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Abstract. This paper studies applications of the normal form method to dynamical systems using
Mathematica. It describes the package for power series treatment, and the procedures for building
a normal form and normalizing transformations. Examples of treatment of a crude one-dimension
equation and a double pendulum system are given.

1 Introduction

The concept of using co-ordinate transformation to simplify ordinary differential equations has been
widely used for a long time. The normal form method which has applications in many branches of
engineering, physics, and applied mathematics is a powerful technique to simplify the governing ordinary
differential equations. The basic idea of the method of normal form is the use of “local” coordinate
transformation to simplify the equations that describe the dynamics of the system under consideration.
In other words, with the method of normal forms, one seeks a near-identity coordinate transformation in
which the dynamical system takes the simplest form or so-called normal form. The transformations are
called local because they are generated in a neighbourhood of a known solution such as a fixed point or
a periodic orbit of the system. For nonlinear dynamical systems the coordinate transformation will, in
general, be nonlinear. The normalisation is usually carried out with respect to perturbation parameters.
The normal forms of differential equations are also very useful in bifurcation analysis [1].

The method of normal forms dates back to the times of Euler, Poincaré, Dulac and Birkhoff. In this
paper, algorithm based on the approach by Bruno [2] is employed. It is an algorithm for a resonant normal
form creation. The important advantage of this approach is its general algorithmic frame, which allows
one to investigate a wide class of autonomous systems including Hamilton and non- Hamilton cases. The
algorithm provides a constructive way for obtaining the approximations of local families of periodic and
conditional periodic solutions in the form of power (Fourier) series. Another advantage of the approach
employed here is the simplicity of creation of the normal form and the corresponding transformations,
which is implemented using recursive formula.

Examples of the lowest orders calculation of the normal forms in computer algebra necessary for
bifurcation analysis has been done in [3]. A package for calculating coefficients of the normal form has
been developed by one of the authors [4]. The package NORT is written in Standard LISP and contains
about 2000 operators.

2 Preliminary Treatment of the System

Consider a system of autonomous ordinary differential equations:

ẋ = Φ(x), (1)

where x = (x1, . . . , xn) is a vector function of time, Φ(x) is a vector function of x and other parameters.
Such equations arise in numerous scientific, engineering and industrial applications. It is worth noting
that a non-autonomous system of equations

ẋ = Φ̂(x, t). (2)
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can be transformed into the autonomous system by introducing an additional variable θ = θ(t) such that
Φ̂(x, θ) becomes (explicitly) independent of t. θ(t) is defined by adding the equation θ̇ = φ(θ) to system
(2). For example cos(ωt) can be replaced by the sum (θ1 + θ2)/2 with an additional couple of equations:
θ̇1 = i · ω · θ1 and θ̇2 = −i · ω · θ2.

The important condition on a system of ordinary differential equations (1) is that it is explicitly solved
with respect to the first derivatives ẋ(t). Sometimes this can be done approximately.

Preanalysis. The second important condition on system (1) is that it is studied in the neighbourhood of
stationary point x0, Φ(x0) = 0. It is convenient to shift variables by −x0, so that Φ(0) = 0. Sometimes
the original system has no stationary points or it is important to investigate it in the domain which
is far from such points. In the neighbourhood of regular points other methods should be used (see, for
example, [5]). Usually, the right-hand side of the system is approximated by polynomials. For analytical
function, it is simply truncated power series of this function. Finally, the linear part of the right-hand
side is transformed to Jordan’s form so that the original system (1) is represented by

ẏi = λiyi + σiyi−1 + Φ̃i(y), σ1 = 0, i = 1, . . . n (3)

Here Λ = (λ1, . . . , λn) is the vector of eigenvalues of the matrix of the linear part of the system and Φ̃ is
the vector of polynomials obtained from approximating Φ by series of polynomials. Φ̃ does not contain
constant or linear terms. Constant terms have been removed by shifting into the stationary point while
linear terms are in the linear part of the system, which is written in Jordan form.

