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Abstract. Conditions for existence of solutions bounded on R for a linear and nonlinear ordinary
differential system are obtained under the assumption that the operator L defined by the correspond-
ing unperturbed linearized homogeneous system is of Fredholm type. If L is a Fredholm operator
with index zero or L is a Fredholm operator and, in addition, has an exponential trichotomy on R,
we obtain the well-known results.

1 Introduction

Let us denote by BC(J) the Banach space of continuous vector functions x : J → Rn bounded on
an interval J with norm ‖x‖ = supt∈J |x(t)|, and by BC1(J) the Banach space of vector functions
x : J → Rn continuously differentiable on J and bounded together with their derivative and with norm
‖x‖ = supt∈J |x(t)|+ supt∈J |ẋ(t)|; J will usually denote one of intervals R = (−∞, +∞), R− = (−∞, 0]
or R+ = [0, +∞). Consider the system

ẋ = A(t)x (1)

with an n × n matrix A(t) whose components are real functions, continuous and bounded on the whole
line R = (−∞, +∞): A(·) ∈ BC(R). It is known [1] that the system (1) has an exponential-dichotomy
(e-dichotomy) on an interval J if there exists a projector P (P 2 = P ) and constants K ≥ 1 and α > 0
such that

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s), t ≥ s

‖X(t)(I − P )X−1(s)‖ ≤ Ke−α(s−t), s ≥ t

for all t, s ∈ J ; X(t) is the normal (X(0) = I) fundamental matrix of system (1).
Consider the problem about solutions x : R → Rn, x(·) ∈ BC1(R) bounded on R of the inhomogeneous
system

ẋ = A(t)x + f(t), f(·) ∈ BC(R) (2)

In the nonresonance case, where the homogeneous system (1) has an e-dichotomy on R, and so system
(1) has only trivial solution bounded on R while the inhomogeneous system (2) has a unique solution
bounded on R for each f(·) ∈ BC(R). The resonance case, where system (1) has nontrivial solutions
bounded on R, was investigated by K. Palmer, which gave sufficient [2] and necessary [3] conditions for
the Fredholm property of the considered problem. Let us define more exactly some results of well-known
Palmer’s lemma [2, p. 245], which will be used below for the investigation of weakly perturbed nonlinear
systems.

2 Linear Systems

Let the system (1) have an e-dichotomy on R+ and R− with projectors P and Q, respectively. The general
solution of (2) bounded on both half-lines R+ and R− is given by

x(t, ξ) = X(t)




Pξ +
∫ t

0 PX−1(s)f(s)ds − ∫ ∞
t (I − P )X−1(s)f(s)ds, t ≥ 0;

(I − Q)ξ +
∫ t

−∞ QX−1(s)f(s)ds − ∫ 0

t
(I − Q)X−1(s)f(s)ds, t ≤ 0.

(3)

Solution (3) will be bounded on R only if the vector constant ξ ∈ Rn satisfies the condition

Pξ −
∫ ∞

0

(I − P )X−1(s)f(s)ds = (I − Q)ξ +
∫ 0

−∞
QX−1(s)f(s)ds
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so that the constant ξ ∈ Rn is determined from the algebraic system

[P − (I − Q)]ξ =
∫ 0

−∞
QX−1(s)f(s)ds +

∫ ∞

0

(I − P )X−1(s)f(s)ds . (4)

Let D = P − (I −Q) be an n×n matrix, and let D+ be an n×n matrix, which is a pseudo-inverse after

Moore–Penrose to D [5, 6]. We will denote by PN(D) and PN(D∗) the n × n matrices - orthoprojectors
(P 2

N(D) = PN(D) = P ∗
N(D); P 2

N(D∗) = PN(D∗) = P ∗
N(D∗)) projecting Rn onto the kernel kerD = N(D)

and cokernel kerD∗ = N(D∗) of the matrix D, where the symbol ∗ means the operation of transposition.

