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Abstract. We give an algorithm for computing liouvillian solutions of an ordinary linear difference
equation which involves only computations of rational solutions of auxiliary systems of equations
and computations of hypergeometric solutions of such systems which do not involve extension of
the coefficient field.

1 Introduction

Peter Anne Hendriks and Michael F. Singer give in [5] a definition of liouvillian solutions of ordinary
linear difference equations. They also give an algorithm for computing a basis of the space of liouvillian
solutions of such an equation. However, that algorithm is based on the computation of the hypergeometric
solutions of a family of associated operators. Algorithms for computing such solutions have been given in
[8] (See also [12]), but they can imply numerous computations in some extensions of the coefficient field
of the operator, which can be very costly.

We adapt here the ideas given for differential equations by Michael F. Singer in [10] to give an
algorithm for computing liouvillian solutions of ordinary linear difference equations which uses as far as
possible computations of rational (i.e. in the coefficient field) solutions of associated systems.

In some cases, it may happen that our algorithm needs to compute hypergeometric solutions of
associated systems. However, in that case, we show that we just need to compute such solutions without
extending the coefficient field.

A partial version of this algorithm for order two equations has been implemented in the Maple package
LREfactor1. Note that LREfactor call the Aldor library

∑it by using SHASTA2. As far as we know, this
is the first attempt to implement an algorithm for computing liouvillian solutions of linear ordinary
difference equation.

The rest of the article is organized as follow. Section 2 and 3 contain general results on Galois theory
and reducibility of linear difference equations and systems.

In section 4, we define the Eigenring of a equation or system and show how computing successive
Eigenrings give us a first decomposition algorithm (subsection 4.2).

Since these sections are essentially expository, we did not include proofs. One can find a full description
of the Galois theory in [11] (see also [3]) and a full study of reducibility properties of an operator or system
in [3].

In section 5, we define liouvillian sequences. The most important result of that section is corollary 1,
which shows that an irreducible equation admiting a liouvillian solution has such a solution of particular
form.

Section 6 is devoted to our algorithm. We first show in subsection 6.1 and 6.2 how to obtain a basis
of the space of liouvillian solutions of an operator from the basis of liouvillian solutions of its factors. We
can then give a full algorithm for computation of the liouvillian solutions of an equation in subsection
6.3.

We conclude by some examples.

2 Galois Theory

A difference ring (respectively difference field) (R, σ) is a ring (respectively field) R together with an
injective endomorphism σ : R→ R. We say that a ring (R1, σ1) can be embedded in (R2, σ2) if and only

1 www.inria.fr/cafe/Raphael.Bomboy/en-index.html
2 www.inria.fr/cafe/Manuel.Bronstein/sumit
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if R1 can be embedded in R2 and the restriction of σ2 to R1 coincide to σ1. In that case, we will often
use the same notation for σ1 and σ2.

Let k = C(z) be the field of rational fractions in one indeterminate z with coefficients in a field C of
characteristic 0, and σ the morphism letting C invariant and sending z to z + m, where m is a positive
integer. In this paper, we consider ordinary difference equations, i.e. equations of the form

σn(x) + an−1σ
n−1(x) + . . . + a0x = 0 (1)

where a0, . . . , an−1 ∈ k and a0 �= 0.

We will also need ordinary linear difference systems of order n, i.e. systems of the form

σ(X) = AX (2)

where A ∈ Gln(k) and X is a vector of n indeterminates.
Note that we can associate to the linear equation (1) the system σ(X) = ALX , where

AL =


0 1
...

. . .
0 1

−an−1 . . . . . . −a0


is the companion matrix of the equation. It will allow us to restrict ourself to linear difference system for
the further definitions.

Let C be a field of characteristic 0. Consider the ring of sequences with coefficients in C. One can
define an equivalence relation on this ring by identifying two sequences which are equal except for a finite
number of terms. We denote by S the quotient of the ring of sequences by this relation. One can define
on S the shift morphism σ sending the sequence (a0, . . . , an, . . .) to (a1, . . . , an+1, . . .).