Normal form transformation. For the clarity of exposition let us consider pure diagonal systems.
(The general normal form method can be applied to a full Jordan case as well.) Equations (3) can be
written in the form:

ẏi = λiyi + yi

∑
q∈Ni

fi,qyq, i = 1, . . . , n , (4)

where we use the multi-index notation:

yq =
n∏

j=1

yj
qj ,

with the power exponent vector q = (q1, . . . , qn) and the sets:

Ni = {q ∈ Z
n

: qi ≥ −1 and qj ≥ 0 , if j �= i , j = 1, . . . , n} ,
because the factor yi has been moved out of the sum in (4).

The normalization is done with a near-identity transformation:

yi = zi + zi

∑
q∈Ni

hi,qzq, i = 1, . . . , n (5)

and then equation (4) will have the form:

żi = ψi(z)
def= λizi + zi

∑

〈q,Λ〉 = 0
q ∈ Ni

gi,qzq, i = 1, . . . , n . (6)

The important difference between (4) and (6) is a restriction on the range of the summation which is
defined by the equation:

〈q,Λ〉 def=
n∑

j=1

qjλj = 0 . (7)

The h and g coefficients in (5) and (6) are found by using the recurrence formula:

gi,q + 〈q,Λ〉 · hi,q = −
n∑

j=1

∑

p + r = q
q ∈ Ni

(pj + δij) · hi,p · gj,r + Φ̃i,q , (8)
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where the second summation in the right-hand side is over all integer vectors satisfying the constraint
p + r = q, and Φ̃i,q is a coefficient of the factor zizq in the polynomial Φ̃i in (3), arguments of which

have been transformed by (5). Here ||p|| and ||r|| < ||q||, where ||q|| def= q1 + . . .+ qn.
The ambiguity in (8) is usually fixed by the conventions:

hi,q = 0, if 〈q,Λ〉 = 0,
gi,q = 0, if 〈q,Λ〉 �= 0

(9)

and then the normalizing transformation is called a “basic”.

3 Package for Working with Series

As one of the steps in the preliminary analysis involves approximating right-hand side by polynomials, one
needs an effective tool for dealing with power series. Surprisingly, Mathematica lacks tools for working with
multivariate power series. To fill this gap, a package PolynomSeries has been developed by the authors.
The name of the package arises from an idea of a transformation between polynomial and specific power
representation in Mathematica. Below is a brief description of the functionalities of the package. Consider
a multivariate polynomial

p = Plus@@Flatten[Table[y1^i*y2^j*y3^k,
{i, 0, 1}, {j, 1, 2}, {k, 1, 3}]]

y2 y3 + y1 y2 y3 + y22 y3 + y1 y22 y3 + y2 y32 + y1 y2 y32 + y22 y32 + y1 y22 y32

Transforming the polynomial into a series with respect to variables y1, y2, y3 yields:

R = Polynom2Series[p, {y1, y2, y3}]

{{2, y2 y3},{3, y1 y2 y3 + y22 y3 + y2 y32}, {4, y1 y22 y3 + y1 y2 y32 + y22 y32}, {5, y1 y22 y32}}
The above list, R, is the main object of the package. Each element of R consists of two entries: the first
one is defined as “index”. It is the common power α = α1 + α2 . . . αn of the monomial yα1

1 yα2
2 . . . yαn

n .
The monomial itself is the second entry. Here yj are the elements of the second input parameter of the
function. One can consider transformation of the polynomial into the series with respect to some (not
all) variables (y2, y3 below):

Polynom2Series[p, {y1, y3}]

{{1, y2 y3 + y22 y3}, {2, y1 y2 y3 + y1 y22 y3 + y2 y32 + y22 y32}, {3, y1 y2 y32 + y1 y22 y32}}
Several arithmetic operations on series of type R are defined in the package, including addition of two

series (AddR[R1, R2]), multiplying two series and retaining terms up to order (index) (MultRR[R1,
R2, n]) or returning only terms of index n (MultRRLayer[R, R1, n]), ordering series by their indices
(OrderR[R])