System (2) has the solutions bounded on R only if the algebraic system (4) is solvable over ξ ∈ Rn.
For this it is necessary and sufficient that the right-hand side of system (4) belongs to the orthogonal
complement N⊥(D∗) = R(D) to subspace N(D∗). It follows that

PN(D∗)

{∫ 0

−∞
QX−1(s)f(s)ds +

∫ ∞

0

(I − P )X−1(s)f(s)ds

}
= 0. (5)

Thus, the general solution of system (2) bounded on R has the form (3) with constant ξ ∈ Rn, which is
determined from (4) as follows:

ξ = D+

{∫ 0

−∞
QX−1(s)f(s)ds +

∫ ∞

0

(I − P )X−1(s)f(s)ds

}
+ PN(D)c, ∀c ∈ Rn. (6)

In other words only if the condition (5) is satisfied, the general solution of the system (2) bounded on
the whole line R has the form

x(t, c) = X(t)




PPN(D)c +
∫ t

0
PX−1(s)f(s)ds − ∫ ∞

t
(I − P )X−1(s)f(s)ds

+PD+{∫ 0

−∞ QX−1(s)f(s)ds +
∫ ∞
0

(I − P )X−1(s)f(s)ds}, t ≥ 0;

(I − Q)PN(D)c +
∫ t

−∞ QX−1(s)f(s)ds − ∫ 0

t
(I − Q)X−1(s)f(s)ds

+(I − Q)D+{∫ 0

−∞ QX−1(s)f(s)ds +
∫ ∞
0

(I − P )X−1(s)f(s)ds}, t ≤ 0.

Since DPN(D) = 0 [6, p. 90], then PPN(D) = (I − Q)PN(D). Let dim N(L) = r, then

r = rang [PPN(D)] = rang [(I − Q)PN(D)]

and vice versa. Let
[PPN(D)]r = [(I − Q)PN(D)]r

be an n × r matrix whose columns represent a complete set of r linearly independent columns of matrix
PPN(D) = (I − Q)PN(D). Then

Xr(t) = X(t)[PPN(D)]r = X(t)[(I − Q)PN(D)]r

is an n × r matrix whose columns represent a complete set of r linearly independent solutions of system
(2) bounded on R .

Since PN(D∗)D = 0 [6, p. 90], we have PN(D∗)Q = PN(D∗)(I − P ). Therefore, condition (5) is
equivalent to one of the conditions

PN(D∗)

∫ ∞

−∞
QX−1(s)f(s)ds = 0, (7)

PN(D∗)

∫ ∞

−∞
(I − P )X−1(s)f(s)ds = 0.
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Let
d = rang [PN(D∗)(I − P )] = rang [PN(D∗)Q] = dimN(L∗).

Then each of conditions (7) consists only of d linearly independent conditions. Really, let [Q∗PN(D∗)]d be
an n× d matrix whose columns are d linearly independent columns of the matrix [Q∗PN(D∗)]. Note that
X∗−1(t) is the fundamental matrix of the system

ẋ = −A∗(t)x, (8)

adjoint to (1). System (8) is an e-dichotomies on R+ with a projector I −P ∗ and on R− with a projector
I − Q∗ [2, p. 246]. Then, as above,

H(t) = X∗−1(t)[Q∗PN(D∗)] = X∗−1(t)[(I − P ∗)PN(D∗)]

is an n×n matrix whose columns are composed of n solutions bounded on R of the system (8); and hence

Hd(t) = X∗−1(t)[Q∗PN(D∗)]d = X∗−1(t)[(I − P ∗)PN(D∗)]d

is an n×d matrix whose columns represent a complete set of d linearly independent solutions bounded on
R of system (8) adjoint to (1). Hence H∗

d(t) is an d × n matrix whose rows represent a complete set of d
linearly independent solutions of system (8) bounded on R. Thus, the Palmer’s lemma can be formulated
as follows.

