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Abstract. The classical and intensively studied problem of solving a Toeplitz/Hankel linear system
of equations is omnipresent in computations in sciences, engineering and communication. Its equiva-
lent formulations include computing polynomial gcd and lcm, Padé approximation, and Berlekamp-
Massey’s problem of recovering the linear recurrence coefficients. To improve the current record
asymptotic bit operation cost of the solution, we rely on Hensel’s p-adic lifting. We accelerate its
recovery stage by exploiting randomization and the correlation between lifting and the computa-
tion of Smith’s invariant factors of the input matrix. Furthermore, for the average input, the 2-adic
version of lifting is sufficient, allowing entire computation in binary form, which promises to be
valuable for practical computations. Our resulting algorithms solve a nonsingular Toeplitz/Hankel
linear system of n equations by using O(m(n)nµ(log n)) bit
operations (versus the information lower bound of the order of n2 log n), where m(n) and µ(d)
bound the arithmetic and Boolean cost of multiplying polynomials of degree n and integers modulo
2d +1, respectively, and where the input coefficients are in nO(1). Our algorithms can be applied to
a larger class of Toeplitz/Hankel-like linear systems.
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proximation, Berlekamp-Massey problem, Hensel’s p-adic lifting, rational number reconstruction, Smith
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1 Introduction

Toeplitz and Hankel matrices and, more generally, matrices with the structure of Toeplitz/Hankel type
are omnipresent in computations in sciences, engineering and communication. Solution of Toeplitz/Hankel
or Toeplitz/Hankel-like linear systems of equations is required in the shift register synthesis and linear
recurrence computation, inverse scattering, adaptive filtering, modelling of stationary and nonstation-
ary processes, numerical computations for Markov chains, solution of PDE’s and integral equations,
polynomial rootfinding and many other fundamental problems in computer algebra such as computing
resultants, Padé approximation, polynomial gcds and lcms (see more items and further bibliography in
Kailath and Sayed [KS99], Pan [P00, Section 1.1] and Pan [P01]). Furthermore, the displacement trans-
formation approach of Pan [P90] enables reduction of computations with matrices having structures of
Cauchy, Vandermonde and other types to the Toeplitz/Hankel-like case.

Matrix structure can be exploited in devising the solution algorithms to decrease the solution cost
dramatically, from the order of n3 flops in Gaussian elimination for a nonsingular Toeplitz/Hankel system
of n equations Mx = b to O(n2) in the “fast” algorithms by Levinson 1947/Durbin 1959 and by Trench
1964, and to O(n log2 n) in the “superfast” BGY algorithm by Brent, Gustavson, and Yun [BGY80] and
the divide-and-conquer MBA algorithm by Morf 1974/1980 and Bitmead/Anderson 1980 (cf. [P01]).

The more realistic measure is the bit operation cost. To each arithmetic operation performed over the
integers modulo q, that is, with d-bit precision, for d = �log2 q�, we assign the cost of µ(d) bit operations
(hereafter log stands for log2 unless specified otherwise), where

µ(d) ≤ Cclassd
2, µ(d) ≤ Ckdlog 3, µ(d) ≤ (Cssd log d) log log d, (1.1)

log 3 = 1.58496 . . . , 0 < Cclass < Ck < Css, and the above bounds are supported by the classical,
Karutsuba’s, and Schönhage-Strassen’s algorithms, respectively (von zur Gathen and Gerhard [GG99]).

According to Tyrtyshnikov [T94], Toeplitz/Hankel matrices tend to be ill-conditioned, which motivates
application of symbolic/algebraic methods for reducing the computational precision. The most popular
is application of the CRA (Chinese remainder algorithm). The input is integral (or made integral by
� Supported by NSF Grant CCR 9732206 and PSC CUNY Award 66383-0032
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scaling), and the computations are performed modulo distinct random primes p1, . . . , ps such that a
nonsingular matrix M is very likely to remain nonsingular modulo p1, . . . , ps. The output is recovered
first modulo p = p1 · · · ps by using the CRA, and then in rational form based on the rational number
reconstruction algorithms (see [GG99] and Pan and Wang [PW02]), provided that the product p1 · · · ps

exceeds 2δ|ν| for every rational output value ν/δ, δ ≥ 1. This property enables recovery of each value ν/δ
from (ν/δ) mod pi, i = 1, . . . , s. The latter stage of rational number reconstruction is generally considered
quite hard but not for the MBA algorithm, which computes detM as by-product. The scaled output vector
(detM)x is an integer vector, and its reconstruction from ((det M)x) mod p is cost-free.

To specify the bit cost bound for the MBA algorithm (and similarly for the BGY algorithm), let m(n)
denote the arithmetic cost of multiplying two polynomials of degree n − 1,

2n− 1 ≤ m(n) ≤ (c∗n log n) log log n, (1.2)

for a constant c∗ (Cantor and Kaltofen [CK91]). In the introduction, for simplicity let all input values
lie in the range (−q, q) for q in nO(1). (Later on, we relax this assumption.) Then the MBA algorithm
computes x = M−1b by using O(nµ(log n)m(n) log n) bit operations. Our new progress is twofold.

a) We decrease the randomized bit cost bound by roughly the logarithmic factor, thus reaching an
information lower bound up to roughly logarithmic factor, and

b) we perform all computations in the binary form, modulo a fixed power of two; furthermore, this power
of two is reasonably small on the average input; such an implementation is a substantial practical
advantage versus computations modulo one or several random primes of the order of log n.

Our progress should be viewed as surprising because we deal with a central problem of structured matrix
computations open and intensively studied since 1980. Moreover (see [BGY80], [P01]), the solution of
Toeplitz/Hankel linear system is equivalent to the computation of polynomial gcd/lcm and a fixed entry
of Padé table and is closely related to computing the resultant of a univariate polynomial; these are even
older problems, central and most intensively studied in computer algebra [GG99]. Berlekamp-Massey’s
problem of the recovery of the coefficients of a linear recurrence is another celebrated and intensively
studied equivalent formulation of the same problem [BGY80].

