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Abstract. In this paper we describe an algorithm for computation of an extended characteristic
set for a differential ideal generated by a finite number of differential polynomials. This algorithm
improves the Kolchin-Ritt algorithm by using algebraic Gröbner bases in the sense that it constructs
an extended characteristic set which has rank either less than or equal to the one from the Kolchin-
Ritt algorithm. We give explicit examples when the inequality holds.

1 Introduction

The notion of characteristic set was first introduced by Ritt [1] for differential ideals of ordinary differential
polynomials, it was extended by Kolchin to the partial case [2] and now it is used in many distinct
mathematical theories. Such notion extends the Janet theory [3] of passive orthonomic systems of algebraic
differential equations. Janet also introduced implicitly the notion of multiplicative and nonmultiplicative
derivatives in order to complete a system of orthonomic algebraic differential equations to its passive or
involutive form. These notions were extended in the so-called formal theory of differential equations [4]
and generalized in [5, 6]; now it is a good tool for studying systems of algebraic differential equations
and their completion to involution [7]. Wu used the notion of characteristic set [8] in his algorithms for
automatic deduction in elementary and algebraic differential geometry and now the corresponding Ritt
algorithm for finding an extended characteristic set is known as Wu-Ritt algorithm. It is well known
the use of characteristic sets of polynomial ideals as alternative to the Gröbner bases, introduced by
Buchberger [9], in many problems of algebraic system solving. The characteristic set is then alternative
to differential Gröbner bases introduced by [10] and [11] and studied also in [12]. Unfortunately there is
no general algorithm that allows to find a characteristic set of a differential ideal generated by a finite
number of differential polynomials. In the polynomial case it is always possible to find the characteristic
set of a polynomial ideal when a Gröbner basis of the ideal with respect to a lexicographic term ordering
is known [17]. In the general case some procedures that use extended characteristic sets are known for the
decomposition of the differential radical ideal associated with a system of algebraic differential equations
[13–16]. All such theories use either the well known Wu-Ritt algorithm in the polynomial case and in the
ordinary differential case or the Kolchin-Ritt algorithm based on the Rosenfeld lemma [18] for finding an
extended characteristic set, which is very often different from the characteristic set. In this paper we show
that if we modify the classical Kolchin-Ritt algorithm for extended characteristic sets by using Gröbner
bases in the intermediate steps of the algorithm, then we get an autoreduced set that has a rank less than
or equal to the usual extended characteristic set, and then it is more near to a characteristic set, which
has the minimal rank.

2 Preliminaries

Let K be a zero characteristic differential field with a finite set of mutually commuting derivations
{∂1, · · · , ∂n}, and let Θ = {θ = ∂α1

1 · · · ∂αn
n | (α1, . . . , αn) ∈ N

n} be the monoid of derivation operators.
The least common multiple of θ, ϑ ∈ Θ will be written as lcm(θ, ϑ).
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We shall denote by R = K{y1, . . . , ym} the differential polynomial ring [1, 2] with the set of differential
indeterminates {y1, . . . , ym} and by V = {θyj | θ ∈ Θ, 1 ≤ j ≤ m} the set of variables in R. If f ∈ R

contains the variable v, then we denote the degree of v in f by degv(f). The order of derivative θ =
∂α1
1 · · · ∂αn

n is
∑n

i=1 αi and will be denoted by ord(θ). If ord(θ) > 0, the derivation operator θ is said to
be proper.

Definition 1. [2] A total order on V is called a ranking if it satisfies

1. (∀θ ∈ Θ \ {1}) (∀v ∈ V) [ v ≺ θv ]
2. v1 ≺ v2 (v1, v2 ∈ V) iff (∀θ ∈ Θ) [ θv1 ≺ θv2 ]

A ranking ≺ is said to be orderly if θyj ≺ ϑyk (1 ≤ i, k ≤ m) whenever ord(θ) < ord(ϑ) and elimination
if yj � yk implies θyj � ϑyk for any θ, ϑ ∈ Θ.

Lemma 1. [2] A ranking on V is a well (admissible) ordering.