LEMMA. Let system (1) have an e-dichotomy on R+ and R− with projectors P and Q, respectively.
Then:
a) an operator L : BC1(R) → BC(R) defined by

(Lx)(t) = ẋ(t) − A(t)x(t) (9)

is a Fredholm operator and

ind L = rang [PPN(D)] − rang [PN(D∗)(I − P )] =

= rang [(I − Q)PN(D)] − rang [PN(D∗)Q] = r − d;

b)the homogeneous system (1) has an r− parametric set of solutions bounded on R:

Xr(t)cr = X(t)[PPN(D)]rcr = X(t)[(I − Q)PN(D)]rcr; ∀cr ∈ Rr;

( r = rang [PPN(D)] = rang [(I − Q)PN(D)] );

c) system (8) adjoint to (1) has a d−parametric set of solutions bounded on R :

Hd(t)cd = X∗−1(t)[Q∗PN(D∗)]dcd = X∗−1(t)[(I − P ∗)PN(D∗)]dcd, ∀cd ∈ Rd;

( d = rang [PN(D∗)(I − P )] = rang [PN(D∗)Q] );

d) f ∈ Im(L) in the only case when: ∫ ∞

−∞
H∗

d (s)f(s)ds = 0; (10)

e) the inhomogeneous system (2) has an r−parametric set of solutions bounded on R and the general
solution of the system (2) bounded on R can be written as

x0(t, cr) = Xr(t)cr + (G[f ])(t), ∀cr ∈ Rr, (11)

where

(G[f ])(t) = X(t)




∫ t

0 PX−1(s)f(s)ds − ∫ ∞
t (I − P )X−1(s)f(s)ds

+PD+{∫ 0

−∞ QX−1(s)f(s)ds +
∫ ∞
0

(I − P )X−1(s)f(s)ds}, t ≥ 0;

∫ t

−∞ QX−1(s)f(s)ds − ∫ 0

t
(I − Q)X−1(s)f(s)ds

+(I − Q)D+{∫ 0

−∞ QX−1(s)f(s)ds +
∫ ∞
0 (I − P )X−1(s)f(s)ds}, t ≤ 0;

(12)
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is the generalized Green operator for the problem of solutions of the system (2) bounded on the whole line
R with properties:

(LG[f ])(t) = f(t), t ∈ R; (G[f ])(0 + 0) − (G[f ])(0 − 0) =
∫ ∞

−∞
H∗(s)f(s)ds.

COROLLARY 1.

Suppose that the homogeneous system (1) has an e-dichotomy on R+ and R− with projectors P and
Q, respectively, and such that PQ = QP = Q. In this case the system (1) has an exponential trichotomy
[7, p. 363] on R and the inhomogeneous system (2) has at least one solution bounded on R for every
f ∈ BC(R) [7, p. 371], in other words this is the so-called weakly-regular case [8, p. 37], [9]. In this case
the Lemma can be formulated as follows.

Let system (1) have an e-dichotomy on R+ and R− with projectors P and Q, respectively, and such
that PQ = QP = Q. Then:
a) an operator L : BC1(R) → BC(R) defined by (9) is a Fredholm operator and

indL = rang [PPN(D)] = rang[(I − Q)PN(D)] = r;

b) the homogeneous system (1) has an r−parametric set of solutions bounded on R:

Xr(t)cr = X(t)[PPN(D)]rcr = X(t)[(I − Q)PN(D)]rcr; ∀cr ∈ Rr;

( r = rang [PPN(D)] = rang [(I − Q)PN(D)] );

c) system (8) adjoint to (1) has only the trivial solution bounded on R;
d) f ∈ Im(L) for all f ∈ BC(R);
e) the inhomogeneous system (2) has an r− parametric set of solutions bounded on R and the general
solution of the system (2) bounded on R can be written as

x0(t, cr) = Xr(t)cr + (G[f ])(t), ∀cr ∈ Rr,

where : (G [f ]) (t) is the generalized Green operator (12) for the problem of solutions of system (2)
bounded on the whole line R with property:

(LG[f ])(t) = f(t), t ∈ R; (G[f ])(0 + 0) − (G[f ])(0 − 0) = 0.

Proof. Really, since
PN(D∗)D = 0

and
DP = (P − (I − Q))P = QP = Q,

then
PN(D∗)Q = PN(D∗)DP = 0.