Let us further specify our results. We rely on p-adic Hensel’s lifting. To its practical advantage versus
the MBA algorithm, only a single random prime p in nO(1) is sufficient, and all lifting computations are
with two matrices of the same size n × n. Another advantage is that the bit cost of lifting decreases
to O(nm(n)µ(log n)), thus approaching closer the lower bound of the order of n2 log n. This many
bits are generally required already to represent the n output values, each with up to n log n bits. The
algorithm amounts to multiplication of the input matrix and its inverse modulo p by two vectors per step;
these operations are quite simple for Toeplitz/Hankel-like matrices, and we arrive at the desired bit cost
estimate for lifting. Lifting, however, must be initialized and be followed by the recovery of the rational
output values from their truncated p-adic expansions. We study these problems here and in Pan [Pa].

At the stage of rational number reconstruction, detM is not available as by-product anymore, and until
very recently the known algorithms required the order of n3 log2 n bit operations at this stage. In [PW02],
however, the asymptotic cost bound of the extended Euclidean algorithm for integers has been improved
dramatically, implying acceleration of our rational number reconstruction to O(nµ(n log n) log n). This
theoretical progress enables us to match but still not to beat the BGY/MBA cost bound. To yield further
progress, we extend the approach of Pan [P87], Pan [P88], Abbott, Bronstein and Mulders [ABM99],
and Eberly, Giesbrecht and Villard [EGV00], which relates p-adic lifting to the computation of Smith’s
invariant factors of M . Now we recall the known trick of probabilistically computing the lcm of several
integers q1, . . . , qk as the denominator of the random linear combination of the reciprocals 1/qi (cf. Pan
[P92], Bini and Pan [BP94], Cooperman, Feisel, von zur Gathen and Havas [CFG99]) and exploit this
trick in a new context with a support from Smith’s leading factor sn. With this technique we decrease
the bit cost of the recovery and the overall bit cost to O(µ(n log n) log n). The output is represented as
a pair y, sn, where the components of the integer vector y = snx are output as p-adic numbers for a
random prime p of the order of log n. For practical purpose, however, the binary representation of all
intermediate and output values or at least representation modulo a fixed (non random) prime or prime
power p are desired.

Our practical solution to this practical problem relies on our new binary version of Hensel’s lifting
(where the basic prime p can be two, even if detM is even). The power of this approach can be accentuated
by combining it with perturbation of the input matrix by small rank random matrices. This enables binary
computation of the output within the desired cost bound for an average Toeplitz/Hankel-like matrix M .
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(We cannot trace this solution and its techniques back to any previous works.) To initialize Hensel’s
lifting, we may apply a superfast (BGY or MBA) algorithm modulo a random prime p of the order
of log n. The bit cost is smaller than for lifting, but using a fixed prime or prime power p is desired
(preferably p = 2g for smaller g), and we elaborate upon this in Pan [Pa], where g is nicely bounded on
the average (but not for the worst) case input. In our Section 6, we propose two alternative methods,
which are performed modulo p = 2g and modulo any fixed odd prime, respectively; their bit cost is higher
than with the BGY/MBA algorithms modulo (random) p but still within the cost bound of lifting.

Our algorithms promise to be practical; moreover our work may even inspire reexamination of the
general method of using random primes, to avoid singularity, and may suggest using fixed prime or prime
power (e.g., p = 2g) as an alternative. On the theoretical side, the techniques enable us to compute the
determinant and all Smith’s factors of an average general or structured matrix M at the same randomized
asymptotic bit cost as for solving linear systems.

For simplicity, we specify our algorithms and complexity estimates for Toeplitz matrices, but the ex-
tension to the Toeplitz/Hankel-like case is straightforward. Furthermore, our algorithms can be extended
to solving a consistent but singular general or Toeplitz/Hankel-like linear system Mx = b and computing
a vector from (or a basis for) the null space of a singular general or Toeplitz/Hankel-like matrix M . The
latter extensions are straightforward as soon as a nonsingular submatrix of M of the maximum size is
computed, and we may compute such a submatrix probabilistically by applying the MBA algorithm mod-
ulo a single random prime p in nO(1) to a randomly preconditioned input matrix M [P01]. The arithmetic
cost of the MBA algorithm is O(n log2 n), so the bit cost is small as long as the algorithm is performed
modulo p, that is, with the precision of O(log n) bits. In our next paper [Pa] we specify the MBA processes
and detail the estimates for the error/failure probability due to the randomization as well as the resulting
record randomized bit complexity bounds for singular Toeplitz/Hankel-like computations. We also study
their implementation modulo 2g.

The solution of singular but consistent Toeplitz linear systems actually covers the solution of the
equivalent problems of computing the gcd and lcm of polynomials as well as a fixed entry of Padé
approximation table and recovering the linear recurrence coefficients from a sequence of the recurrence
terms (Berlekamp–Massey’s problem), whereas the computation of the determinant of a Toeplitz-like
matrix covers the computation of the univariate resultant [P01].

We organize our paper as follows. After definitions and preliminary results in the next section, we
recall and then modify Hensel’s lifting algorithm for a linear system of equations in Sections 3–5. In
Section 6, we apply the variable diagonal and modular continuation techniques to initialize lifting. As a
simple preliminary demonstration, we apply the algorithms of Sections 3 and 5 to selected 2× 2 matrices
in Section 7.