Proof. Suppose that there exists an infinite decreasing sequence of elements in V with respect to ≺. Then
there exists at least one i (1 ≤ i ≤ n) such that θ1yi � θ2yi � · · · is an infinite decreasing sequence.
By Definition 1, the ranking ≺ induces a total order ≺i on the set Vi = {θyi | θ ∈ Θ}. Since the set Vi

is a monoid isomorphic to N
n, the total order ≺i is a term ordering on N

n
0 by its own definition. The

properties (1)–(2) in Definition 1 imply that ≺i is a well ordering, and, hence, the decreasing sequence
{θl | l ∈ N} is stationary. It follows that ≺ is a well ordering.

Other properties of rankings can be found in [19] and [20].

Definition 2. [2] Given a ranking ≺ on V and a differential polynomial f ∈ R \ {0}, the variable θyi of
maximal ranking which is contained in f is called the leading variable or leader of f and will be denoted
by uf . Thus, f can be written as f =

∑d
j=0 Iju

j
f with uIj ≺ uf (0 ≤ j ≤ d). Id is called the initial of f

and will be denoted by If . The initial of ∂f/∂uf is called the separant of f and will be denoted by Sf .

Definition 3. Given a finite set F ⊂ R \ {0}, we shall denote by HF the set of initials and separants of
elements in F , and by (F ) the algebraic ideal generated by F in the polynomial ring K[V1] where V1 ⊂ V

is the finite subset of variables which occur in F . Then (F ) : H∞
F is the saturation of (F ) with respect to

HF , that is, an ideal in K[V1] such that for any its element g ∈ (F ) : H∞
F there exists a power product

h of elements in HF providing h g ∈ (F ).

3 Ritt Reduction

In this section we consider one of the reduction algorithms [1, 2, 13–15]. Suppose a ranking ≺ is fixed.

Definition 4. Let f, g ∈ R \ {0}. f is said to be R-partially reduced with respect to g1 if f does not
contain any proper derivative of ug. f is said to be R-reduced with respect to g if f is R-partially reduced
and degug

f < degug
g.

Theorem 1. Let f, g ∈ R \ {0}. If f is not R-partially reduced with respect to g, then this reduction can
be done in a finite number of steps.

Proof. Assume that f contains a proper derivative θug. The equality θg = Sgθug+h with uh ≺ θug implies
that the polynomial f can be pseudodivided [21] by θg. Let r1 be the pseudoremainder. The condition
degug

θg = 1 implies that ur1 ≺ θug = uθg. Let θ1 = θ. If r1 still contains a proper derivative θ2ug of
ug the preudodivision can be applied to r1 again to produce the pseudoremainder r2. By proceeding in
this way we obtain a sequence of pseudoremainders r1, r2, · · · with ur1 ≺ θ1ug, ur2 ≺ θ2ug ≺ θ1ug and
so on. Since � is a well ordering by Lemma 1, the sequence θ1ug � θ2ug � · · · is finite and the sequence
r1, r2, · · · terminates with a pseudoremainder which is R-partially reduced with respect to g.

Lemma 2. Let f, g ∈ R \ {0}. Suppose that f is R-partially reduced but not R-reduced with respect to g.
Then f can always be R-reduced with respect to g in a finite number of steps.

Proof. Let d1 = degug
g and d2 = degug

f . By hypotesis d1 ≤ d2, and f can be R-reduced with respect
to g by means of pseudodivision: Igg

d2−d1+1f = p g + r where the pseudoremainder r is R-reduced with
respect to g.
1 R stands here after Ritt.
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Definition 5. If f ∈ R is R-reduced ( R-partially reduced ) with respect to g ∈ R, we shall say that
f is in the R-normal form (R-partial normal form) with respect to g and write f = RNF (f, g) (f =
RPNF (f, g)). If G ⊂ R is a finite set we shall say that f is in the R-normal form (R-partial normal form)
with respect to G and write f = RNF (f, G) (f = RPNF (f, G)) if f = RNF (f, g) (f = RPNF (f, g))
for every element g ∈ G.

Remark 1. Given f, g ∈ R \ {0}, the procedures described in the proofs of Theorem 1 and Lemma 2 give
algorithms for the computation of RPNF (f, g) and RNF (f, g), respectively which we fix as constituents
of other algorithms described below.

Definition 6. Let F be a subset of R \ {0}. F is said to be autoreduced if for every pair f, g ∈ F the
equalities f = RNF (f, g) and g = RNF (g, f) hold.