So, the necessary and sufficient condition (10) for the existence of solution of equation (2) bounded on R
is satisfied for every f ∈ BC(R).

COROLLARY 2.

Suppose that the homogeneous system (1) has an e-dichotomy on R+ and R− with projectors P
and Q, respectively, and such that PQ = QP = P. In this case the system (8) has an exponential tri-
chotomy on R and the inhomogeneous system (2) has only one solution bounded on R but for not every
f ∈ BC(R). In this case Lemma can be formulated as follows.

Let system (1) have an e-dichotomy on R+ and R− with projectors P and Q, respectively, and such
that PQ = QP = P. Then:
a) an operator L is a Fredholm operator and

indL = −rang [PN(D∗)(I − P )] = −rang [PN(D∗)Q] = −d;
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b)the homogeneous system (1) has only trivial solution bounded on R:

( r = rang [PPN(D)] = rang [(I − Q)PN(D)] = 0 );

c) system (8) adjoint to (1) has an d−parametric set of solutions bounded on R :

Hd(t)cd = X∗−1(t)[Q∗PN(D∗)]dcd = X∗−1(t)[(I − P ∗)PN(D∗)]dcd, ∀cd ∈ Rd;

( d = rang [PN(D∗)(I − P )] = rang[PN(D∗)Q] );

d) f ∈ Im(L) only in the case where condition (10) holds for f ∈ BC(R);
e) the inhomogeneous system (2) has a unique solution bounded on R and this solution can be written as
x0(t) = (G[f ])(t), where (G[f ])(t) is the generalized Green operator (12) for the problem of solutions of
the system (2) bounded on the whole line R with properties:

(LG[f ])(t) = f(t), t ∈ R; (G[f ])(0 + 0) − (G[f ])(0 − 0) =
∫ ∞

−∞
H∗(s)f(s)ds.

Proof. Really, since DPN(D) = 0 and PD = P (P − (I − Q)) = PQ = P, then

PPN(D) = PDPN(D) = 0.

So, r = 0 and the homogeneous system (1) has only the trivial solutions bounded on R, and the inhomo-
geneous system (2) has a unique solution bounded on R.

COROLLARY 3.

Suppose that the homogeneous system (1) has an e-dichotomy on R+ and R− with projectors P
and Q, respectively, and such that PQ = QP = P = Q. In this case the system (1) has an exponen-
tial dichotomy on R and the inhomogeneous system (2) has only one solution bounded on R for every
f ∈ BC(R). In this case the Lemma can be formulated as follows.

Let system (1) have an e-dichotomy on R+ and R− with projectors P and Q, respectively, and such
that PQ = QP = P = Q. Then:
a) an operator L is a Fredholm and indL = 0;
b) the homogeneous system (1) has only trivial solution bounded on R( r = 0 );
c) system (8) adjoint to (1) has only the trivial solution bounded on R( d = 0);
d) f ∈ Im (L) for all f ∈ BC(R);
e) the inhomogeneous system (2) has a unique solution bounded on R, and this solution can be written
as x0(t) = (G[f ])(t), where (G[f ])(t) is the Green operator (12) (P = Q, D+ = D−1) for the problem of
solutions of system (2) bounded on the whole line R with properties:

(LG[f ])(t) = f(t), t ∈ R; (G[f ])(0 + 0) − (G[f ])(0 − 0) = 0.

These results are defined more exactly than the Palmer’s lemma [2, p. 245] and give a new formula
different from [4] for the calculation index of the operator L and will essentially be applied for obtaining
the new existence conditions for the solutions bounded on the whole line of a weakly perturbed linear
[10] and nonlinear [11] systems.

3 Nonlinear Systems

For a weakly nonlinear system
ẋ = A(t)x + f(t) + εZ(x, t, ε) (13)

let us find the conditions for the existence of solutions x = x(t, ε) bounded on R

x(·, ε) : R → Rn, x(·, ε) ∈ BC1(R), x(t, ·) ∈ C[0, ε0],
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which turns, for ε = 0, into one of generating solutions x0(t, cr) (11) of system (2). The nonlinear vector
function Z(x, t, ε) is such that:

Z(·, t, ε) ∈ C1[ ‖x − x0‖ ≤ q ]; Z(x, ·, ε) ∈ BC(R); Z(x, t, ·) ∈ C[0, ε0].

