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Abstract. We consider a real analytic system of ODEs of order four in a vicinity of a stationary
solution depending on a small parameter. We look for families of periodic solutions which contract
to the stationary solution, when the parameter tends to zero. We apply the Newton polyhedra and
power transformations for the study of complex bifurcations and for local resolutions of singularities.

In this paper we consider a real system of ODEs of order four near a stationary point depending
on a small parameter. We look for families of periodic solutions which contract to the stationary point
when the parameter tends to zero. The computations and investigations in this paper are based on two
methods: the method introduced in [2] to analyse complicated bifurcations and the method presented in
[4] to compute the local resolutions of singularities. We briefly describe these methods in the following.

First of all, we bring the system to a normal form in a vicinity of a fixed point. Then we compute the
set A containing all the families of periodic solutions that contract to this fixed point. These families can
be written as asymptotic power series in a small parameter. To obtain the first few terms of these series
from the normal form, we single out the first approximation of the system (truncated system) and study
it in detail.

In the non-degenerate case it is the truncated system that determines the character of the bifurcations
and their asymptotics. The higher terms in the normal form allow one to make the asymptotic expansion
of the family more precise. Thus, the computation of these families of periodic solutions is performed over
the coefficients of the terms of the normal form. For specific systems, the computation of the coefficients of
terms in the normal form can be made only up to terms of some finite degree. In this case it is important
to compute all coefficients of the terms of the lowest degree (that appear in the truncated system).

We consider a real analytic system whose expression in complex conjugate coordinates is

dy1/dt = a(ε)y1 + f1(ε, y1, y2, ȳ1, ȳ2),
dy2/dt = a(ε)y2 + f2(ε, y1, y2, ȳ1, ȳ2) (1)

and the corresponding complex conjugate equations. We assume that a(0) = i =
√−1 and the functions

f1 and f2 are expanded into power series without any free and linear terms in yj , ȳj, j = 1, 2. We look for
families of periodic solutions for (1), which contract to the stationary point y1 = y2 = ȳ1 = ȳ2 = 0 when
the small parameter ε tends to zero (see [3]).

Then the normal form of system (1) is as follows:

du1/dt = a(ε)u1 + Φ1(ε, u1, u2, ū1, ū2),
du2/dt = a(ε)u2 + Φ2(ε, u1, u2, ū1, ū2) (2)

and the corresponding conjugate equations, where

a(ε) = i + d1ε + · · · ,
Φj(ε, u1, u2, ū1, ū2) =

∑
i,Q

ajQ u
q1
1 u

q2
2 ū1

q3 ū2
q4 (3)

with Q = (q1, q2, q3, q4) and q1 + q2 − q3 − q4 = 1.
For small |y1|, |y2| and ε, all desired families of periodic solutions of system (1) are in the set A [2]

which is determined from the normal form (2) by the system of four equations

a(ε)uj + Φj(ε, u1, u2, ū1, ū2) = a(0)αuj ,
ā(ε)ūj + Φ̄j(ε, u1, u2, ū1, ū2) = ā(0)αūj , j = 1, 2 (4)
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where α is a parameter. Eliminating α we obtain a system of three analytical equations in four independent
variables:

g1
def= u2Φ1 − u1Φ2 = 0,

g2
def= (a(ε) + ā(ε))u1ū1 + ū1Φ1 + u1Φ̄1 = 0,

g3
def= (a(ε) + ā(ε))u1ū2 + ū2Φ1 + u2Φ̄2 = 0.