Theorem 2. [2] Every autoreduced set F ⊂ R \ {0} is finite.

Proof. Assume that F is autoreduced and infinite. Then there is i (1 ≤ i ≤ n) with an infinite autoreduced
subset G of F such that for each g ∈ G ug = θyi for some θ ∈ Θ. Consider the set U = {ug | g ∈ G}.
Since the monoid Θ is isomorphic N

n, by Dickson’s lemma [22] there may be only finitely many distinct
derivation operators θ such that in any pair θ1, θ2 of them one operator is not multiple of another. Because
G is R-partially reduced, it follows that there are infinitely many distinct elements in G with the same
leading variable. But then one derivative of a pair of such elements is pseudodivisible by another that
contradicts our assumption.

Remark 2. If a finite set F is autoreduced, then we shall write it as a sorted set F = {f1, . . . , fs} with
uf1 ≺ uf2 ≺ · · · ≺ ufs .

Remark 3. If f ∈ R is not R-reduced with respect to an autoreduced set F = {f1, . . . , fs} of R, then f
can be R-reduced with respect to F in a finite number of steps. It is sufficient to R-reduce f sequentially
with respect to fi (1 ≤ i ≤ s) in such a way R-partial reduction is done and then R-reduction. By
Theorem 1 and Lemma 2 this is done in a finite number of steps. If r is the last pseudoremainder, then
r = RNF (f, F ). Below we present an algorithm to compute r

The following algorithm R-NormalForm, given p ∈ R \ {0}, a ranking ≺ and an autoreduced set
F ⊂ R\{0} provides computation of the R-normal form RNF (p, F ). Correctness and termination of this
algorithm follow from Theorem 1, Lemma 2 and Remarks 1–3. The reduction process described in the
algorithm is equivalent to that one given by Kolchin [2] when only R-partial reduction is done. But with
R-reduction involved, algorithm R-NormalForm is different from the Kolchin algorithm, and equivalent
to that described by Ritt [1].

Remark 4. The first while-loop in algorithm R-NormalForm performs partial R-reductions as described
in the proof of Theorem 2 and, thus, computes the R-partial normal form of h modulo F . The second
while-loop performs the remaining R-reductions and thus completes computation of R-normal form h
modulo F . With all this going on, different paths in the reduction process may end up with different value
of the R-normal form. In particular, given f and F , the reduction path in the algorithm and, hence, its
output may vary if the ranking is changed as the following example shows.

Algorithm: R-NormalForm

Input: p ∈ R, a differential polynomial; F = {f1, . . . , fs} ⊂ R,
an autoreduced set; ≺, a ranking

Output: h = RNF (p, F )
1: h := p
2: while exist f ∈ F such that h contains a proper derivative of uf do
3: choose such f with the highest uf w.r.t. ≺
4: h := RPNF (h, f)
5: od
6: while exist f ∈ F such that h contains uf and deguf

(h) ≤ deguf
(f) do

7: choose such f with the highest uf w.r.t. ≺
8: h := RNF (h, f)
9: od
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Example 1. F := {∂2x, x∂1y, ∂2y}, f = ∂1∂2y − 1. Consider the elimination ranking (see Definition 1)
with x ≺ y. If ∂1 ≺ ∂2, then, in accordance with algorithm R-NormalForm, we must do first the R-
reduction with respect to ∂2y: f → f − ∂1(∂2y) = −1. Thus, RNF (f, F ) = −1. If we change the ranking
taking ∂2 ≺ ∂1, then we must do first the R-reduction of f with respect to x∂1y − 1 and then with respect
to ∂2y:

f → x2f − x∂2(x∂1y − 1) + ∂2x((x∂1y − 1) − ∂2x = −x2.

This gives RNF (f, F ) = −x2.

4 Characteristic Sets

Definition 7. [1, 2] Given a ranking ≺ on V and a differential polynomial f ∈ R \ K, u
deguf

f

f will
be called a rank of f and denoted by rank(f). Given two polynomials f, g ∈ R \ K, rank(f) is said
to be less than rank(g) if uf ≺ ug, or if uf = ug and deguf

f < degug
g. In this case we shall write

rank(f) < rank(g).
Let now F = {f1, . . . , fs} and G = {g1, . . . , gt} be finite autoreduced sets of nonzero differential

polynomials sorted in accordance with Remark 2. Then F is said to be of rank less than G and written
as rank(F ) < rank(G) if one of the two alternatives holds:

1. There is i ≤ min(s, t) such that rank(fj) = rank(gj) for 1 ≤ j < i and rank(fi) is less than rank(gi).
2. s > t and rank(fj) = rank(gj) for 1 ≤ j ≤ t.