THEOREM 1 ( NECESSARY CONDITION ).
Assume that system (1) has an e-dichotomy on R+ and R− with projectors P and Q, respectively. Let
system (13) have a solution x(t, ε) bounded on R x(·, ε) : R → Rn, x(·, ε) ∈ BC1(R), x(t, ·) ∈ C[0, ε0],
and x(t, ε) turns, for ε = 0, into one of generating solutions x0(t, cr)(11) of system (2) with the vector
constant cr = c0

r ∈ Rr. Then the vector c0
r satisfies the equation

F (c0
r) =

∫ ∞

−∞
H∗

d (s)Z(x0(s, c0
r), s, 0)ds = 0. (14)

Proof. Condition (10) for the existence of generating solutions x0(t, cr) (11) bounded on R is assumed
to be fulfilled. Considering the nonlinearity in (13) as inhomogeneity and applying the Lemma to (13),
we obtain the following condition:

∫ ∞

−∞
H∗

d (s)Z(x(s, ε), s, ε)ds = 0.

Passing to the limit as ε → 0 in the integral we come to the required condition (14).

By analogy with a case of the periodic problem [6, p. 184] it is natural to call equation (14) the
equation for generating amplitudes of the problem about solutions of the system (13) bounded on the
whole line R. If equation (14) has a solution, the vector constant c0

r ∈ Rr determines that generating
solution x0(t, c0

r) to which the solution x = x(t, ε) bounded on R

x(·, ε) : R → Rn, x(·, ε) ∈ BC1(R), x(t, ·) ∈ C[0, ε0], x(t, 0) = x0(t, c0
r)

of the original problems (13) may correspond. If equation (14), however, has no solution, problem (13)
has no solution bounded on R in the considered space. Since here and below all expressions are obtained
in the real form, we speak about the real solutions of the equation (14), which may be algebraic or tran-
scendental.

By changing the variables in (13) according to the relation

x(t, ε) = x0(t, c0
r) + y(t, ε),

we arrive at the problem of finding sufficient conditions for the existence of solution y = y(t, ε) bounded
on R

y(·, ε) : R → Rn, y(·, ε) ∈ BC1(R), y(t, ·) ∈ C[0, ε0], y(t, 0) = 0

for the problem:
ẏ = A(t)y + εZ(x0(t, c0

r) + y, t, ε). (15)

Taking into account the continuous differentiability of a vector function Z(x, t, ε) in x and its continuity
in ε in the neighbourhood of a point x0(t, c0

r), ε = 0, we can select a term linear in y and terms of zero
order in ε :

Z(x0(t, c0
r) + y, t, ε) = f0(t, c0

r) + A1(t)y + R(y(t, ε), t, ε), (16)

where
f0(t, c0

r) = Z(x0(t, c0
r), t, 0), f0(·, c0

r) ∈ BC(R);

A1(t) = A1(t, c0
r) =

∂Z(x, t, 0)
∂x

|x=x0(t,c0
r), A1(·) ∈ BC(R);

R(0, t, 0) = 0,
∂R(0, t, 0)

∂y
= 0, R(y, ·, ε) ∈ BC(R).

.
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Regarding formally the nonlinearity Z(x0 + y, t, ε) in system (15) as an inhomogeneity and applying
the Lemma to (15), we obtain the following representation of a solution bounded on R of system (15):

y(t, ε) = Xr(t)c + y(1)(t, ε).

In this expression, the unknown vector of constants c = c(ε) ∈ Rr is determined from the condition type
(14) of the existence of such solution for system (15) :

B0c = −
∫ ∞

−∞
H∗

d (τ)[A1(τ)y(1)(τ, ε) + R(y(τ, ε), τ, ε)]dτ, (17)

where

B0 =
∫ ∞

−∞
H∗

d (τ)A1(τ)Xr(τ)dτ

is a d × r matrix;

r = rang [PPN(D)] = rang [(I − Q)PN(D)], d = rang [PN(D∗)(I − P )] = rang [PN(D∗)Q].