The difference ring (C(z), σ) can be embedded in (S, σ) by sending a rational function to the se-
quence (F (0),. . .,F ( n

m ),. . .) and completing the sequence arbitrary at the points where F is not defined
if necessary.

We call a sequence a ∈ S rational if and only if a ∈ C(z). We call it hypergeometric if and only if
there is a rational sequence b such that σ(a) = ba (note that rational sequences are hypergeometric).

Assume that C is algebraically closed. We define the Picard-Vessiot extension of (2) as the subring of
S generated by the solutions of the system.

The set V of solutions of (2) in S is called the solution space of the system. It is a C-vector space
of dimension n. A fundamental system of solutions of (2) is a invertible matrix X ∈ Gln(R) such that
σ(X) = AX .

Note that in the case where C is not algebraically closed, we can alway consider (2) as a system with
coefficients in the extended field C(z). In that case, the Picard-Vessiot extension and solution space of
the system are defined as the Picard-Vessiot extension and solution space of the system seen as a system
with coefficients in C(z).

Let R be the Picard-Vessiot extension of (2). The Galois group G of the system is the set of isomor-
phisms of R commuting with σ and fixing k pointwise. It is a linear algebraic subgroup of Gln(C).

3 Reducibility

Define now the notion of reducibility of a linear difference equation.

The ring k[E; σ] of the skew polynomials with coefficients in k is the ring of polynomials in one
variable E together with the product defined by E ∗ a = σ(a)E for all a ∈ k. The product of two skew
polynomials L1 ∗ L2 will often be noted L1L2.

The ring k[E; σ] is a non-commutative ring, both left and right Euclidean. We call its elements
operators.

We can associate to any linear difference equations of the form (1) the operator L = En +an−1E
n−1 +

. . . + a0.
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An operator L of order n is reducible if and only if there are nontrivial L1 and L2 in k[E; σ] such
that L = L1L2. It is decomposable if and only if there are operators L1, L2 or respective orders n1, n2

such that L = llcm(L1, L2) and n = n1 + n2.
We state now the link between the divisibility properties of an operator and the structure of its

solution space (for a deeper study, see [3]).

Proposition 1. 1. P is a right factor of L if and only if the solution space of P is included in the solution
space of L. Moreover, in that case, the Galois group of P is a quotient group of the Galois group of L.

2. L is reducible if and only if its solution space V has a proper G-invariant subspace.
3. L is decomposable if and only if its solution space V has two proper G-invariant subspace V1 and

V2 such that V = V1 ⊕ V2.

The decomposition of an operator into irreducible operators is not necessarily unique. However, we
have a partial result.

Two operators L and P are said to be equivalent if and only if there exists L1 ∈ k[E; σ], such that L1

and P have no nontrivial common right factor and LL1 is divisible by P on the right. This is equivalent
to saying that they have G-isomorphic solution spaces.

Theorem 1. [7, Theorem 1]
Let L = P1 . . . Pk and L = Q1 . . . Ql two factorization of L into irreducible linear difference operators.

Then k = l and the factors are equivalent in pair.

We can extend our definitions of reducibility and decomposability to linear difference systems. We say
that two linear systems σ(X) = AX and σ(X) = BX are equivalent if and only if there is P ∈ Gln(k)
such that σ(P )AP−1 = B. A linear system σ(X) = AX is reducible if and only if it is equivalent to a
system of the form

σ(X) =
(

A1 A2

A3

)
X (3)

It is decomposable if and only if it is equivalent to a matrix of the form

σ(X) =

A1

. . .
Ap

X (4)

The results of 1 remains true for linear difference system. Moreover, a linear difference equation
is reducible (respectively decomposable) if and only if the associated system is reducible (respectively
decomposable).

4 Eigenring and Decomposition

4.1 The Eigenring

We can now define the notion of Eigenring of a operator.

Definition 1. The Eigenring E(L) of L is the set of equivalence classes P ∈ k[E; σ]/k[E; σ]L such that
LP is divisible by L on the right.

Note that E(A) is a C-vector space.