F and G have the same rank if s = t and rank(fi) = rank(gi) for all i.

Definition 8. [1] Let A be a subset of R and � be a ranking. A finite subset F of A is called a
characteristic set of A if it is autoreduced and has the minimal rank among all the autoreduced subsets
of A. All the characteristic sets of A have the same rank.

Definition 9. [2] An ideal of R which is stable under derivative operators in Θ is called a differential
ideal. Let F be a subset of R. The minimal differential ideal containing F is called the differential ideal
generated by F and will be denoted by [F ]. The ideal [F] is the intersection of all the differential ideals
containing F . Similarly to the algebraic ideals (see Definition 3) we define the saturation of [F ] with
respect to HF as a differential ideal [F ] : HF such that if g ∈ [F ] : H∞

F , then there exists a power
product h of elements in HF providing h g ∈ [F ].

Definition 10. [14, 18] Let p, q ∈ R \ {0} be a pair of differential polynomials such that up = θyi and
uq = ϑyi. Then if lcm(θ, ϑ) is distinct from both θ and ϑ the ∆-polynomial ∆(p, q) of p, q is defined as

∆(p, q) = Sq
lcm(θ, ϑ)

θ
p − Sp

lcm(θ, ϑ)
ϑ

q,

where Sp and Sq are separants of p and q, respectively. Otherwise, if rank(p) ≥ rank(q) then the ∆-
polynomial ∆(p, q) of p, q is defined as

∆(p, q) = RNF (p, q)

and as
∆(p, q) = RNF (q, p)

if rank(p) < rank(q).

Definition 11. [13] An autoreduced subset G of R \ {0} is called coherent if for every pair g1, g2 ∈ G
generating ∆-polynomial the condition RNF (∆(g1, g2), G) = 0 holds.

Remark 5. Rosenfeld[18] defined coherence as follows. An autoreduced set F is coherent if for any pair
f, g ∈ F of its elements such that uf = θ1yi, ug = θ2yi the condition ∆(f, g) ∈ (Fν) : H∞

F holds where
Fν is the set Fν = {ϑp | p ∈ F} with ϑup ≺ lcm(θ1, θ2)yi. This coherence condition is necessary and
sufficient for F to be the characteristic set of a prime differential ideal [F ] : H∞

F . Any autoreduced set,
coherent in accordance with Definition 11, is also coherent in the sense of Rosenfeld [13].

Definition 12. (cf. [2]) Given a differential ideal Id and an autoreduced set G ⊂ Id, the set G will be
called Id-coherent if for every pair f1, f2 ∈ Id with uf1 = θyi and uf2 = ϑyi RNF (∆(f1, f2), G) = 0.
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Theorem 3. Let Id be a differential ideal in R, G ⊂ Id be an autoreduced subset and ≺ be a ranking.
Then the following are equivalent:

(i). G is a characteristic set of Id with respect to ≺,
(ii). if f ∈ Id, then RNF (f, G) = 0,
(iii). G is Id-coherent.

Proof. (i) =⇒ (ii) by Definition 8. (ii) =⇒ (iii) by Definition 12 and the fact that g1, g2 ∈ Id implies
∆(g1, g2) ∈ Id. (iii) =⇒ (i) because there are no nonzero elements in Id reduced with respect to G.
Indeed, suppose that there exists f ∈ Id, that is R-reduced with respect to G. Let δi be a derivation for
some I = 1, . . . , n. Since f + δi(f) ∈ Id and ∆(f + δi(f), δi(f)) = f , (iii) implies RNF (f, G) = 0. Thus,
there is no nonzero differential polynomial f ∈ Id that is R-reduced with respect to G.

Lemma 3. Let F be a finite subset of R. Then there exists a subset G of F such that G is autoreduced
and each f ∈ F \ G is not R-reduced with respect to G.