The unknown vector function y(1)(t, ε) is determined with the help of the generalized Green operator
(12) from the relation:

y(1)(t, ε) = ε
(
G

[
Z(x0(τ, c0

r) + y, τ, ε)
])

(t),

Let PN(B0) be a r × r matrix - orthoprojector: Rr → N(B0), and let PN(B∗
0 ) be an d × d) matrix -

orthoprojector: Rd → N(B∗
0 ). Equation (15) is solvable with respect to c ∈ Rr if and only if

PN(B∗
0 )

∫ ∞

−∞
H∗

d (τ)[A1(τ)y(1)(τ, ε) + R(y(τ, ε), τ, ε)]dτ = 0. (18)

If
PN(B∗

0 ) = 0,

then condition (18) always holds and equation (17) is solvable with respect to c ∈ Rr up to an arbitrary
vector constant PN(B0)c (∀c ∈ Rr) from the null-space of matrix B0 :

c = −B+
0

∫ ∞

−∞
H∗

d (τ)[A1(τ)y(1)(τ, ε) + R(y(τ, ε), τ, ε)]dτ + PN(B0)c.

For finding one of the solutions y = y(t, ε) bounded on R of problem (15)

y(·, ε) : R → Rn, y(·, ε) ∈ BC1(R), y(t, ·) ∈ C[0, ε0], y(t, 0) = 0

we arrive at the following operator system:

y(t, ε) = Xr(t)c + y(1)(t, ε), (19)

c = −B+
0

∫ ∞

−∞
H∗

d (τ)[A1(τ)y(1)(τ, ε) + R(y(τ, ε), τ, ε)]dτ,

y(1)(t, ε) = ε
(
G

[
Z(x0(τ, c0

r) + y, τ, ε)
])

(t).

The operator system (19) belongs to the class of systems [6, p. 188], for which solvability a simple
iteration method is applicable, which converges for ε ∈ [0, ε∗] ⊆ [0, ε0] . Really, system (19) can be
rewritten as:

z = L(1)z + Fz, (20)

where z = col (y(t, ε), c(ε), y(1)(t, ε)) is a (2n + r)-dimensional column vector;
L(1) and F are linear and nonlinear operators bounded on R :

L(1) =


0 Xr In

0 0 L1

0 0 0


 ; L1∗ = −B+

0

∫ ∞

−∞
H∗

d(τ)A1(τ) ∗ dτ ;
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Fz = col
[
0,

∫ ∞

−∞
H∗

d(τ)R(y(τ, ε), τ, ε)dτ, εG
[
Z(x0(τ, c0

r) + y, τ, ε)
]]

.

By virtue of a structure of an operator L(1) with zero blocks on the principal diagonal and below it,
there exists the operator (Is − L(1))−1. System (20) may be transformed to the form

z = Sz, (S := (Is − L(1))−1F, s = 2n + r) (21)

with the contraction operator S in a sufficiently small neighbourhood of point x0(t, c0
r), ε = 0. For the

solution of operator system (21) one of variants of a fixed point principle [12] is applicable for sufficiently
small ε ∈ [0, ε∗]. Using a simple iteration method for finding a solution of the operator systems (17), and
hence for finding solutions bounded on R of the original system (13), we arrive at the following result.

THEOREM 2 ( SUFFICIENT CONDITION ).

Assume that the weakly nonlinear system (13) satisfies the conditions stated above, and thus the
corresponding generating linear system (2) has an r - parameter set (11) of generating solutions x0(t, cr)
bounded on R. Then, for every value of the vector cr = c0

r ∈ Rr that satisfies the equation for generating
amplitudes (14), provided that the condition

PN(B∗
0 ) = 0, (22)

is satisfied, there exists at least one solution bounded on R of system (13). More exactly there exists an
ρ− parameter set of solutions bounded on R of the system (13)

x(t, ε) = lim
k→∞

xk(t, ε) + Xr(t)PN(B0)ρcρ, ∀cρ ∈ Rρ, cρ = cρ(ε), cρ(0) = 0.