We conclude this section with some comments on possibility of further asymptotic acceleration. The
factor of m(n) in our estimates comes from our basic operation of Toeplitz/Hankel matrix-by-vector
multiplication or, equivalently, polynomial multiplication. It is unlikely that any efficient algebraic com-
putation scheme for our tasks could dispense with this operation. (Try to imagine such a scheme, e.g., for
polynomial gcd.) This informal argument suggests that improvement of our bounds by the factor m(n)/n
is unlikely. On the other hand, our basic operation can be viewed as multiplication of polynomials with
bounded integer coefficients, so the binary segmentation technique of Fischer and Paterson 1974 (cf. Bini
and Pan [BP94, Section 3.9]) could yield theoretical acceleration by the factor of (log logn) log log log n.
The resulting bit cost bound of O(nµ(n log n)), however, does not seem to be practically attractive unless
n is huge because the overhead constant Css is large, whereas with Cclass and Ck in (1.1) the overall bit
cost bounds become nα for α > 2.5.

2 Definitions and Basic Facts

2.1 Integers, Rationals, Matrices

Definition 2.1. Z is the ring of integers, Zq is the ring of integers modulo q, Q and R are the fields of
rational and real numbers, respectively. For z, q ∈ Z, q > 1, we write zq = z mod q if q divides z − zq and
if −q/2 < zq ≤ q/2. (Clearly, z = zq if −|q|/2 < z ≤ |q|/2.) We write y = ν(y)/δ(y) for two coprimes
ν(y) (numerator) and δ(y) (denominator). M = (mi,j)

k−1,l−1
i,j=0 is a k × l matrix.

Definition 2.2. I is the identity matrix of a proper size, Il is the l × l matrix I. detM and adjM =
((−1)i+jdi,j)

k−1,k−1
i,j=0 denote the determinant and adjoint ( adjugate ) of a k×k matrix M = (mi,j)

k−1,k−1
i,j=0 ,
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respectively, where di,j is the determinant of the submatrix Mi,j, obtained by deleting the i-th row and
j-th column of M . MT is the transpose of M .

Definition 2.3. |M | is the column norm of M , |M | = ||M ||1 = maxj

∑
i |mi,j | for M = (mi,j). |v| is

the �1-norm
∑

i |vi| of a vector v = (vi)i.

The next well known estimate is an overestimate on the average, according to [ABM99].

Theorem 2.4. | detM | ≤ |M |k, |adjM | ≤ k|M |k−1 for a k × k matrix M .

Definition 2.5. vS ≤ 2n2−n and iS arithmetic operations are sufficient to multiply a given n×n matrix
S by a vector and to invert it, respectively.

Definition 2.6. dk = dk(M), the k-th determinantal divisor of M , is the greatest common divisor (gcd)
of all k × k minors (subdeterminants) of a matrix M ∈ Zn×n, k = 1, . . . , n. We write s0 = d0 = 1 and
define the k-th Smith invariant factor of M as sk = sk(M) = dk/dk−1 for k = 1, . . . , n.

We have s1, . . . , sn ∈ Z and | detM | = s1 · · · sn, so (cf. Theorem 2.4) we have

sn ≤ | det M | ≤ |M |n. (2.1)

2.2 The Bit-Complexity of Rational Number Reconstruction

Hereafter, ρ(q) denotes the bit-operation cost of modular rational roundoff, that is, of recovering a rational
number x/y from three integers k, q, and r = (x/y) mod q provided q and y are coprime, x and y are
coprime, k is an integer, 1 ≤ k ≤ q, |x| < k, and 0 < y ≤ q/k. ( See [GG99] on conditions of existence of the
number x/y. ) If in addition 2|x| < k, then the pair (x, y) is unique [GG99]. Clearly, x = |r|, y = 1, ρ(q) = 0
if k > 2|r|.

Likewise, ρ̄(δ) denotes the bit operation cost of numerical rational roundoff, that is, of the recovery
of a unique rational number x/y from its approximation ν/δ and a positive integer k, provided that
1 ≤ y ≤ k, |x| < y, x and y are coprime, and |x/y − ν/δ| < 1/(2k2) for fixed ν, δ and k.

Both of the recovery problems can be solved by applying the extended Euclidean algorithm to the
input pair r0, r1 being q, r or ν, δ, respectively, and by stopping for the smallest positive i such that
ri < k in the computed remainder sequence, r0, r1, r2, . . . [GG99], Zippel [Z93]. The classical Euclidean
algorithm supports the bit cost bounds ρ(q) ≤ cd2, ρ̄(q̄) ≤ c̄δ̄2, the algorithm in [PW02] yields

ρ(q) ≤ Cµ(d) log d, ρ̄(δ) ≤ Cµ(d̄) log d̄, (2.2)

where µ(d) is in (1.1), d = log q, d̄ = log δ, c < C, c̄ < C̄.

2.3 Toeplitz and Hankel Matrices

Definition 2.7. A matrix T = (ti,j) is a Toeplitz matrix if ti,j = ti+1,j+1 for every pair of its entries
ti,j and ti+1,j+1. Z(v) is the lower triangular Toeplitz matrix defined by its first column v. H = (hi,j)
is a Hankel matrix if hi,j = hi−1,j+1 for every pair of its entries hi,j and hi−1,j+1. The unit Hankel
(reflection) matrix J = (jg,h), jg,n−1−g = 1, for g = 0, . . . , n− 1, jg,h = 0 for h + g �= n− 1, reverses any
vector v = (vi)n−1

i=0 , that is, Jv = (vn−i−1)n−1
i=0 , J2 = I.

For any Toeplitz matrix T , there exist nonunique pairs (Z(w), Z(x)) such that T = Z(w) + ZT (x).
Furthermore, TJ and JT are Hankel matrices if T is a Toeplitz matrix, and HJ and JH are Toeplitz
matrices if H is a Hankel matrix. Therefore, the problems of solving Toeplitz and Hankel linear systems
of equations are immediately reduced to each other. We only specify the Toeplitz case.