Proof. The set G can be computed by the following algorithm [1]

Algorithm: CharacteristicSet

Input: F , a finite subset of R \ {0}
Output: G, a characteristic set of F
1: G := ∅
2: if F ∩ K �= ∅ then
3: choose any f ∈ F ∩ K

4: G = {f}
5: else
6: choose f ∈ F of the minimal rank
7: F := F \ {f}
8: G := G ∪ {f}
9: while F �= ∅ do

10: choose g ∈ F of the minimal rank
11: F := F \ {g}
12: if g = RNF (g, G) then
13: G := G ∪ {g}
14: fi
15: od
16: fi

The output set G is a characteristic set of F by construction and Definitions 7–8. The algorithm terminates
in a finite number of steps, because F is finite.

Remark 6. If G is computed for F by the above algorithm we shall write G = CharacteristicSet(F ).

5 Kolchin-Ritt Algorithm

In his book [1] Ritt introduced an algorithm that, given a set F of ordinary differential polynomials,
constructs a finite set F̃ such that [F ] = [F̃ ] and a subset G of F̃ such that G is a characteristic set of
F̃ . After the work of Wu [8] this set is often called an extended characteristic set of F . Furthermore, the
algorithm is now known as Wu-Ritt algorithm.

By extending the Wu-Ritt algorithm to the partial differential case, given a finite subset F of differ-
ential polynomials in R, it is possible to construct another finite subset F̃ ∈ R such that [F ] = [F̃ ] and
F̃ contains an autoreduced and coherent subset G which is the characteristic set of F̃ . The algorithm for
computation of G is known as Kolchin-Ritt algorithm [12].

We present this algorithm in a form different from that in paper [12] and prove its correctness and
termination.
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Algorithm: Kolchin-Ritt I

Input: F ∈ R \ {0}, a finite subset; ≺, a ranking
Output: F̃ , G ⊂ R \ {0} such that [F̃ ] = [F ] and

G ⊆ F̃ is the extended characteristic set
1: F̃ := F
2: G := CharacteristicSet(F )
3: B := {∆(fi, fj) | fi, fj ∈ F, rank(fi) ≤ rank(fj)} ∪ F̃ \ G
4: while B �= ∅ do
5: choose k ∈ B of the lowest rank
6: h := RNF (k, G)
7: if h �= 0 then
8: F̃ := F̃ ∪ {h}
9: G := CharacteristicSet(F̃ )

10: B := B ∪ {∆(h, f) | f ∈ F̃} \ {k}
11: fi
12: od

Correctness. Let F̃0 = F and let F̃i and Bi be the values of F̃ and B, respectively, after ith execution
of the while-loop. Then

F = F̃0 ⊆ F̃1 ⊆ F̃2 ⊆ · · ·
The algorithm maintains the loop invariant [F ] = [F̃i]. Indeed, since the current set Bi of ∆-polynomials
satisfies Bi ⊂ [F̃i−1] we deduce that [F̃i] = [F̃i−1 ∪ Bi] = [F̃i−1]. Therefore, [F ] = [F̃i].

Termination. Let now Gi be the value of G after the ith execution of the while-loop and G0 =
CharacteristicSet(F )). Then

rank(G0) ≥ rank(G1) ≥ rank(G2) ≥ · · ·

By Ritt [1] and Kolchin [2], in every set of differential polynomials there exists an autoreduced subset of
the minimal rank. Such subset is coherent by the rank minimality. Thereby, the chain of Gi terminates.

Example 2. F = {f1, f2, f3}, f1 := ∂2x, f2 := x∂1y − 1, f3 := ∂2y. For the elimination ranking x ≺ y,
∂1 ≺ ∂2 the set f is autoreduced and coherent. Thus, G=F . One can also show that

[F ] = [∂2x, x∂1y − 1, ∂2y, ∂2
1y + ∂1x(∂1y)2]

and {∂2x, x∂1y − 1, ∂2y, ∂2
1y + ∂1x(∂1y)2} is the differential Gröbner basis [10, 11] of [F]. G is the char-

acteristic set of [F ], because [F ] = [G] = [G] : x∞ and x �∈ [F ].
Now consider the differential polynomial f = ∂1∂2y − 1 �∈ [F ]. If we R-reduce f with respect to g3 we

obtain h1 = RNF (f, f3) = −1 and h1 = RNF (h1, F ). However, if we use another chain of reduction we
find h2 = RNF (f, f2) = −x and again h2 = RNF (h2, F ).