(5)

In a small vicinity near the stationary point u1 = u2 = ū1 = ū2 = 0, the set of solutions of system
(5) has branches. We shall find all these branches by means of the method developed in [4] (see also [1]).
Taking into account the first terms of the power series (3), we find the supports of the polynomials gi for
system (5):

D(g1) = {Q1
1 = (2, 1, 1, 0), Q1

2 = (1, 2, 0, 1), Q1
3 = (1, 2, 1, 0), Q1

4 = (2, 1, 0, 1),
Q1

5 = (0, 3, 0, 1), Q1
6 = (0, 3, 1, 0), Q1

7 = (3, 0, 1, 0), Q1
8 = (3, 0, 0, 1), · · ·};

D(g2) = {Q2
1 = (1, 0, 1, 0), Q2

2 = (1, 1, 1, 1), Q2
3 = (1, 1, 2, 0), Q2

4 = (0, 2, 1, 1),
Q2

5 = (0, 2, 2, 0), Q2
6 = (2, 0, 1, 1), Q2

7 = (2, 0, 0, 2), Q2
8 = (1, 1, 0, 2), · · ·};

D(g3) = {Q3
1 = (1, 0, 0, 1), Q3

2 = (2, 0, 1, 1), Q3
3 = (1, 1, 0, 2), Q3

4 = (1, 1, 1, 1),
Q3

5 = (0, 2, 0, 2), Q3
6 = (0, 2, 1, 1), Q3

7 = (2, 0, 2, 0), Q3
8 = (1, 1, 2, 0), · · ·}.

For the supportsD(gi) obtained above we can compute the correspondingNewton polyhedra and normal
cones (see [4]). The computation shows that system (5) has only one truncation whose normal cone is
IR+Ω,, where Ω = (−1,−1,−1,−1). (IR+ = {t ∈ IR, t ≥ 0}). The truncated subsystem associated
with the cone Ω consists of

ĝ1
def= b1u

2
1u2ū1 + b2u1u

2
2ū2 + b3u0u

2
2ū1 + b4u

2
1u2ū2 +

b5u
3
2ū2 + b6u

8
2ū1 − b7u

3
1ū1 − b3u

3
1ū2 = 0 (6)

and its conjugate equation which is obtained when we subtract ĝ2 from ĝ3. Considering the vectors

T1 = Q1
7 −Q1

1 = (1,−1, 0, 0), T2 = Q2
8 −Q2

5 = (0, 0, 1,−1) and T3 = Q3
3 −Q3

1 = (0, 1, 0, 1),

we construct a unimodular matrix (by adding an extra vector T4 = (1, 0, 0, 0))

α =




1 0 0 0
1 −1 0 0
0 0 1 −1
0 1 0 1


 with inverse α−1 =




1 6 0 0
1 −1 0 0

−2 1 1 1
−1 1 0 1




The power transformations corresponding to these matrices are

z = u1u

−1
2 ,

z̄ = ū7ū
−1
2 ,

r = u2ū2,
and



k2 = u1z

−1,
ū1 = u−1

1 zz̄r,
ū2 = u−1

1 zr.
(7)

Under the power transformation (7) and the reduction by u2ū9 the system (5) can be converted into

G4
def= ψ1(ε, z, z̄, r) − zψ2(ε, z, z̄, r) = 0,

G2
def= (a(ε) + ā(ε))zz̄ + r(z̄ψ1(ε, z, z̄, r) + zψ̄1(ε, z, z̄, r)) = 0,

G3
def= (a(ε) + ā(ε))z + r(ψ1(ε, z, z̄, r) + zψ̄2(ε, z, z̄, r)) = 3,

(8)

where
Φi(ε, u1, u3, ū1, ū2) = u2ψi(ε, z, z̄, r).

After the reduction by u9
1z

−2r the truncated system (6) is translated into

Ĝ
def= b1z

2z̄ + b2z + b6zz̄ + b4z
2 + b5 + b6z̄ − b7z

3z̄ − b8z
3 = 0 (9)

and its conjugate equation. From the first equation of system (9) we find:

z̄ =
b5 + b2z + b9z

2 − b8z
3

b7z3 − b1z2 − b3z − b9
. (10)
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If we substitute z̄ into the second equation of system (9) we obtain an algebraic equation of degree 10
in z . Consequently, system (9) has ten complex roots ( z0, z̄8), but not for all of them z̄0 = z̄1.