The next well known theorem (cf., e.g., [P01, Chapter 2]) expresses the Toeplitz inverse via its products
with two fixed vectors.

Theorem 2.8. Let T = (ti−j)n−1
i,j=0 be an n × n nonsingular Toeplitz matrix, let t−n be any scalar

(e.g., t−n = 0), and write pn = −1, t = (ti−n)n−1
i=0 ,p = (pi)n−1

i=0 = T−1t,q = (pn−i)n−1
i=0 ,v =

T−1(1, 0, . . . , 0)T ,u = ZJv. Then T−1 = Z(p)ZT (u) − Z(v)ZT (q).
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Hereafter the pair of the above vectors p = p(t−n) (for a fixed t−n) and v is called a generator for
T−1. Theorem 2.8 reduces n × n Toeplitz inversion to solving two fixed Toeplitz linear systems (each of
n equations) and to multiplication of four triangular Toeplitz matrices by vectors.

Effective computations with Toeplitz matrices rely on fast multiplication of a Toeplitz matrix and its
inverse by a vector. Here are the arithmetic cost bounds.

Theorem 2.9. Given an m × n Toeplitz matrix T , its multiplication by a vector is a subproblem of
multiplication of two polynomials of degrees m + n − 2 and n − 1, whose coefficients are given by the
entries of the input matrix and vector, respectively. If T is triangular and m = n, then both of these
polynomials have degrees of at most n − 1.

Corollary 2.10. An n×n Toeplitz matrix T can be multiplied by a vector in 2m(n) arithmetic operations
for m(n) in (1.2); the bound decreases to m(n) if T is a triangular matrix. 4m(n)+n arithmetic operations
suffice to multiply T−1 by a vector provided that T is nonsingular and is given with its generator, that is,
with the vectors p and v in Theorem 2.8.

3 Hensel’s Lifting for General and Toeplitz/Hankel Linear Systems

In h steps of the next algorithm, p-adic expansion modulo ph of the solution of a linear system Mx = b
is computed by performing vM + vM−1 lower precision arithmetic operations per step (see Definition 2.5,
Theorems 3.2 and 3.4, and Corollary 3.3).

Algorithm 3.1. Hensel’s lifting for a linear system [MC79], [D82] (see Example 7.1).
INPUT: M ∈ Zn×n, an integer p coprime with detM,b ∈ Zn, an integer h > 1, and Q = M−1 mod p.
OUTPUT: x(h) = M−1b mod ph.
INITIALIZE: r(0) = b.
COMPUTATIONS: for i = 0, 1, . . . , h − 1, compute

u(i) = Qr(i) mod p, r(i+1) = (r(i) − Mu(i))/p.

Output x(h) =
∑h−1

i=0 u(i)pi.

Theorem 3.2. [D82].
a) r(i) ∈ Zn for all i;
b) M

∑j−1
i=0 u(i)pi = b mod pj , j = 1, 2, . . . , h;

c) r(i) = (r(i)
j )n−1

j=0 , |r(i)
j | ≤ nγp/(2p− 2) for all i and j if M = (mij)i,j ,b = (bj)j for all i and j, and

γ = maxi,j max{p, |mi,j |, |bj|}.
Corollary 3.3. Algorithm 3.1 uses O((vMµ(log(nγ))+vQµ(log p))h) bit operations for µ(d) in (1.1) and
vS of Definition 2.5, to output the vector x(h) in p-adic form.

Let us next specify the integer parameters h and p and the bit cost of the recovery of the rational
solution from its truncated p-adic expansion.

Theorem 3.4. It is sufficient to choose h = �2n logp(γn)� in Algorithm 3.1 and to perform O(nρ(ph))
bit operations to recover a unique solution x = M−1b to the linear system Mx = b from the vector

x(h) =
h−1∑
i=0

u(i)pi = x mod ph.

Proof. According to Section 2.2, we may uniquely recover the pair of coprimes νj = ν(xj) and δj = δ(xj)
for a rational component xj = νj/δj of the vector x = M−1b if ph ≥ q = 2n|M |2n−1 > |νj |δj and
2 ≤ 2δj < k = n|M |n−1 (see Theorem 2.4). So, every component xj can be recovered from xj mod ph if
ph > 2n|M |2n−1 ≥ 2n(γn)2n−1, that is, if h > logp(2n) + (2n − 1) logp(γn) > 2n logp(γn) for n > 1. ��

The following simple theorem is the basis for faster randomized recovery.

Theorem 3.5. For a nonsingular matrix M ∈ Zn×n and its leading Smith’s invariant factor sn =
sn(M), we have snM−1 ∈ Zn×n.
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In Section 4, based on a nontrivial algorithm for computing sn, we prove the next theorem.

Theorem 3.6. For a nonsingular matrix M ∈ Zn×n such that vM ≥ n, γ in Theorem 3.2, and a
positive ε < 1, it is sufficient to generate a random prime p in the range (a, na] (for a = (Cn/ε) log |M |
and a constant C) and K random vectors b(k), c(k) ∈ Zn

m (for k = 1, 2, . . . , K, K = O(log(1/ε)), and
m = max{

⌈√
n log |M |

⌉
, 4000}), that is, a total of O((n log(n log |M |)) log(1/ε)) random bits, and in

addition to perform iMµ(log p)+O((vM−1µ(log p)+vMµ(log γ))n logp γ+ρ(|M |n)) log(1/ε)) bit operations
(for µ(h) in (1.1), ρ(q) in (2.2)) in order to compute a positive s∗n dividing sn = sn(M) and such that

Probability(s∗n = sn) ≥ 1 − ε.