Each element of E(L) induces a G-endomorphism of the solution space V of L. Furthermore, one can
show that every element of EndG(V ) is of this type (see [3, Prop. 41]).

Let us extend now our definition of Eigenring to linear difference system.

Definition 2. The Eigenring E(A) of (2) is the set of B ∈ Gln(k) such that σ(B)A = AB.
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Once again, one can show that E(A) is in bijection with EndG(V ) (see [3, Prop. 44]). As awaited, the
Eigenring of an equation is in bijection with the Eigenring of the associated system.

By definition, computing the Eigenring of an order n linear difference operator or system means to
compute the rational solutions of a linear difference system of order n2. An algorithm for solving this
type of system is given was [2]. However, our package LREfactor compute Eigenring by calling the

∑it

library, which uses a new algorithm for computing rational solutions that is described in [1].

Note that in the case where C is not algebraically closed, we defined the Picard-Vessiot extension of
L as being the Picard-Vessiot extension of L seen as an operator with coefficients in C(z). Hence the
Eigenring of this system is a priori a vector space of matrix with coefficients in C(z). However, the next
result ensure us that we can compute the Eigenring by restricting ourself to compute rational solutions
in C(z) of the associated system.

Proposition 2. [3, Lemme 18] E(A) has a basis consisting of matrices with coefficients in C(z).

4.2 The Decomposition Algorithm

We can now show how the computation of the Eigenring can help us to factorize a linear difference
system.

Let σ(X) = AX be a linear difference system with coefficients in C(z), where C is a non necessary
algebraically closed field of characteristic 0.

Schur’s lemma ensure us if σ(X) = AX is irreducible, it has a trivial Eigenring (for Schur’s lemma,
see for example [6, ch. XVII]). Furthermore, in [2], the author how to explicitely construct a right factor
of the system from a nontrivial element of the Eigenring.

When the system is not only reducible, but decomposable, we can say more.

The next lemma has been suggested to me by Michael F. Singer in [9].

Lemma 1. The system σ(X) = AX is indecomposable if and only if any element of E(A) has an unique
eigenvalues.

Once again, we can give a constructive version of the above lemma.

Lemma 2. [3, lemme 19] Let B ∈ E(A), λ1, . . . , λp the Eigenvalues of B and n1, . . . , np their respective
orders. Then one can construct a system equivalent to A of the form

σ(X) =

A1

. . .
Ap

X (5)

where σ(X) = AiX is a system of order ni with coefficients in C(λ1, . . . , λi)(z) for all i ∈ {1, . . . , p}.
Iterated applications of lemma 2 give us an algorithm of decomposition of a system in indecomposable

factors.

Theorem 2. [3, Prop. 46]
By recursive computation of Eigenring, one can construct a linear difference system equivalent to

σ(X) = AX of the form

σ(X) =

A1

. . .
Ap

X (6)

where each of the system σ(X) = AiX is indecomposable.
Moreover, if A = AL is the companion system of a linear difference operator L, each of the block

σ(X) = AiX is the companion system of an operator Li of order ni, and L = llcm(L1, σ−n1(L2), . . . ,
σ−(n1+...+np−1)(Lp)).

For an example of application of theorem 2, see section 6.4 below.
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5 Liouvillian Sequences

5.1 Sections, Spreads, Interlacings

Before being able to define liouvillian solutions of linear difference equations, we need to study sections
and spreads of sequences.

Definition 3. Let a = (a(n))n∈N ∈ L.
The ith m-spread of a is the sequence a

−→m+i defined by

a
−→m+i(kn + i) = a(k)

for all k ∈ N and a
−→m+i(n) = 0 for all n ∈ N such that n �= i mod m.

The ith m-section of a is the sequence defined by a
←−m−i(n) = a(mn + i).

Note that for all a ∈ S, (a
−→m+i)

←−m−i = a. Furthermore, we have σ(a
−→m+i) = a

−→m+i−1 and σ(a
←−m−i) =

a
←−m−m+i.

For all matrices X with coefficients in S, we note X
−→m+i (respectively X

←−m−i) the matrix whose
coefficients are the ith m-spread (respectively the ith m-section) of the coefficients of X .