It is often in the applications that one needs to substitute a new series for some (or all) variables
in the given series. This can be done using SubstR[R, RV, xvar, yvar, n] command. Here RV is a
vector of series with respect to new variables yvar which are substituted into the series R with respect
to variables xvar. To substitute a simple series (z1+z2, z2+z3, z1+z3) to every (y1, y2, y3) in the series
R, a vector of series substitutions is to be generated first:

subst = {z1 + z2, z2+z3, z1+z3};
RVy = MapThread[Polynom2Series[#1, #2]&,
{subst, {{z1, z2, z3}, {z1,z2,z3}, {z1,z2,z3}}}]

{{{1, z1 + z2}}, {{1, z2+ z3}}, {1, z1 + z3}}}
Rxy = SubstR[R, RVy, {y1, y2, y3}, {z1, z2, z3}, 3]

{{2, z1z2 + z1z3 + z2z3 + z32}, {3, 2z12z2 + 2z1z22 + 2z12z3 + 6z1z2z3 (10)
+ 2z22z3 = 4z1z32 + 4z2z32 + 2z33}}

Note that we only retain terms up to index 3. If the user is interested only in terms of index, say, 4,
SubstRLayer[ ] is to be used:
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Rxy = SubstRLayer[R1, RVy, {y1, y2, y3}, {z1, z2, z3}, 4]}

{{4, z13z2 + 3z12z22 + z1z23 + z13z3 + 7z12z2z3 + 7z1z22z3 + z23z3 + 4z12z32 (11)
+ 10z1z2z32 + 4z22z32 + 4z1z33 + 4z2z33 + z34}}

There are separate commands for two commonly used functions, which are singular in zero:square
root of series and inverse function. The correct usage of these commands can only be guaranteed if the
series contains a constant term (i.e. term with index 0). To find square root with terms up to index 4 use

SqrtR[R, 4]

{{0,
√

7, {1, x12
√

7}, {2, 27 x1256
√

7}, {3, 365 x13784
√

7}, {4, 19763 x1443904
√

7}}
Inverse series (1/R) is found by

InverseR[R, 4]

{{0, 17}, {1,−x149}, {2,−6 x12343}, {3,−36 x132401}, {4,−216 x1416807}}

4 Mathematica NormalForm Package

The procedures for building a normal form and a normalizing transformation till the fixed order are
implemented in the package NormalForm. It includes procedures for a linear normalization, for a nonlinear
normalization and for evaluating a periodicity condition. The input for investigation is the system of
ODEs.

The package was tested by comparing the results for approximate solutions of Duffing’s, van-der-Pol’s,
Henon-Heiles’ systems with solutions obtained before by V.Edneral with the LISP based package NORT
[4, 7]. The results are fully identical.

4.1 Example of One-Dimensional System

To demonstrate the main functions of the package, let us consider a trivial example of a one-dimensional
crude system:

ẏ = −y + y2. (12)

This equation has an exact solution

y(t) =
c · exp(−t)

1 + c · exp(−t) , (13)

where c here is an integration constant.
Now let us calculate an approximation of this solution by the normal form method using the package

NormalForm. The equation (12) is entered in standard form:

Eqs = {ẏ[t] == −y[t] + y[t]2};

The first step of a linear normalization is performed by the procedure LinearNormalization[Eqs List,
OVars List, NVars List]. Here Eqs is a list of equations resolved with respect to the first derivatives
of variables, OVars (original variables) and NVars is a list of the new variables:

{Atr, Btr, Jrd, NonLinV} = LinearNormalization[Eqs, {y[t]}, {u[t]}]

{{1}, {1}, {−1}, {u[t]2}}
The result is four matrices: Atr and Btr are diagonalizing (right and inverse) matrices and Jrd is a
matrix of the linear part in Jordan’s form, i.e. Jrd = Atr . LinearPart . Btr, where LinearPart is a
matrix of coefficients of the linear part of the original system. NonLinV is a vector of nonlinear parts
in new variables

u[t] = Atr.{y[t]}.
The system is in a diagonal form already, so we have an identical transformation. Now we look at the
linear part matrix. It is a 1 by 1 matrix and it has a single element −y, i.e. the eigenvalues vector is -1.
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Because scalar production (7) can not be zero in this case, the right hand side of the normalized equation
(normal form) will be linear:

ż[t] = −z[t]. (14)

It is remarkable that we can write down the normal form without any calculations. It can be done for
any eigenvalues for which equation (7) has finite numbers of solutions in natural integers. Such cases are
called crude ones. Let us use the NormalForm procedure for the corresponding calculation:

{GRv, uN} = NormalForm[Jrd, NonLinV, u, z, 3]

{{−1}, {z1[t]− z1[t]2 + z1[t]3 − z1[t]4}} (15)

The result above (15) consists of a vector of the normalized right hand side GRv and a normalizing
transformation uN (till the third order over identical transformation, i.e. 3 + 1 = 4) such that the
normalized equation has the form:

żi[t] = GRvi · zi[t], i = 1, . . . , n (16)

yi[t] =
∑

j=1,n

Atri,juj [t] =
∑

j=1,n

Atri,juNj, i = 1, . . . , n (17)

Here n is a dimension of the system, which is 1 in our case.
Solution of (14),(15), and (16) is z(t) = c ·exp(−t). For an approximation of a solution of (12) we need

now to substitute this solution into the corresponding normalizing transformation of the type (5,15,17).
After that we will have a truncated expansion of (13) in the series of constant c:

y[t] ≈ c · exp(−t) − [c · exp(−t)]2 + [c · exp(−t)]3 − [c · exp(−t)]4

4.2 Example of Four-Dimensional System. Double Pendulum

Now consider a fourth-order system which describes the equations of motion for the double pendulum:

(
m1

3
+m2)l21 + m2l1l2 cos θ2 +

m2l
2
2

3
)θ̈1 + (

m2l1l2
2

cos θ2 +
m2l

2
2

3
)θ̈2

=
m2l1l2

2
(θ̇1 + θ̇2)2 sin θ2 −

(m1

2
+m2

)
gl1 sin θ1

− m2l1l2
2

θ̇21 sin θ2 − m2gl2
2

sin(θ1 + θ2).

(
m2l1l2

2
cos θ2 +

m2l
2
2

3
)θ̈1 +

m2l
2
2

3
θ̈2 = −m2l1l2

2
θ̇21 sin θ2 − m2gl2

2
sin(θ1 + θ2).

Equations in this form have been created by the automatic equation generator by D.Forehand et al [8].
This system is not initially solved with respect to derivatives. Assuming that φ and θ are small and
approximating Sin up to the third order, a system in polynomials with respect to unknown variables
is obtained (not shown). Solving the system with respect to higher derivatives and expanding the de-
nominators in the right hand side in the power series of φ and θ till the third order yields the following
right-hand sides for the system of the fourth order with respect to new variables φ1[t] = φ[t], φ2[t] = φ′[t],
θ1[t] = θ[t], θ2[t] = θ′[t]:

NewEqs =
{

(18)

θ′2[t] == −18θ1[t]
7

+
183θ1[t]

3

49
− 9

7
θ1[t]θ2[t]

2 +
9φ1[t]

7
− 873

98
θ1[t]

2φ1[t]

+
9
7
θ2[t]2φ1[t] +

387
49

θ1[t]φ1[t]2 − 123φ1[t]3

49
− 6

7
θ1[t]φ2[t]2 +

6
7
φ1[t]φ2[t]2

φ′2[t] ==
27θ1[t]

7
− 369θ1[t]3

49
+

24
7
θ1[t]θ2[t]2 − 24φ1[t]

7
+

891
49

θ1[t]
2φ1[t]

− 24
7
θ2[t]

2
φ1[t] − 1539

98
θ1[t]φ1[t]

2 +
244φ1[t]

3

49
+

9
7
θ1[t]φ2[t]

2 − 9
7
φ1[t]φ2[t]2

θ1
′[t] == θ2[t],

φ1
′[t] == φ2[t]