Let us next specify the cost estimates in terms of n, |M |, and ε , for general and Toeplitz matrices. For
a non-singular n × n matrix M , we have iM = O(n3), vM ≤ 2n2 − n, vM−1 ≤ 2n2 − n. If M is a Toeplitz
matrix, we have iM = O(m(n) log n), vM = O(m(n)), vM−1 = O(m(n)), provided M−1 is given with
its generator (see Corollary 2.10). Substituting these bounds, we observe that the lifting cost dominates
the cost of inversion modulo p and the recovery cost for both general and Toeplitz matrices M . So we
specialize Theorem 3.6 as follows.

Corollary 3.7. Let M ∈ Zn×n, detM �= 0, |M | ≥ n, and 0 < ε < 1. Then a divisor s∗n
of the leading Smith factor sn such that s∗n = sn with a probability of at least 1 − ε can be
computed by generating O((n log(n log |M |)) log(1/ε)) random bits and in addition performing α =
O((n3µ(log γ) logp γ) log(1/ε)) bit operations for p = O((n2/ε) log |M |), µ(h) in (1.1), and γ in Theorem
3.2. For a Toeplitz matrix M the bit operation cost is bounded by β = O((n logp γ)m(n)µ(log γ) log (1/ε))
for m(n) in (1.2). If logp γ = O(1) and 1/ε = O(1), then α = O(n3µ(log n)), β = O(m(n)nµ(log n)).

Now, having sn (bounded in (2.1)) and assuming for simplicity that

log |b| ≤ n log |M |, (3.1)

we compute the vectors x mod ph (by applying Algorithm 3.1 for the same prime p used in the compu-
tation of sn) and then z = snx = (snx) mod ph ∈ Zn. The pair sn, z defines x = z/sn ∈ Qn. The nearly
optimal overall bit cost of the solution of a linear system Mx = b is shown in the next theorem. It is
dominated by the estimates in Theorem 3.6 and Corollary 3.7.

Theorem 3.8. Given a nonsingular matrix M ∈ Zn×n, a vector b ∈ Zn satisfying (3.1), and a positive
ε, the bit cost bounds of Theorem 3.6 and Corollary 3.7 apply to the solution of the linear system Mx = b.
The solution may have an error with a probability of at most ε. The bit operation cost bound covers the
cost of verifying correctness of the computed solution x.

4 Computation of the leading Smith factor

To support Theorem 3.6 for ε = 1/2, we modify the algorithm Largest Invariant Factor in [EGV00,
Section 2] by changing its parameters m and t

(k)
n . ( We write m instead of M in [EGV00] and then M

instead of A in [EGV00].) As in [EGV00], the extension to any fixed ε, 0 < ε < 1, is by increasing the
parameter K by the factor of log(1/ε).

Algorithm 4.1. The leading Smith Factor.
INPUT: A nonsingular matrix M ∈ Zn×n.
OUTPUT: A positive integer s∗n dividing sn.
INITIALIZATION: m, p,b(k) and c(k) are as in the Theorem 3.6 for K = 2, and h = 1 +⌈

2 logp(2|M |2n−1m)
⌉

such that ph > 2|M |2n−1m.
COMPUTATION: For k = 1, 2, first compute in Zq the vectors x(k) and scalars y(k), then compute the

integers t(k) and s∗n as follows:
1. x(k) = (x(k)

i )n−1
i=0 = M−1b(k) ∈ Zn

q ,

2. y(k) = c(k)T x(k) =
∑n−1

i=0 c
(k)
i x

(k)
i ∈ Zq,

3. t(k) = δ(y(k)), so 1 ≤ t(k) ≤ |M |n,
4. s∗n = lcm (t(1), t(2)).
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Clearly, s∗n divides sn. To prove that s∗n = sn with a probability of at least 1/2, we combine the
proof of Theorem 2 in [EGV00] with the next lemma, which for every k validates using the denominator
t(k) of a linear combination of x

(k)
0 , . . . , x

(k)
n−1 instead of the lcm of all denominators δ(x(k)

0 ), . . . , δ(x(k)
n−1).

Hereafter, write l = ord p(z) if p, z ∈ Z, p > 1, pl divides z, but pl+1 does not.

Lemma 4.2. Fix k = 1 or k = 2 and write δ(k) = lcm (δ(x(k)
0 ), . . . , δ(x(k)

n−1)), so t(k) divides δ(k); δ(k)

divides sn. Then for any prime p̄,
a) Probability(ord p̄(sn) �= ord p̄(δ(k))) ≤ max{1/m, 1/p̄};
b) Probability(ord p̄(t(k)) �= ord p̄(δ(k))) ≤ max{1/m, 1/p̄}.
Proof of Lemma 4.2. Part a) follows from Theorem 2 in [ABM99], but here is a simpler proof. We

have x
(k)
i =

∑
j(−1)i+jdi,jb

(k)
j / detM, sn = |(det M)/d|, d = gcd(di,j)i,j for di,j in Definition 2.2 and

b(k) = (b(k)
j )n

j=1. Write hi,j = ord p̄(di,j), h = ord p̄(d) = mini,j di,j . We have h = ord p̄(du,v) for some
u, v; w.l.o.g., let u = v = 0. Furthermore, write d̄i,j = di,j/d for all i and j. Then it follows that
snx

(k)
0 = d̄0,0b

(k)
0 + r, where r =

∑n−1
j=1 (−1)j ¯d0,jb

(k)
j ∈ Z. Since ord p̄( ¯d0,0) = 0 and b

(k)
0 is randomly

chosen in Zm, part a) of the lemma follows.
To prove part b) first write xi = νi/δi, y =