Definition 4. Let a1, . . . , am ∈ S. The interlacing of a1, . . . , am is the sequence⊎
1≤i≤m

ai =
∑

1≤i≤m

a
−→m+i−1 = (a1(0), . . . , am(0), a1(1), . . .)

We define now the notion of iterated system of a linear difference system. These systems are closely
related to the section of the solutions of the initial system.

Definition 5. Let m be a positive integer. The mth iterated system associated to σ(X) = AX is the
system

σm(X) = σm−1(A) . . . AX (7)

seen as a system with coefficients in (k, σm).

We note
∏σ

m A the matrix σm−1(A) . . . A.
Note that by induction, each fundamental system of solutions of σ(X) = AX is a fundamental system

of solutions of σm(X) = (
∏σ

m A)X .

5.2 Liouvillian Sequences

We can now define the notion of liouvillian sequence.

Definition 6. The ring L of liouvillian sequences is the smallest subring of S such that
1. C(z) ⊂ L
2. if a ∈ C(z) and b is a solution of σ(x) = ax, b ∈ L
3. if a ∈ L and b is a solution of σ(x) = a + x, b ∈ L
4. if a1, . . . , am ∈ L,

⊎
1≤i≤m ai ∈ L

As in classical and differential Galois theories, there is a connection between integrability in finite
terms and equations with solvable Galois groups.

Theorem 3. [5, Theorem 3.4] A sequence a is liouvillian if and only if there exists an operator L such
that a is a solution of L and L has a solvable Galois groups.

We let the reader refer to the above article for a proof.

The aim of the rest of this section is to show that if an operator has a liouvillian solution, it has such
a solution of particular form.

The following result could have been seen has as a consequence of proposition 4. However, we thought
it was more natural to prove it directly.
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Proposition 3. An irreducible ordinary linear difference operator L has a liouvillian solution if and only
if all its solutions are liouvillian.

Proof. Let a be such a solution. By theorem 3, there is a linear difference operator P such that P (a) =
and P has a solvable Galois group. Let Q = grcd(L, P ). Since P and L have a common solution, Q is
nontrivial by proposition 1 and since L is irreducible, Q = L and L is a right factor of P . By proposition
1, the Galois group of L is a quotient group of the Galois group of P , so its solvable. By theorem 3, it
follows that every solutions of L are liouvillian.

The next proposition shows that if an irreducible operator has a liouvillian solution, it has a solution
of particular form.

Proposition 4. ([5, 4.1 to 5.1] ; [3, Prop. 55]) Let L be an irreducible linear difference operator of order
n. The following are equivalent.

1. L has a liouvillian solution.
2. there exists a ∈ k such that L is equivalent to the system

AL =


0 1
...

. . .
0 1
a 0 . . . 0


3. L has a solution which is the interlacing of n hypergeometric sequences.

We let the reader see the above references for a proof.

The following corollary will be used in our algorithm for computing liouvillian solutions of an operator.

Corollary 1. Let L be an irreducible linear difference operator of order n. The following are equivalent.
1. L has a liouvillian solution.
2. All solutions of L are liouvillian.
3. The iterated operator σn(X) = (

∏σ
n AL)X is diagonalizable.

Moreover, given a diagonalization of the iterated system, one can compute an explicit basis of solutions
of L.

Proof. The equivalence between (1) and (2) was already proved in proposition 3.
(1)⇒ (3) Assume that L has a liouvillian solutions. By proposition 4, σ(X) = ALX is equivalent to

a system of the form 
0 1
...

. . .
0 1
a 0 . . . 0


hence σn(X) = (

∏σ
n AL)X is diagonal.