Remark 7. As Example 2 shows, the R-reduction chain of p ∈ R with respect to elements of the char-
acteristic set of a differential ideal [F ] (unlike its differential Gröbner basis) may end up with different
results depending on the sequence of the elementary reductions. If p ∈ [F ], then the reduction sequence
always ends with zero. It should be mentioned that in algorithm R-NormalForm (Sect.3) the elementary
reduction sequence is fixed.

Remark 8. As it follows from the structure of algorithm Kolchin-Ritt I and the above analysis of its
correctness, the sets F , F̃ and G satisfy the relation [G] ⊆ [F ] = [F̃ ] . Generally, G ⊂ [F ] and below we
demonstrate this fact by explicit examples.

Since the above algorithm, generally, constructs not a characteristic set of a differential ideal Id ⊂ R,
but an extended characteristic set G ⊂ [F ], one can try to improve the algorithm in the following sense.
An improved version constructs an extended characteristic set G̃′ ⊂ [F ] such that rank(G′) ≤ rank(G)
and there are examples when the inequality holds.
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Algorithm: Kolchin-Ritt II

Input: F ∈ R \ {0}, a finite subset; ≺, a ranking
Output: F̃ , G ∈ R \ {0} such that [F̃ ] = [F ] and

G ⊆ F̃ is the extended characteristic set
1: F̃ := F
2: h := 1
3: while h �= 0 do
4: F̃ := GB(F̃ )
5: G := CharacteristicSet(F̃ )
6: while there exist g, g′ ∈ G such that ug = θyi � ug′ = θ′yi do
7: choose such g, g′ with ∆(g, g′) of the lowest rank
8: h := RNF (∆(g, g′), G)
9: if h �= 0 then

10: F̃ := F̃ ∪ {h}
11: fi
12: od
13: od

This improved version of algorithm Kolchin-Ritt I is based on the use of the algebraic Gröbner basis
for some specified term order, for instance, the lexicographical order induced by the ranking ≺. Given an
intermediate polynomial set F̃ , its algebraic Gröbner basis denoted by GB(F̃ ).

Correctness and termination of this algorithm follows from those of algorithm Kolchin-Ritt I and
of Buchberger algorithm for computation of algebraic Gröbner basis.

Example 3. F := {xy2, yz−1, xv−∂z}. Consider the elimination ranking (see Definition 1) with x ≺ y ≺
z ≺ v. Then, in accordance with the algorithm Kolchin-Ritt I, we have F̃ := F and G := {xy2, yz− 1}.
If we use the algorithm Kolchin-Ritt II we have F̃1 := {x, yz − 1, ∂z} and G1 := {x, ∂y, yz − 1}, which
has rank less than G.

Example 4. F := {xy2, y∂1z−x, ∂2z}. Consider the elimination ranking with x ≺ y ≺ z and ∂1x ≺ ∂2x ≺
∂1y ≺ ∂2y ≺ ∂1z ≺ ∂2z. Then, in accordance with the algorithm Kolchin-Ritt I, we have F̃ := F and
G := {xy2, y∂1z − x, ∂2z}. If we use the algorithm Kolchin-Ritt II we have F̃1 := {x3, x2y, xy2, y∂1z −
x, ∂2z} and G1 := {x3, x2y, ∂2z}, which has rank less than G.
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16. Bouziane, D., Rody, A.K., Maârouf, H.: Unmixed-dimensional Decomposition of a Finitely Generated Perfect

Differential Ideal, J. Symb. Comp. 31 (2001) 631–649
17. Aubry, F., Lazard, D., Moreno Maza, M.: On the Theories of Triangular Sets, J. Symb. Comp. 28 (1999)

105–124
18. Rosenfeld, A.: Specializations in Differential Algebra. Trans. Amer. Math. Soc. 90 (1959) 394–407
19. Carra’Ferro, G., Sit, W.Y.: On Term-Orderings and Rankings. Computational Algebra, G. Fischer, P. Lous-

taunau, J. Shapiro, E. Green, D. Farkas (Eds.), Marcel Dekker, New York (1994) 31–77
20. Rust, C.J., Reid, G.J.: Rankings of Partial Derivatives. In: Proc. ISSAC’97, W.Küchlin (ed.), ACM Press
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