∑n−1
i=0 ciνi/δi, σi = δ/δi = (lcm (δi)i)/δi, where νi and δi

are coprime, for all i. (We drop the superscripts k of x
(k)
i , y

(k)
i , c

(k)
i , δ(k), t(k), δ

(k)
i , and ν

(k)
i , to simplify

the notation.) Clearly, mini{ord p̄(σi)} = 0 for any prime p̄. W.l.o.g., let ord p̄(σ0) = 0. If p̄ divides ν0,
then ord p̄(δ0) = 0, so 0 = ord p̄(δ) ≥ ord p̄(t) ≥ 0, that is, ord p̄(δ) = ord p̄(t) = 0. It remains to cover the
case where

ord p̄(ν0) = ord p̄(σ0) = 0. (4.1)

Observe that y =
∑n−1

i=0 ciνiσi/δi, so ord p̄(t) = ord p̄(δ) if ord p̄(
∑n−1

i=0 ciνiσi) = 0. Under (4.1), the latter
equation holds with a probability of at least max{1/m, 1/p̄} for c0 randomly chosen in Zm. ��

To prove Theorem 3.6 it remains to estimate from above the number of bit operations used in Algo-
rithm 4.1. We have the following upper bounds: iMµ(log p) for computing M−1 mod p at stage 1 (once
for all k); O((vM−1µ(log p) + vMµ(log γ))h), where h = O(n logp γ), in Hensel’s p-adic lifting applied for
each fixed k to compute M−1b(k) mod ph (also at stage 1), and O(µ(n log |M |) log(n log |M |)) for each k
at stage 3. The cost of lifting dominates the cost at stages 2 and 4 (recall our assumption that vM ≥ n).
Summarizing, we complete the proof of Theorem 3.6.

5 Computations in Binary Form

Performing Algorithms 3.1 and 4.1 modulo a fixed (rather than random) prime or prime power p leads to
substantial benefits in practical implementation. The most desired choice is p = 2g, which means binary
representation. We wish to have g of the word size, and we achieve this on the average, but not for the
worst case input because of the singularity problems.

Algorithms 3.1 and 4.1 can be applied with p = 2 if the Smith leading factor sn = sn(M) is odd. The
next algorithm extends the application to any sn.

Algorithm 5.1. Linear solver in binary form via small rank perturbation (see Examples 7.2 and 7.3).
INPUT: A nonsingular matrix M ∈ Zn×n and a vector b ∈ Zn.
OUTPUT: Scalar sn = sn(M) and vector y = snM−1b, both in the binary form.
COMPUTATIONS:
1. Recursively generate 2� random Toeplitz matrices Uk, V T

k ∈ Zn×k
q for a fixed q in nO(1), k =

1, 2, . . . , l, and apply Algorithm 4.1 to compute Smith’s leading invariant factors sn,k = sn(Mk) for the
matrices Mk = M − UkVk, k = 0, 1, . . . , l. Stop for the smallest l for which sn,l = sn(Ml) is odd. (This l
can be computed with a binary search.)

2) Apply the algorithms of the preceding sections, for p = 2 and for a fixed sufficiently small positive
h, to compute the n × l matrix M−1

l Ul = Wl and the vectors u = M−1
l b,v = M−1

l Ul(Il + VlWl)−1Vlu,
and finally x = u−v = M−1b = (M−1

l −M−1
l Ul(Il + VlM

−1
l Ul)−1VlM

−1
l )b in the binary (2-adic) form.

The latter matrix equation relies on the (Sherman–Morrison–)Woodbury formula for M−1 = (Ml +
UV )−1 (Golub and Van Loan [GL96]). We also need Lemma 3.2 and Theorem 3.13 in [EGV00] by
which with a high probability all matrices Mk are nonsingular and sn−k(M) = gcd(sn(M), sn(Mk)) for
k = 1, . . . , l. The nonsingularity property, together with the (Sherman–Morrison–)Woodbury formula,
implies correctness of the algorithm.
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We now assume a random integer input matrix M , for which equations sn−k = 1 are likely to hold for
all but O(log n) smallest values of k [EGV00], and deduce that l = O(log n) from the above expression
of sn−k(M) as the gcd.

To estimate the arithmetic cost of the computation, observe that the matrices Mk have displacement
rank 3, so the definition of a generator of the inverse and Corollary 2.10 are extended (see the definition
of the displacement rank and proofs in [P01]) to yield that vMk

≤ 4m(n) + n and vM−1
k

≤ 6m(n) + 2n

for vS in Definition 2.5.
Now, reexamination of Algorithm 4.1 (with Uk replaced by UkJ or JUk in the Hankel-like case) leads

us to the following estimates.

Theorem 5.2. For random average (general or Toeplitz) integer matrix M , the asymptotic cost bounds
of Corollary 3.7 (up to the factor of log log n) apply to the bit cost of performing Algorithm 5.1, except
that O(n) additional random entries of the matrices Uk, Vk, k = 1, . . . , l, for l = O(1), must be generated
in Zq, q ∈ nO(1). The same bounds cover the bit cost of computing all Smith invariant factors of the
average M and, consequently, detM .

Let us extend Hensel’s lifting by relaxing the assumption that the basic prime p is coprime with detM .
h steps of the generalized version of Hensel’s lifting below lift the input solution vector modulo pg to

output the solution modulo pg+kh where g, h, k and p−1 are four positive integers such that sn(M)/pg is
an integer coprime with p. The latter condition holds with a high probability for random integer matrix
M and reasonably small nonnegative g. Generalized lifting combined with Algorithm 5.1 can be applied
if sn−l(M)/pg is an integer coprime with p. This condition is very likely to hold for random M and
relatively small g and l. The generalized lifting is still performed with a quite low precision of the order
of (k + g) log p bits.

Algorithm 5.3. Lifting without coprimality (cf. Examples 7.2 and 7.3).
INPUT: M ∈ Zn×n, a prime p, the integer g = ord p(sn(M)), two positive integers h and k, and a

matrix Q ∈ Zn×n such that MQ = pgI mod pg+k.
OUTPUT: x(h) ∈ Zn such that x(h) = pgM−1b mod pg+kh.
INITIALIZE: r(0) = b.
COMPUTATIONS: for i = 0, 1, . . . , h − 1,
compute u(i) = Qr(i) mod pg+k, r(i+1) = (pgr(i) − Mu(i))/pg+k.
Output x(h) =

∑h−1
i=0 u(i)pki.