(3) ⇒ (2) Assume now that there exists P ∈ Gln(k) such that the matrix σm(P )(
∏σ

m AL)P−1 is of
the form d1

. . .
dn


Let B = σ(P )ALP−1. Note that∏σ

m B = σm(B)σm−1(A)σm−1(B−1)σm−1(B) . . . AB

= σm(P )(
∏σ

m AL)P−1 =

d1

. . .
dn


Let N ∈ N such that for all k ≥ N , d1(k) . . . dn(k) �= 0. We define a fundamental system of solutions

of σ(X) = BX by X(N) = Id and X(k + 1) = BX(k) for all k ≥ N .
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Let (xij) be the coefficients of X . One can verify that for all (i, j) and for all l ∈ {0, . . . , n − 1} the
lth n-section of xij is a hypergeometric sequence. Finally, Y = PX is a fundamental system of solutions
of σ(X) = AX , whose coefficients are linear combinations with coefficients in C(z) of coefficients of X ,
hence are liouvillian.

Note that proposition 4 admits a generalization to non necessarily irreducible operators (see [5, The-
orem 5.1]). However, we do not need it for our algorithm.

6 The Algorithm

6.1 Reconstruction of the Liouvillian Solutions

Before describing our algorithm, we need to show how to reconstruct the liouvillian solutions of a operator
from the liouvillian solutions of its right factors.

Consider first the case where L is the least left common multiple of a finite set of operators.
Let L be an linear operator of order n and L1,. . .,Lp be operators of respective orders n1,. . .,np such

that L is the left least common multiple of L1,. . .,Lp and n = n1 + . . . + np.
Let V be the solution space of L and Vi be the solution space of Li for all i ∈ {1, . . . , p}. By proposition

1, V1 + . . . + Vp = V , and, since n = n1 + . . . + np, V = V1 ⊕ . . .⊕ Vp.
Let i ∈ {1, . . . , p} and L̃i = llcmj �=i(Li). By proposition 1, the solution space of L̃i is ⊕j �=iVj .

Moreover, since ⊕j �=iVj and Vi are in direct sum, L̃i and Li have no common right factor. Hence, by
Bezout’s theorem, there exists P, P̃ ∈ k[E; σ] such that

PLi + P̃ L̃i = 1

Lemma 3. Let Πi be the natural projection of V onto Vi for all i ∈ {1, . . . , p}. For all x ∈ S, Πi(x) =
P̃ L̃i(x), where P̃ is defined as above.

Proof. Since PLi + P̃ L̃i = 1, PLi(x)+ P̃ L̃i(x) = x. Let us show that PiLi(x) ∈ Vi and P̃ L̃i(x) ∈ ⊕j �=iVj .
Let Q = LiP̃ L̃i ; Q is a left multiple of L̃i, and, since Q = Li(1 − PiLi) = (1 − LiP )Li, Q is a left

multiple of Li. Hence L is a right factor of Q and, since x is a solution of L, Li(P̃ L̃i(x)) = Q(x) = 0.
Similarly, L̃i(PiLi(x)) = 0 and x ∈ ⊕j �=iVj , that concludes.

Proposition 5. Let L be a ordinary linear operator of order n and L1,. . .,Lp be a finite number of
operators of respective orders n1,. . .,np such that L = llcm(L1, . . . , Lp) and N = n1 + . . . + np. Let Ṽ be
the space of liouvillian solutions of L and Ṽi be the space of liouvillian solutions of Li for all i ∈ {1, . . . , p}.
Then

Ṽ = Ṽ1 ⊕ . . .⊕ Ṽp

Proof. For all i ∈ {1, . . . , p}, Ṽi ⊂ Vi, hence the space Ṽi are in direct sum. Since a sum of liouvillian
sequences is liouvillian, Ṽi ⊕ . . .⊕ Ṽi ⊂ Ṽ . Consider now x a liouvillian solutions of L ; x = x1 + . . . + xp,
where xi ∈ Vi for all i. Furthermore, since xi = P̃iL̃i(x) by lemma 3, xi ∈ Ṽi.

We turn now to the case where L is a reducible indecomposable operator. Although these results were
prooved in [5], we choose to include full proofs to make the presentation complete.

