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Abstract. In this talk I would like to present the directions of research and some results obtained
by the Moscow team involved in INTAS grant 99-1222 related to the theory of standard bases in
polynomial and differential rings and modules.

The concept of the Gröbner basis introduced by B. Buchberger is a basic one in the constructive
theory of polynomial ideals and is studied in detail by numerous researchers. To introduce this notion
we must endow the set of monomials with an admissible order, e.g., lexicographic, or total degree then
lexicographic, or total degree then inverse lexicographic [6, p. 71]. Then, for any polynomial, we can
define its leading monomial, for any pair of polynomials f, g ∈ K[x1, . . . , xn] we define a relation of
reduction f −→

g
f ′ (an analogue of polynomial remainder), and for any f ∈ K[x1, . . . , xn] and a set

G = {g1, . . . , gk}, gi ∈ K[x1, . . . , xn], i = 1, . . . , k, we define a relation of reduction f
∗−→
G

f ′, and, for

any pair f1, f2 ∈ K[x1, . . . , xn], we can define their S-polynomial S(f1, f2). The exact definitions can be
found in any paper on Gröbner bases, in particular, one can find in [19] a rather long list of definitions
of Gröbner bases; some of them are presented below. Although the Gröbner basis of a polynomial ideal
is not uniquely defined, one can distinguish among all the Gröbner bases of the ideal an autoreduced
Gröbner basis which is defined uniquely up to multiplication of its elements by elements of the field K.
Remember that a set G of polynomials is called autoreduced if, for any f, g ∈ G, no monomial which is
present in f with nonzero coefficient is divisible by the leading monomial of g.

The following conditions on an autoreduced subset A of a polynomial ideal I are each equivalent to
the requirement that A is the autoreduced Gröbner basis of I:

1. the leading monomials of the elements of A generate the set of leading monomials of the elements of
I;

2. the reduction relation ∗−→
A

satisfies the following property: for any f1, f2 ∈ K[x1, . . . , xn] and for

irreducible r1, r2 ∈ K[x1, . . . , xn] such that fi
∗−→
A

ri, i = 1, 2,

f1 − f2 ∈ I ⇐⇒ r1 = r2

(in this case, we say that ∗−→
A

is a canonical simplifier);

3. the reduction relation ∗−→
A

satisfies the following property:

f
∗−→
A

0 ⇐⇒ f ∈ I;

(in this case, we say that ∗−→
A

is a normal simplifier);

4. A is the autoreduced subset of I of minimal rank (we call such a set the characteristic set of the
ideal);

5. A generates I and is any S-polynomial S(g1, g2), g1, g2 ∈ A, is reducible to zero (we call such a set
coherent).

There is a well-known algorithm for constructing the autoreduced Gröbner basis of an ideal specified
by an arbitrary finite system of generators I = (g1, . . . , gk). This algorithm is called the completion
algorithm or Buchberger’s algorithm. Its simplest form is the following:
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Completion algorithm

input: a set of polynomials G = {g1, . . . , gl}.
output: the Gröbner basis G = {g1, . . . , gk} of the ideal (G).

begin any pair gi, gj ∈ G
reduce the S-polynomial S(gi, gj) (compute the normal form NF (S(gi, gj)))
if NF (S(gi, gj)) �= 0 then

G = G ∪ {NF (S(gi, gj))}
autoreduce G
end

Note that there are several “degrees of freedom” in this algorithm that can be employed for making it
more efficient. First, certain criteria can be applied for eliminating some pairs (gi, gj) from consideration,
in particular, “the triangle rule”. Second, different strategies can be used for choosing the current pair
(gi, gj) and different normal form algorithms can be applied. The autoreduction procedure can be run at
different stages.

Moreover, in some cases it is expedient to find the Gröbner basis with respect to an ordering (total
degree then inverse lexicographic) and to use this basis as the initial data for determining the Gröbner
basis with respect to the lexicographic ordering (the Gröbner walk procedure).

For a polynomial ideal I, property (1) of Gröbner bases allows one to construct the so-called G-
representation for any element f ∈ I

f =
∑

j

mjgi(j),

where mj are monomials, gi = gi(j) ∈ G, G is the Gröbner basis of I, and lm(mjgi(j)) > lm(mj+1gi(j+1))
for any j (lm stands for “leading monomial”). Note that this property can be used as another equiv-
alent definition of Gröbner bases. This representation is in general not unique. To obtain a unique G-
representation, we must specify a one-value mapping from the set of all leading monomials of polynomials
from the ideal I onto the set of leading monomials of polynomials from the set G (in [18], [15] such rep-
resentations are called the normal G-representations).

A very important class of Gröbner bases, for which the uniqueness of a special form of G-representation
holds, is the class of involutive bases. The theory of involutive bases was developed by Zharkov, Blinkov,
Gerdt, Apel [25], [8], [1]. The relations between the Gröbner and involutive bases are studied by different
researchers (see, e.g., [2]). To define an involutive basis of a polynomial ideal, we must specify, along with
an admissible ordering of monomials, an involutive division on the monomials. The most widely used
involutive divisions are called the Janet division, the Pommaret division, and the Thomas division. An
axiomatic definition of involutive division is given, e.g., in [8]. It seems to be rather general, and “good”
involutive divisions should satisfy some additional conditions. Some such conditions are presented in [8]
and in [1]. A. Semenov compared admissible involutive divisions introduced by J. Apel [1] with continuous
involutive divisions considered in [8] and introduced a property of strong continuity [23]. Similarly to the
case of Gröbner bases, the problem of passing from one involutive basis to another one can be considered.
An algorithm for its solution is proposed by Golubitsky [11].