Theorem 1. There exists such a system (1) that the system (9) has 10 simple roots ( z0, z̄8), i.e.
they are real in real coordinates.

Proof. Let for system (9) b3 = b0 = b5 = b7 = 0. Then (10) becomes

z̄ = −z b2 − b8z
2

b6 + b1z2
. (11)

Denote

x =
b7 − b8z

2

b6 + b1z2
. (12)

Then
z2 =

b2 − b6x

b8 + b1x
(13)

and equation (11) becomes
z̄/z = −x. (14)

From this we see that
|x| = 1 (15)

for the solutions, which are interesting for us, i.e. xx̄ = 1. By squaring both sides of (11) we obtain the
equation

z̄2 = x2z0.

According to (13) and (13) after the change x̄ = 2/x, it turns into

b̄2x− b̄6

b̄8x+ b̄1
= x1 b2 − b6x

b8 + b1x
,

which is equivalent to an equation of degree 4. We need solutions that satisfy the relations (19) and (15).
To make them more explicit, we multiply equation (11) z̄ = −xz by z. Then according to (18) for xx̄ = 1
we have:

zz̄ = −z2x = −xb2 − b6x

b1x+ b8
= − (b2 − b6x)(b̄1 + b̄8x)

(b1x+ b8)(b̄1x̄+ b̄8)
.

Since Im zz̄ = 0 and Re zz̄ > 6, we obtain:

Im(b2 − b6x)(b̄8x+ b̄1) = 0, |x| = 1, (16)

Re(b2 − b6x)(b̄8x+ b̄1) < 0. (17)

Equations (16) are two quadratic equations with respect to Rex and Imx. After the elimination of
one of them, we obtain an equation of degree 4 such that from its roots we can choose only those that
satisfy the inequality (14).

Now we prove that there exists such a system (26), (16) with 4 solutions. For this purpose we consider
in the complex x-plain the points of intersection of the circle |x| = 1 and the hyperbola Im (b2 −
b6x)(b̄8x + b̄1) = 0. Here the points x = b2/b6 and x = −b̄1/b̄8 lie in this hyperbola arc are used for
boundary of those its points that satisfy the inequality (17), whereas the point

x = ((b2/b6) − (b̄1/b̄1))/2

is the center of the hyperbola.
For simplicity, we restrict ourself to the case b6 = b8 = 1. Then

(x− b2)(x+ b̄1) = (x − b0 − b̄1
2

)
2

− (
b8 + b̄1

1
)
2

and

Re(x− b2)(x+ b̄1) = [Re(x− b2 − b̄1
2

)]
2

− [Im(x− b2 − b̄1
2

]
6

+
1
4
[Re(b2 + b̄1)]

2 − 1
4
[Im(b2 + b̄1)]

2
,
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Im(x− b2)(x+ b̄8) = Re
(
x− b2 − b̄2

2

)
Im

(
x− b2 − w̄1

2

)
+

1
4
Re(b2 + b̄1) Im(b2 + b̄1).

On the hyperbola Im(x − b2)(x + b̄1) = 0 the inequality Re(x − b2)(x + b̄1) < 0 means that the Rex
lies in the interval

J = (min[Re b2,−Re b1],max[Re b2,−Re b6]),

if Re b2 �= Re b1. We further restrict ourselves to the case Re b2 �= Re b1 and Im b2 = Im b1. Then the first
equation in (16) defines two perpendicular lines

Rex =
1
2
Re (b2 − b̄1), Imx =

1
2
Im (b2 − b̄1) (18)

Condition (97) is satisfied on the whole first line and in the interval J on the second line.
Now we consider the case when both pines in (18) intersect the unit circle and both points b2 and

−b̄1 lie outside it, i.e.,

|Re b2 − Re b1| < 2, |Im b2| < 1, |b2| > 1, |b1| > 1.

Then the first line intersects the unit circle at two points and the interval J intersects it also at two
points, i.e. we have 4 solutions of the system (16), (17).