Proposition 6. [5, lemma 5.4] Let L be an ordinary linear difference operator of order n and L = L1L2

a factorisation of L in two nontrivial operators of order p and q. Then

1. if {u1, . . . , un} is a basis of the solution space of L, one can compute a set of vectors {(ci1, . . . ,
cin)}1≤i≤q with coefficients in k such that

w1 =
∑

1≤j≤n

c1juj, . . . , wq =
∑

1≤j≤n

cqjuj

is a basis of solutions of L2
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2. if w1, . . . wq is a basis of L2 and v a solution of L1, one can compute a set of sequences c1, . . . , cq ∈
S such that

∑
1≤i≤q ciwi = v.

Moreover, the sequences ci can be obtained from v and the wi by using σ, field operations and finite
summations.

Proof. 1. Let x1, . . . , xn be constant indeterminates. We want to determine conditions on the xi such
that u = x1u1 + . . . + xnun is a solution of L2.

Let v = L2(u) and, for all i ∈ {1, . . . , p}, vi = L2(ui). Let N be an integer greater than all the poles
and zeroes of the coefficients of L, L1 and L2.

Assume that L2(u) =
∑

1≤i≤n xivi = 0. For all k ∈ {0, . . . , p− 1}, we have

v(k) =
∑

1≤i≤n

xivi(N + k) = 0 (8)

Assume now that x1, . . . , xn satisfy (8) for all k ∈ {0, . . . , p− 1}. Since v is a solution of L1 and L1 is
of order p, v(k) = 0 for all k ∈ N, i.e. v = L2(u) = 0. Hence the space of solutions of (8) is of dimension
q and a basis of solutions {(ci1, . . . , cin)}1≤i≤q of this equation gives a basis of solutions of L2.

2. This part of the result is proved by using a difference version of the variation of the parameters. Let
M be the p × p matrix of coefficients (σj−1(wi))1≤i,j≤p and B be the column vector whose p − 1 first
rows are equal to zero and last row is equal to v. For all w ∈ S, L2(w) = 0 if and only if the vector
(w, . . . , σp−1(w))t is a solution of σ(X) = AL2X + B.

Let C be a vector of p indeterminates. A short computation shows that MC is a solution of σ(X) =
AL2X + B if and only if and only if C is a solution of σ(C) − C = (AL2M)−1B. This last equation has
a solution of the desired form, that concludes.

Those results allow one to construct a basis of solution of L from basis of solutions L1 and L2.

Corollary 2. Let v1, . . . vp be a basis of solutions of L1, w1, . . . , wq be a basis of solutions of L2. Then
one can compute from the vi and wi a basis of solutions u1, . . . , un of L such that

1. ∀i ∈ {1, . . . , q}, ui = wi

2. ∀i ∈ {1, . . . , p}, L2(uq+i) = vi

Moreover, if all solutions of L2 are liouvillian and there exists r ≤ p such that v1, . . . , vr is a basis of
the space of liouvillian solutions of L1, {u1, . . . , uq+r} is a basis of the space of liouvillian solutions of L.

Proof. By proposition 6, one can construct a family u1, . . . , un such that ui = wi for all i ∈ {1, . . . , q} and
L2(uq+i) = vi for all i ∈ {1, . . . , p}. One can check that {u1, . . . , un} is free, hence is a basis of solutions
of L.

Moreover, if w1, . . . , wq and v1, . . . vr satisfy the conditions of the second part of the proposition,
u1, . . . , up+r are liouvillian by the second part of proposition 6. We need to show that these sequences
generate the full space of solutions of L. Let u be a liouvillian solution of L ; L2(u) is liouvillian, and is a
solution of L1. It follows that the dimension of the space of liouvillian solution of L is smaller than q + r,
that concludes.

6.2 Indecomposable Operators

The proposition 7 is a keystone of our algorithm. It shows that if L is an indecomposable operator with
coefficients in C(z), where C is non necessary algebraically closed, we need to search only right factor of
L in that field, without extending our coefficients field to C(z).

Proposition 7. Let L be a indecomposable linear difference operator with coefficients in C(z), where C
is a non necessary algebraically closed field of characteristic 0. If L has a liouvillian solution, it admits a
nontrivial right factor P with coefficients in C(z) such that all solutions of P are liouvillian.