These solutions x(t, ε) : x(t, ·) ∈ C[0, ε0] turns, for ε = 0, into the generation solution x(t, 0) = x0(t, c0
r)

(11) and xk(t, ε) can be determined by a simple iteration method convergent for ε ∈ [0, ε∗] ⊆ [0, ε0] :

y
(1)
k+1(t, ε) = ε

(
G

[
Z(x0(τ, c0

r) + yk, τ, ε)
])

(t) (23)

ck = −B+
0

∫ ∞

−∞
H∗

d (τ)[A1(τ)y(1)
k (τ, ε) + R(yk(τ, ε), τ, ε)]dτ,

yk+1(t, ε) = Xr(t)ck + y
(1)
k+1(t, ε),

xk(t, ε) = x0(t, c0
r) + yk(t, ε), k = 0, 1, 2, ...; y0(t, ε) = 0;

where PN(B0)ρ is a r×ρ matrix whose columns represent a complete set of ρ linearly independent columns
of an r × r matrix PN(B0), ρ = rangPN(B0) = r − rangB0 = r − d.

In the case when the number of r = rang [PPN(D) = (I − Q)PN(D)] linear independent bounded on
R solutions of the system (1) is equal to the number of d = rang[PN(D∗)(I − P ) = PN(D∗)Q] linear
independent bounded on R solutions of the system (8) adjoint to (1) from the condition PN(B∗

0 ) = 0 we
have PN(B0) = 0, and hence detB0 
= 0. In this case from the theorem 2 we shall receive the following
statement [13].

THEOREM 3 ( SUFFICIENT CONDITION ).

Assume that the weakly nonlinear system (13) satisfies the conditions stated above, and thus the
corresponding generating linear system (2) has an r - parameter set (11) of generating solutions x0(t, cr)
bounded on R. Then, for every value of the vector cr = c0

r ∈ Rr that satisfies the equation for generating
amplitudes (14), provided that the condition

detB0 
= 0, (r = d), (24)

is satisfied, there exists a unique solution bounded on R of system (13). This solution x(t, ε) : x(t, ·) ∈
C[0, ε0] turns, for ε = 0, into the generation solution x(t, 0) = x0(t, c0

r) (11) and can be determined by a
simple iteration method (23) convergent for ε ∈ [0, ε∗] ⊆ [0, ε0].
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4 Conclusion

Necessary estimates for ε∗ and for the approximation error of iteration process can be obtained in the
standard way [12].

Condition (24) means [6] that the constant c0
r ∈ Rr is a simple root of equation (14) for generating

amplitudes of the problem about solutions bounded on the whole line R of system (13). Using the
techniques from [6, p. 193], with some simplifying assumptions, the method used in this paper can be
extended to the case of multiple roots of equation (14).

If L is a Fredholm operator with index zero and in case r = 1, from Theorem 3 we obtain the well-
known result of K. Palmer [2, p. 248]. If L is a Fredholm operator and, in addition, has an exponential
trichotomy on R, from Theorem 2 we obtain the earlier known result of S. Elaidy and O. Hajek [7].

5 Examples

1. Let us consider the system
ẋ = A(t)x + f(t) + εA1(t)x, (25)

where
A(t) = diag {− tanh t,− tanh t, tanh t}, A1(t) = {aij(t)}3

i,j=1 ∈ BC(R).

We can easily verify that X(t) = diag {2/(et + e−t), 2/(et + e−t), (et + e−t)/2}. The homogeneous system
ẋ = A(t)x is the e-dichotomies on both half-lines R+ and R− with projectors P = diag {1, 1, 0} and
Q = diag {0, 0, 1}. Then

D = 0, D+ = 0, PN(D) = PN(D∗) = I3; r = rankPPN(D) = 2, d = rankPN(D∗)Q = 1;

Xr(t) =


2/(et + e−t) 0

0 2/(et + e−t)
0 0


 , Hd(t) =


 0

0
2/(et + e−t)


 .