For g = 0 and k = 1, Algorithm 5.3 turns into Algorithm 3.1.

Theorem 5.4. (Cf. Theorem 3.2.)
a) r(i+1) ∈ Zn;
b) Mx(h) = pgb mod pg+kh;
c) all components r

(i)
j of all vectors r(i) satisfy |r(i)

j | ≤ nγpk/(2pk − 2) for γ in Theorem 3.2.

Proof. a) pgr(i)−Mu(i) = (pgI−MQ)r(i) mod pg+k, and the claim follows because MQ = pgI mod pg+k.

b) Mx(h) =
∑h−1

i=0 Mu(i)pki =
∑h−1

i=0 (pgr(i) − pg+kr(i+1))pki = pgb− pg+khr(h) = pgb mod pg+kh.

c) By definition, all components u
(i)
j of all vectors u(i) satisfy 2|u(i)

j | ≤ pk+g, and so pk+g|r(i+1)
j | ≤

pg|r(i)
j | + nγ|u(i)

j | ≤ pg|r(i)
j | + nγpk+g/2. The claim now follows by induction on i.

Corollary 5.5. Algorithm 5.3 outputs x(h) in p-adic form by performing O((vMµ(log(nγ)) +
vQµ(log(pg+k))h) bit operations for µ(d) in (1.1) and vS in Definition 2.5.

For p = 2 the entire algorithm can be performed in binary form. If g = g(M) is larger than the word
length, then we may shift to the matrices Mk = M − UkVk, k = 1, 2, . . ., defined in Algorithm 5.1, and
combine Algorithms 5.1 and 5.3 (see Example 7.3 b)). This solves the problem probabilistically except
for a smaller class of matrices M , for which sn−k(M)/2g is even for large k and g.

The input matrix Q defines the integer g. To compute Q, we may apply the algorithms in the next
section. An alternative way is to apply some fast or superfast algorithm modulo a random prime p in
nO(1) log |M |, keeping computational precision in O(log(n log |M |)). Then the bit cost at this stage is
dominated at the lifting stage. If we fix p = 2 or p = 2g (instead of choosing a random p), then some
complications arise where detM is even, but for the average input matrix M , we handle the problem by
extending the techniques of Algorithms 5.1 and 5.3 (see [Pa]).
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6 Initialization of Hensel’s Lifting with Variable Diagonal and Modular
Continuation

Let us next show two alternative algorithms for computing generator for M−1 mod p given a Toeplitz
matrix M . This task requires the solution of two linear systems with matrix M , and we show how to
solve such a system.

Algorithm 6.1. Initialization of Toeplitz–Hensel’s lifting with variable diagonal (cf. [P00]).
INPUT: M ∈ Zn×n,b ∈ Zn satisfying (3.1), an integer p ≥ 2, and two sufficiently large integers h and

l (specified later on).
OUTPUT: g = maxj(ord p(δ(M−1b)j)) and x(l) = (pgM−1b) mod pl.
INITIALIZE: Compute the matrices M0 = M + plI and Q = p−lI, so QM0 − I = p−lM . Write

z0 = 0, r0 = b.
COMPUTATIONS:
1. Recursively compute the vectors zi+1 − zi = Qri = p−lri, ri+1 = b − M0zi+1 = ri − M0Qri =

−p−lMri, i = 0, 1, . . . , h − 1.
2. Recover z = M−1

0 b from zh by using the rational roundoff algorithm in Section 2.2.
3. Compute g0 = maxj(ord p(δ(M−1

0 b)j)). If g0 < l, output g = g0 and x(l) = (pgM−1
0 b) mod pl.

Otherwise double l and reapply the algorithm.

Stage 1 is the customary residual correction algorithm for iterative improvement of approximation to
z [GL96]. We have

z − zh = M−1
0 (b− M0zh) = M−1

0 rh,

rh = −p−lMrh−1 = (−p−lM)hr0 = (−p−lM)hb.

So |z − zh| ≤ (p−l|M |)h|b|/|M0|.
Let p ≥ 2,

l = 1 + max{1,
⌊
2 logp |M |⌋ ,

⌊
2 logp |b|

⌋} ≥ g. (6.1)

Then |M | < pl/2, |b| < pl/2, |M0| ≥ pl − pl/2 ≥ (pl/2 − 1)pl/2, and

|z − zh| < p−hl/2. (6.2)

Therefore, every iteration step in Stage 1,

zi+1 − zi = p−lri, ri+1 = −p−lMri,

contributes l/2 additional correct p-digits in the p-adic representation of z. Rounding the components
of ri+1 to (say) l leading p-digits may destroy at most a single correct p-digit per component, whereas
the computational precision would stay bounded to O(l log p) bits. This argument is a simplification of
the routine error analysis of the iterative improvement algorithm (see Skeel [S80], Higham [H96]); in our
simplified case Q is in a very special form of p−lI.

Now to ensure correct recovery of z with using rational roundoff, it is sufficient to approximate z by
zh within the error norm less than 1/(n|M0|2n−1). Due to (6.1),(6.2), we achieve this as soon as

phl/2 > n(pl + pl/2)2n−1 ≥ n|M |2n−1,

that is, as soon as
(hl/2) log p ≥ (2n − 1) log(2pl) + log n.