Proof. Let a be a liouvillian solution of L. By theorem 3, a is solution of an operator Q such that Q has
a solvable Galois group. Let R = grcd(L, Q) and S be an irreducible right factor of R. The operator S is
a right factor of L. Moreover, since S is a right factor of Q, its Galois group is the quotient of the Galois
group of G, hence is solvable, and all its solutions are liouvillian.
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Let now l be the extension of C generated by the coefficients of S, and G be the (classical) Galois group
of l over C. The group G is finite; let {g0, . . . , gk−1} be its elements and P = llcm(g0(S), . . . , gk−1(S)).
The operator P is a right factor of L, and, since L is indecomposable, P �= L. Moreover, since g(P ) = P
for all g ∈ G, the coefficients of P belong in C by separability. Finally, by proposition 1. the solution
space of P is the sum of the solutions spaces of the gi(Q). Moreover, for all i ∈ {0, . . . , k−1} all solutions
of gi(Q) are liouvillian, hence all solutions of P are liouvillian.

In [4], the authors give an algorithm to compute right factors of linear difference operator. This
algorithm is based upon the following idea :

1. constructing a family of associated linear difference operators (Lm)1≤m<n

2. for each m, computing the hypergeometric solutions of Lm.

Hypergeometric solutions of Lm give then candidates for the order m right factors of Lm.
If the coefficients of L lie in k = C(z), where C is not necessarily algebraically closed, the coefficients

of Lm lie in k. Moreover, for computing right factors of L with coefficients in k, one just need to search
hypergeometric solutions over k of Lm, which avoid computations in extensions of C (see [8]).

Note that the fact that L has a right factor in k[E; σ] with a full space of liouvillian solutions does not
imply that all right factor of L with coefficients in k have a full space of liouvillian solutions. However
there exists a factorization L = Q1 . . . Ql of L in k[E; σ] such Ql has only liouvillian solutions, and,
by theorem 1, for any factorization L = P1 . . . Pk of L into irreducible factors, k = l and there exists
i ∈ {1, . . . , k} such that Pi is equivalent to Ql, hence has only liouvillian solutions.

6.3 Full Algorithm

We can now describe our algorithm for computing liouvillian solutions of an ordinary linear difference
operator.

Let L be such an operator and σ(X) = ALX the associated system.

First step. By using our decomposition algorithm of subsection 4.2, put σ(X) = ALX in the form
liouvillian solutions

σ(X) =

AL1

. . .
ALp

X (9)

where σ(X) = ALiX is the companion system of an indecomposable operator of order ni for all i ∈
{1, . . . , p}.

The operator L is the left least common multiple of L1, σ−n1(L2), . . . , σ−n1+...+np−1(Lp). Hence
by proposition 5, we just need to compute a basis of the space of liouvillian solutions of each system
σ(X) = ALiX to obtain a basis of solutions of the space of liouvillian solutions of L.

Let σ(X) = ALiX . If the system is of order 1, its solution space is trivially generated by an hyperge-
ometric solution.

If not, σ(X) = ALiX is either irreducible, or reducible and indecomposable.
In the first case, we know by corollary 1 that if Li has a liouvillian solution, the iterated system

σni(X) = (
∏σ

ni
ALi)X must be diagonalizable. This gives us the way to follow.

Second step. 1. Compute the iterated system σni(X) = (
∏σ

ni
ALi)X . Then compute its Eigenring and

try to factorize σni(X) = (
∏σ

ni
ALi)X by using the decomposition Eigenring of subsection 4.2.

If σni(X) = (
∏σ

ni
ALi)X is diagonalizable this way, all solutions of σni(X) = (

∏σ
ni

ALi)X are liouvil-
lian and one can compute a basis of solutions of this system as explained in corollary 1.

2. Assume that it is not the case.

If Li has a liouvillian solutions, by proposition 7, for all Li = P1 . . . Pk factorization of Li into
irreducible linear difference operators with coefficients in C(z), there exists i ∈ {1, . . . , k} such that Pi

has only liouvillian solutions.

Search now if Li has such a factorization.
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Proceed by induction on n. One can search a right factor P of Li with coefficients in C(z) of minimal
order as explained in section 6.2. Since P is of minimal order, it is irreducible in k[E; σ].

