoted to fast parallel
computation of the initial matrix M ~! mod p. Furthermore, some complications in [P00] are due to using
the MBA algorithm, which involves many auxiliary Toeplitz-like matrices for a Toeplitz input matrix M,
whereas Algorithm 6.2 avoids these complications by operating only with M and its inverse.

7 Examples

Example 7.1. M = <2 1)

39 SO X = < 2 > By applying Algorithm 3.1 for p = 2, r(®) = b,

)
o GG ()

()= (1) (1) (1)

41 3 1
Ezxample 7.2. M = (6 2>,b_ <4>,5ox_ (_1),
k

a) By applying Algorithm 5.3 for = 1, r® = b, we successively compute Q =

p

(g é),u(o) = () r = (1) (1) = (;),r@) = (:;),u@) = <§), So, x(®) =
2
2

2xmod8:<0> () Mx(h)—2b)mod2h+1—0forh—1,2,3

3

4

1

we successively compute @ = < 10
0
1

2
b) Alternatively, by observmg that so(M) = 2, s1(M) = 1 and applying Algorithm 5.1 to M; =

M- Uy, Uy = V' = <1), and b = i
rithm 3.1 three times (according to Sherman-Morrison-Woodbury formula), with the right-hand-

side vectors b = 3 , b = i), and b®) = (1/3) (1 1) Mt (i), respectively. We have

4
(30 1 {3\ _ 1 (1Y 1/3
M, = (5 1) , M (4> = (_1> , M (1> = (_2/3>, (these vectors can be computed by

applying Algorithm 3.1, we omit the details), so b® =0, Mflb@) =0,M"'b= Mflb = (1)

, we reduce computation of x to applying Algo-

-1

32 2 24 1
Example 7.3. M = (48 4> ,b= <32). So, x = (_4> ,82(M) = 32,51(M) = 2. We may

Can We Optimize Toeplitz/Hankel Computations? 263

a) apply Algorithm 5.3 to M and b for p=2,g=5,k=1 or
b) apply Algorithm 5.1 to My = M — U;V1,U; = (i) V= (2> My = (30 O). For solving the

2 46 2

equations M; b i =1,2,3 (cf. Example 7.2 b)), apply Algorithm 5.3 for p=2,9 =k = 1.
1

References

[ABM99] J. Abbott, M. Bronstein, T. Mulders. Fast Deterministic Computations of the Determinants of Dense

[BGY80]
[BP94]
[CFG99)]
[CK91]
[D82]

[EGV00]

[GL96]
[GG99]

[H6]
[KS99]

[MC79]

[P87]
[Pss]
[P90]
[P92)

[POO]

Matrices, Proc. of International Symposium on Symbolic and Algebraic Computation (ISSAC ’99),
197-204, ACM Press, New York, 1999.

R. P. Brent, F. G. Gustavson, D. Y. Y. Yun, Fast Solution of Toeplitz Systems of Equations and
Computation of Padé Approximations, J. Algorithms, 1, 259-295, 1980.

D. Bini and V. Y. Pan, Polynomial and Matriz Computations, Volume. 1: Fundamental Algorithms,
Birkh&user, Boston, 1994.

G. Cooperman, S. Feisel, J. von zur Gathen, G. Havas, GCD of Many Integers, Computing and Com-
binatorics, Lecture Notes in Computer Science, 1627, 310-317, Springer, Berlin, 1999.

D.G. Cantor, E. Kaltofen, On Fast Multiplication of Polynomials over Arbitrary Rings, Acta Informat-
ica, 28(7), 697-701,1991.

J. D. Dixon, Exact Solution of Linear Equations Using p-adic Expansions, Numerische Math., 40,
137-141, 1982.

W. Eberly, M. Giesbrecht, G. Villard, On Computing the Determinant and Smith Form of an Integer
Matrix, Proc. 41st Annual Symposium on Foundations of Computer Science (FOCS’2000), 675685,
IEEE Computer Society Press, Los Alamitos, California, 2000.

G. H. Golub, C. F. Van Loan, Matriz Computations, Johns Hopkins University Press, Baltimore,
Maryland, 1996.

J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Cambridge University Press, Cambridge,
UK, 1999.

N. J. Higham, Accuracy and Stability of Numerical Algorithms, STAM Publications, Philadelphia, 1996.
T. Kailath, A. H. Sayed (editors), Fast Reliable Algorithms for Matrices with Structure, STAM Publi-
cations, Philadelphia, 1999.

R. T. Moenck, J. H. Carter, Approximate Algorithms to Derive Exact Solutions to Systems of Linear
Equations, Proceedings of EUROSAM, Lecture Notes in Computer Science, 72, 63-73, Springer, Berlin,
1979.

V. Y. Pan, Complexity of Parallel Matrix Computations, Theoretical Computer Science, 54, 65-85,
1987.

V.Y. Pan, Computing the Determinant and the Characteristic Polynomials of a Matrix via Solving
Linear Systems of Equations, Information Processing Letters, 28, 7T1-75, 1988.

V. Y. Pan, On Computations with Dense Structured Matrices, Mathematics of Computation, 55(191),
179-190, 1990.

V. Y. Pan, Parametrization of Newton’s Iteration for Computations with Structured Matrices and
Applications, Computers and Mathematics (with Applications), 24(3), 61-75, 1992.

V. Y. Pan, Parallel Complexity of Computations with General and Toeplitz-like Matrices Filled with
Integers and Extensions, SIAM J. Comput., 30(4), 1080-1125, 2000.

V. Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms, Birkhduser/Springer,
Boston/NewYork, 2001.

V. Y. Pan, Randomized and Derandomized Singular Toeplitz/Hankel-like Computations, preprint,
2002.

V. Y. Pan, X. Wang, Acceleration of Euclidean Algorithm and Extensions, Proc. Intern. Symposium
on Symb. and Algebraic Computation (ISSAC’2002), 207-213, ACM Press, New York, 2002.

R. D. Skeel, Iterative Refinement Implies Numerical Stability for Gaussian Elimination, Math. of Com-
putation, 35, 817-832, 1980.

E. E. Tyrtyshnikov, How Bad Are Hankel Matrices? Numerische Mathematik, 67, 2, 261-269, 1994.
R. Zippel, Effective Polynomial Computation, Kluwer, Boston, 1993.