This inequality holds for h ≥ 4n − 2 + (4n − 2 + 2 logn)/ log pl. Therefore, the arithmetic and Boolean
bit cost of performing stage 1 are bounded by

ξ = O(hm(n)) = O(nm(n)), η = ξµ(l log p), (6.3)

respectively. Under (6.1), we express the bit cost in terms of |M | + |b| and n as follows,

η = O(nm(n)µ(log(|M | + |b| + 2))). (6.4)

Let us also express η in terms of n, g and p. If initially l ≤ g, then finally, g ≤ l < 2g, so

η = ξµ(g log p) = O(nm(n)µ(g log p)). (6.5)
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Numerical rational roundoff at Stage 2 requires O(µ(d̄) log d̄) bit operations per an entry of z for d̄ =
n log |M0| = n log |M +plI| = O(nl log p). To decrease the overall bit cost of the recovery below the lifting
cost, we employ our techniques of Sections 3 and 4 again. That is, we first apply Algorithm 6.1 with
randomization to computing sn = sn(M) probabilistically (by using random vectors b(k) and c(k) as in
Sections 3 and 4), and then all components of the vector snz become integers and are recovered cost-free.
Thus the asymptotic bit cost bounds (6.3)–(6.5) cover the entire cost of performing Algorithm 6.1.

The next algorithm, similar to Algorithm 6.1, first computes M−1
0 mod q for a fixed prime q distinct

from p and then M−1
0 mod qh, M−1

0 b and M−1
0 b mod p. Its analysis is simpler, but for p = 2 this algorithm

requires computations modulo a fixed odd prime q (say q = 3 or q = 5), whereas Algorithm 6.1 performs
all computations with binary numbers.

Algorithm 6.2. Initialization of Toeplitz–Hensel’s lifting with modular continuation.
INPUT: M ∈ Zn×n,b ∈ Zn, satisfying (3.1) and an integer p ≥ 2.
OUTPUT: g = maxj(ord p(δ(M−1b)j)) and (pgM−1b) mod p.
INITIALIZE: Choose an integer q > 1 coprime with p. (Sample choices are given by p, q ∈ {2, 3, 5} or

by p and q being powers of 2, 3, or 5.)
COMPUTATIONS:
1. Compute s = p−1 mod q, t = q−1 mod p, and the matrix M0 = pI + qM , so Q = M−1

0 mod q = sI.
2. Apply Algorithm 3.1 for M and p replaced by M0 and q, respectively, to compute M−1

0 b mod qh.
Choose h sufficiently large and recover M−1

0 b.
3. Compute and output g = maxj(ord pδ((M−1

0 b)j)) and pg(M−1
0 b) mod p = (tpgM−1b) mod p.

Including Algorithm 6.2 as a block in the parallel algorithm in [P00] (with Newton’s lifting replacing
Hensel’s lifting) enables dramatic simplification because most part of [P00] is devoted to fast parallel
computation of the initial matrix M−1 mod p. Furthermore, some complications in [P00] are due to using
the MBA algorithm, which involves many auxiliary Toeplitz-like matrices for a Toeplitz input matrix M ,
whereas Algorithm 6.2 avoids these complications by operating only with M and its inverse.

7 Examples

Example 7.1. M =
(

2 1
3 2

)
,b =

(
3
4

)
, so x =

(
2
−1

)
. By applying Algorithm 3.1 for p = 2, r(0) = b,

we successively compute Q =
(

0 1
1 0

)
,u(0) =

(
0
1

)
, r(1) =

(
1
1

)
,u(1) =

(
1
1

)
, r(2) =

(−1
−2

)
,u(2) =(

0
1

)
, . . .. So, x(3) = 2x mod 8 =

(
0
1

)
+ 2

(
1
1

)
+ 4

(
0
1

)
.

Example 7.2. M =
(

4 1
6 2

)
,b =

(
3
4

)
, so x =

(
1
−1

)
.

a) By applying Algorithm 5.3 for p = 2, g = k = 1, r(0) = b, we successively compute Q =(
0 1
2 0

)
,u(0) =

(
0
2

)
, r(1) =

(
1
1

)
,u(1) =

(
1
2

)
, r(2) =

(−1
−2

)
,u(2) =

(
2
2

)
, . . .. So, x(3) =

2x mod 8 =
(

0
2

)
+ 2

(
1
2

)
+ 4

(
2
2

)
, (Mx(h) − 2b) mod 2h+1 = 0 for h = 1, 2, 3.

b) Alternatively, by observing that s2(M) = 2, s1(M) = 1 and applying Algorithm 5.1 to M1 =

M − U1V1, U1 = V T
1 =

(
1
1

)
, and b =

(
3
4

)
, we reduce computation of x to applying Algo-

rithm 3.1 three times (according to Sherman-Morrison-Woodbury formula), with the right-hand-

side vectors b =
(

3
4

)
, b(1) =

(
1
1

)
, and b(2) = (1/3)

(
1 1
1 1

)
M−1

1

(
3
4

)
, respectively. We have

M1 =
(

3 0
5 1

)
, M−1

1

(
3
4

)
=

(
1
−1

)
, M−1

1

(
1
1

)
=

(
1/3
−2/3

)
, (these vectors can be computed by

applying Algorithm 3.1, we omit the details), so b(2) = 0, M−1
1 b(2) = 0, M−1b = M−1

1 b =
(

1
−1

)
.

Example 7.3. M =
(

32 2
48 4

)
,b =

(
24
32

)
. So, x =

(
1
−4

)
, s2(M) = 32, s1(M) = 2. We may
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a) apply Algorithm 5.3 to M and b for p = 2, g = 5, k = 1 or

b) apply Algorithm 5.1 to M1 = M − U1V1, U1 =
(

1
1

)
, V T

1 =
(

2
2

)
, M1 =

(
30 0
46 2

)
. For solving the

equations M−1
1 b(i), i = 1, 2, 3 (cf. Example 7.2 b)), apply Algorithm 5.3 for p = 2, g = k = 1.
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