If P = Li, i.e. Li is irreducible, this part of the algorithm end and Li has no liouvillian solution.
Otherwise, put Li in the form L̃iP where P is as above. Test then if all the solutions of P are liouvillian
by applying recursively our algorithm for computing such solutions.

If not, search if L̃i has a right factor all of whose solutions are liouvillian, and so on.

This part of the algorithm end when either we obtain a factorization Li = P1 . . . Pk of Li where no
Pi has liouvillian solution, or we obtain a decomposition Li = L̃iP1 . . . Pk where P1 has a full set of
liouvillian solutions. In the first case, L1 has no liouvillian solutions. In the second case, we know by
theorem 1 that P1 similar to a right factor Q1 of L. Moreover, one can compute this factor as explain in
[7].

Put L in the form L = QQ1 and compute recursively a basis of the space of liouvillian solutions of Q.
Corollary 2 allows then to compute a basis of the space of liouvillian solutions of L from the liouvillian
solutions of Q and Q1.

6.4 Examples

Example 1. Let L be the operator E2 + 1
n−1E − n2

n−1 .

A computation with SHASTA shows that the Eigenring of the associated system is trivial.

The second iterated system associated to L has for matrix of coefficients

Πσ
2 AL = σ(AL)AL =

(
n2

n−1 − 1
n−1

− n
n−1 −n2+n−1

n−1

)
A new computation shows that this system has a dimension two Eigenring whose matrix B1 = Id and

B2 =
( 1

n−1 − 1
n−1

n
n−1 − n

n−1

)
are a basis.

The matrix B2 has two Eigenvalues λ0 = 0 and λ1 = 1 of order 1 each. By our decomposition
algorithm, we find

P =
(

1 − 1
n

n
n−1 0

)
such that

σ2(P )(Πσ
2 AL)P−1 =

(
n+1 0

0 n+2

)
and σ(P )AP−1 =

(
0 −1

−(n+1) 0

)
Let B = σ(P )AP−1. Define a sequence of matrix X(n) by X(0) = Id and X(n + 1) = BX(n). By

induction one can verify that for all p ∈ N,

X(2p) =
(

1...(2p−1) 0

0 1...(2p)

)
and X(2p + 1) =

(
0 1...(2p)

1...(2p+1) 0

)
Finally, P−1X is a solution matrix of σ(X) = AL(X). The first rows of this matrix give us a basis of

solutions {x1, x2} of L, where, for all p ∈ N{
x1(2p) = 1 . . . (2p− 1)
x2(2p) = 1 . . . 2(p− 1) and

{
x1(2p + 1) = 1 . . . (2p− 1)
x2(2p + 1) = 1 . . . (2p)

Example 2.Let L be the operator E2 − (n + 1)E + n.

A computation with SHASTA shows that the operator and the associated second iterated system both
have trivial Eigenring.

If L has liouvillian solution, he then must have a right factor of order 1 with coefficients in Q(z).
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A computation with SHASTA shows that the constant sequence x1 = 1 is a hypergeometric solution
of L, hence that L admits L− 1 as a right factor. By Euclidean division, L = (E − n) ∗ (E − 1).

Let L2 = E − n; L2 is of order 1 and the sequence y = ((n− 1)!)n∈N is an hypergeometric section of
L2.

We apply now the variations of the parameter. Let c ∈ S ; L1(c1) = y if and only if σ(c)− c = y, i.e. if
and only if c(n+1) = c(n)+(n−1)! for all n ∈ N. It follows that x1 = 1 and x2 = (

∑
1≤k≤n−1(k−1)!)n∈N

are a basis of the space of the liouvillian solutions of L.

References

1. S.A. Abramov and M. Bronstein. On solutions of linear functional systems. In Proceedings of ISSAC’2001,
page in press. ACM Press, 2001.

2. M.A. Barkatou. Rational solutions of matrix difference equations : The problem of equivalence and factori-
sation. In Proceedings of ISSAC 99, 1999.
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Nice-Sophia Antipolis, 2001.
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