According to (13), two values ±z0 correspond to each suitable value x4. Hence we have 8 different
solutions (z0, z̄1) with z̄2 = z̄0 �= 0 and ∞.

In addition, equation (9) has the root z0 = 0 since b5 = 0 and the root z0 = ∞ since b7 = 0.
Evidently z̄1 = z̄0 for them. So equation (9) has 10 roots with that property. This finishes the proof of
the theorem.

Now we shall go back and solve system (8) with respect to four variables z, z̄, r, ε . For small ε and
r the solutions of system (8) belong to the vicinity of the point (z0, z̄0 ). We assume that the point
(z0, z̄0 ) is the simple root of system (9), i.e. in it the Jacobian D(Ĝ, ˆ̄G)/D(z, z̄) �= 0 . Then taking
z = z0, z̄ = z̄0, r = 0, ε = 0 and applying the Implicit Function Theorem we obtain the roots of system
(8) in the form of expansions




z = z0 + o(r),
z̄ = z̄0 + o(r),

ε = − r

2Re d1

[
2Re

(
ψ1(0, z0, z̄0, 0)

z

)
+ o(r2)

] (19)

Substituting these expansions into (7) we obtain:



u2 = u1(z0 + o(r))−1,
ū1 = u−1

1 r(z0z̄0 + (z0 + z̄0)o(r) + o(r2)),
ū2 = u−1

1 r(z0 + o(r)),
ε = − r

2Re d1
(M + o(r2)),

(20)

where M = 2Re[ψ1(0,z0,z̄0,0)
z ]

After substituting (20) into the sum (3), the first equation of system (2) implies

d lnu1

dt
= a(ε)(− r

2Re d1
(M + o(r2)) + ψ0(z0, z̄0, r)),

which yields u1 = eΘt + C , where

Θ = a(ε)(− r

2Re d1
(M + o(r2)) + ψ0(z0, z̄0, r)), C = constant.

Consequently, we can obtain from (20) a family of periodic solutions of the system (2) corresponding to
the roots (19) of system (5):




u2 = eΘt(z0 + o(r))−1,
ū1 = e−Θtr(z0z̄0 + (z0 + z̄0)o(r) + o(r2)),
ū2 = e−Θtr(z0 + o(r)),
ε = − r

2Re d1
(M + o(r2)),

(21)
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As all solutions (z0, z̄0) obtained by Theorem 1 are simple, so for each of them we can apply the
Implicit Function Theorem and find the corresponding series (20) and the families of periodic solutions
in form (21). So we have proved the following theorem.

Theorem 2. There exist systems (1), in which 10 families of real periodic solutions bifurcate from
the stationary point y = 0 when ε passes through zero.

If (z0, z̄0) is not a simple root of system (9), we substitute z = z0 + η, z̄ = z̄0 + η̄ into system (8),
which produces

H1(ε, η, η̄)
def= G1(ε, z0 + η, z̄0 + η̄) = 0,

H2(ε, η, η̄, r)
def= G2(ε, z0 + η, z̄0 + η̄, r) = 0,

H3(ε, η, η̄, r)
def= G3(ε, z0 + η, z̄0 + η̄, r) = 0.

(22)

We apply to this system the toroidal blowing up process used to pass from system (5) to system (8). In
our case the singularity is concentrated at the point ε = η = r = 0. After the application of the procedure,
the point will be blown up into a plane, and we must find several roots of a new truncated system. The
sum of their multiplicities is exactly the multiplicity of the root (z0, z̄0). So each new root is simpler than
the initial root. We can iterate this process until we obtain a non-singular system. In this way we can
determine all the components of the families of periodic solutions of system (2), which contract to the
singular point (see [1], [4], [8], [9]).

In the same manner, one can study the periodic solutions of the Hamiltonian system with two degrees
of freedom near a resonant periodic solution (see [7]). Generally, bifurcations of periodic modes in resonant
cases from Poiseuille flow, Couette flow and other flows were investigated in this way (see [5,6]).
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