The situation in differential algebra is much more complicated. For describing differential equations by
algebraic tools, two kinds of algebraic objects are used. Linear partial differential equations are described
in terms of modules over the rings of differential operators. The theory of Gröbner bases can be extended
to submodules of free differential modules almost completely.

The ring of differential polynomials used for investigating algebraic differential equations is a much
more complicated object. There are several approaches to constructing the theory of differential Gröbner
bases [4], [20], [17].

F. Ollivier [20] endows the set of differential monomials with an admissible order and defines derivation
operations on the set of differential monomials (note that a derivation operation applied to a differential
monomial in the ring of differential polynomials gives a differential polynomial). Then, he defines a
standard basis of a differential ideal as a set satisfying property 1 for differential ideals. The main deficiency
of this definition is that, as a rule, such a basis is infinite. For example, the standard basis in this sense
for the differential ideal [y2] in the ring of ordinary differential polynomials C{y} is infinite.
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The existence of infinitely generated differential polynomial ideals (which have no finite systems
of generators) prevents us from attempts to construct a theory of (finite) differential Gröbner bases
applicable for all differential ideals. First of all, we must restrict the set of ideals under consideration. To
satisfy the ascending chain condition, we restrict ourselves by consideration of perfect (radical) differential
ideals. However, it is unbelievable that one can construct a constructive theory of perfect differential ideals.

Considering the ring of differential polynomials R = F{y1, . . . , yn} over a differential field F with a
set of derivation operators ∆ = {δ1, . . . , δm} we introduce an admissible order on the set of derivatives
Θ = {δi1

1 . . . δim
m yj}, where i1, . . . , im ≥ 0, 1 ≤ j ≤ n. For any differential polynomial f ∈ R, the highest

derivative θ ∈ Θ present in f is called the leader of f (we write θ = Lf ). By Sf = ∂f/∂Lf we denote the
separant of f and by If we denote the initial of f (the leading coefficient of f considered as a polynomial
in Lf ), and we denote Hf = SfIf . The relation of differential reduction f −→

g
f1 allows one to eliminate

form f the proper derivatives of Lg as well as the powers of Lg higher than or equal to those present in
g. However, in this process, we should multiply f by some powers of Sg and Ig; hence, we cannot obtain
in this way a relation satisfying property (2).

The main tool used for the investigation of differential ideals is the theory of autoreduced (character-
istic) sets developed by J. Ritt [21] and E. Kolchin [13]. It is known that, for a prime differential ideal I,
if an autoreduced set A satisfies property (4), then properties (3) and (5) are also fulfilled. The problem
is how to construct the primary decomposition of a perfect differential ideal I = {A}? This problem is
very hard.

For example, consider a perfect differential ideal I = {A} generated (as a perfect differential ideal)
by one irreducible ordinary differential polynomial A = {f}. The primary decomposition of I consists
in this case of a general component, for which A is the minimal autoreduced set, and, possibly, singular
components. As a rule, f does not generate the general component as the differential ideal {A}. M.V. Kon-
dratieva proposed a partial method for determining the generators of this prime differential ideal and for
constructing the primary decomposition [14]. She also obtained the following sufficient condition for the
perfect differential ideal I = {A} to be prime.

Theorem 1. Let f = y(k)y(s) +y(k+1) +y(k) ∗g(y, y′, . . . y(s+1)), where s > k+1. Then, [f ] : H∞
f = {f}.

There are several generalizations of the Buchberger algorithm to the differential case which are called
by different authors the Ritt–Kolchin algorithms. Remember that Ritt and Kolchin considered primary
decompositions of perfect differential ideals. It is very difficult to develop an algorithm for constructing
this decomposition. Thus, the Ritt–Kolchin algorithms give only a partial solution of the problem.

It was noted above that the solution is complete for linear partial differential systems. Constructing
the theory of differential Gröbner bases, E. Mansfield [17] considers autoreduced differential systems

satisfying some additional conditions, namely, CNI (Coherent with Null Intersection), SPR (S(G) is
Pseudo-Reduced), and GAC (G is Almost Complete).

Other generalizations of the Buchberger algorithm deal with some classes of differential ideals different
from the prime ones. The most fruitful algorithm used in constructive differential algebra is proposed
by Boulier, Lazard, Ollivier, and Petitot [3], and is known as the Rosenfeld–Gröbner algorithm. This
algorithm represents a perfect differential ideal as an intersection of regular differential ideals. In contrast
to the primary decomposition, this representation depends on the ranking of differential indeterminates.
In a series of numerical experiments, the systems of Euler equations in two and three space variables
were considered for different rankings [16]. It was found out that not only the computation time and
the memory used depend on the ranking, but also the number of components is different for different
rankings. For some rankings, we did not succeed in determining the regular representation. The most
interesting fact is that, for all cases where we did not succeed in determining the regular representation
for three space variables, we did not also succeed in determining such a representation for two space
variables.

Another class of differential ideal was introduced by E. Hubert [12]. It is known that, for prime
differential ideals, the conditions 3 and 4 are equivalent. Hubert proposed to consider the differential ideals
for which these conditions are equivalent. She called such ideals characterizable. Note that the definition
of a characterizable ideal depends on the ranking of differential polynomials (there are differential ideal
characterizable for one ranking and noncharacterizable for another one). In particular, it is important
to know how to pass from a characteristic set with respect to a ranking of the differential polynomials
to the characteristic set with respect to another ranking. A method for solving this problem is proposed
by O. Golubitsky [10]. This is a generalization of the algorithm for passing from the Gröbner basis of a
polynomial ideal with respect to an admissible ordering of monomials to the Gröbner basis of the same
ideal with respect to another ordering [5].
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Although the involutive methods came into computer algebra from the theory of partial differential
equations, the theory of involutive bases is well developed only for polynomial ideals. Only the first steps
are made in the direction of its generalization to differential algebra [9, 7].
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