The inhomogeneous system ẋ = A(t)x + f(t) has a two-parametric set x0(t, cr) = Xr(t)cr + (G[f ])(t),
∀cr ∈ R2 of solutions bounded on R only if the inhomogeneity f(t) = col {f1(t), f2(t), f3(t)} ∈ BC(R)
satisfies the following condition:

∫ +∞

−∞
f3(s)/(es + e−s)ds = 0, ∀f1(t) ∈ BC(R), ∀f2(t) ∈ BC(R)

According to Theorems 1 and 2 we have the following result for system (25). For every value of the
vector cr = c0

r ∈ R2 that satisfies the equation for generating amplitudes (14):

B0c
0
r = −

∫ ∞

−∞
H∗

d (s)A1(s)(Gf)(s)ds,

provided that condition (22) PN(B∗
0 ) = 0 is satisfied, there exists a one-parameter set of the solutions

bounded on R of system (25) (ρ = rangPN(B0) = r − rangB0 = r − d = 1). These solutions x(t, ε) :
x(t, ·) ∈ C[0, ε0] turn, for ε = 0, into the generation solution x(t, 0) = x0(t, c0

r), where

B0 =
∫ +∞

−∞
H∗

d (t)A1(t)Xr(t)dt = 4
∫ +∞

−∞
[a31(t)/(et + e−t)2, a32(t)/(et + e−t)2]dt.

If a31(t) and a32(t) ∈ BC(R) satisfy one of conditions

∫ +∞

−∞
a31(t)/(et + e−t)2dt 
= 0,

∫ +∞

−∞
a32(t)/(et + e−t)2dt 
= 0,

then condition (22) is true. For example, if a31(t) = Const 
= 0 or a32(t) = Const 
= 0, then one of these
inequalities is already realized, and condition (22) takes place. In this case the coefficients a11(t), a12(t),
a13(t), a21(t), a22(t), a23(t), a33(t) can be arbitrary from the space BC(R).
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2. Let us consider the system (25), where

A(t) = diag {− tanh t, tanh t}, A1(t) = {aij(t)}2
i,j=1 ∈ BC(R).

We can easily verify that X(t) = diag {2/(et+e−t), (et +e−t)/2}, and the homogeneous system ẋ = A(t)x
is the e-dichotomies on both half-lines R+ and R− with projectors P = diag {1, 0} Q = diag {0, 1},
respectively. Then

D = 0, D+ = 0, PN(D) = PN(D∗) = I; r = rankPPN(D) = 1, d = rankPN(D∗)Q = 1;

Xr(t) = col {2/(et + e−t), 0}; H∗
d (t) = {0, 2/(et + e−t)}.

The inhomogeneous system ẋ = A(t)x + f(t) has a one-parametric set x0(t, cr) = Xr(t)cr + (G[f ])(t),
∀cr ∈ R of solutions bounded on R only if f(t) = col {f1(t), f2(t)} ∈ BC(R) satisfies the following
condition: ∫ +∞

−∞
f2(s)/(es + e−s)ds = 0, ∀f1(t) ∈ BC(R).

According to Theorem 3 we have the following result for system (25) in this case. For every value of the
constant cr = c0

r ∈ R that satisfies the equation for generating amplitudes (14):

B0c
0
r = −

∫ ∞

−∞
H∗

d (s)A1(s)(Gf)(s)ds

provided that condition (24)

B0 =
∫ +∞

−∞
H∗

d (t)A1(t)Xr(t)dt = 4
∫ +∞

−∞
a21(t)/(et + e−t)2dt 
= 0 (r = d = 1),

is satisfied, there exists a unique solution bounded on R of the system (25). This solution x(t, ε) : x(t, ·) ∈
C[0, ε0] turns, for ε = 0, into the generation solution x(t, 0) = x0(t, c0

r).
For example, if a21(t) = Const = 1 
= 0 [8, p. 48], then the last inequality is already realized, and

condition (24) takes place. In this case the coefficients a11(t), a12(t), and a22(t) can be arbitrary from
the space BC(R).
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