}
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An assumption that the lengths and masses of two pendulums are equal l21 = 1,m21 = 1 has been made
to simplify computations: The system is then recast in the Jordan form. Float point arithmetic was used
for calculation of radicals in eigenvalues. The calculation of the normal form up to the 5th order yields a
vector of the normalized right-hand sides:

{
i + 0.13 iz1[t]z2[t] − 0.08 iz1[t]2z2[t]2 − 0.08 iz3[t]z4[t]

+ 0.21 iz1[t]z2[t]z3[t]z4[t] − 3.65 iz3[t]2z4[t]2,
0.85 i − 0.13 iz1[t]z2[t] + 0.08 iz1[t]2z2[t]2 + 0.08 iz3[t]z4[t]

− 0.21 iz1[t]z2[t]z3[t]z4[t] + 3.65 iz3[t]2z4[t]2,
−2.29 i − 0.30 iz1[t]z2[t] + 1.52 iz1[t]2z2[t]2 + 7.87 iz3[t]z4[t]

+ 6.22 iz1[t]z2[t]z3[t]z4[t] + 71.86 iz3[t]2z4[t]2,
2.29 i + 0.3 iz1[t]z2[t] − 1.52 iz1[t]2z2[t]2 − 7.87 iz3[t]z4[t]

− 6.22 iz1[t]z2[t]z3[t]z4[t] − 71.86 iz3[t]2z4[t]2
}

In new variables z1[t], . . . , z4[t] the system has the form (6). After the standard treatment of the normal-
ized system [4] we get approximations for conditionally periodic families of solutions, where a, b, t1, t2 are
integration constants below (the result is truncated at order 3 in small a, b):

θ[t] = (19)
1.4a cos[(t+ t1)ω1] + 0.09a3 cos[(t+ t1)ω1] − 1.80ab2 cos[(t+ t1)ω1]

+ 0.65a3 cos[3(t+ t1)ω1]
− 0.95b cos[(t+ t2)ω2] + 0.07a2b cos[(t+ t2)ω2] − 1.65b3 cos[(t+ t2)ω2]
+ 0.8b3 cos[3(t+ t2)ω2]
+ 0.8ab2 cos[tω1 + t1ω1 − 2tω2 − 2t2ω2] − 0.24a2b cos[2tω1 + 2t1ω1 − tω2 − t2ω2]
+ 0.61a2b cos[2tω1 + 2t1ω1 + tω2 + t2ω2] + 0.65ab2 cos[tω1 + t1ω1 + 2tω2 + 2t2ω2]

φ[t] = (20)
2.a cos[(t+ t1)ω1] + 0.18a3 cos[(t+ t1)ω1] + 3.57ab2 cos[(t+ t1)ω1]

− 1.39a3 cos[3(t+ t1)ω1]
+ 2.b cos[(t+ t2)ω2] − 0.12a2b cos[(t+ t2)ω2] + 3.39b3 cos[(t+ t2)ω2]
− 1.59b3 cos[3(t+ t2)ω2]
− 2.16ab2 cos[tω1 + t1ω1 − 2tω2 − 2t2ω2] + 3.28a2b cos[2tω1 + 2t1ω1 − tω2 − t2ω2]
− 1.12a2b cos[2tω1 + 2t1ω1 + tω2 + t2ω2] − 0.97ab2 cos[tω1 + t1ω1 + 2tω2 + 2t2ω2]

where frequencies are given by the following formulas

ω1 = 0.85 + 0.08a4 + 0.08b2 + 3.65b4 + a2
( − 0.13 − 0.21b2

)
(21)

ω2 = 2.3 − 1.52a4 − 7.87b2 − 71.86b4 + a2
(
0.30 − 6.22b2

)
(22)

To generate the periodicity condition ([2], [4]) the procedure

ConditionForPeriodicity[GRv, Jrd, Var List]

is employed. The meaning of GRv and Jrd arguments are explained in the previous section and Var is
a list of all small variables. In this example it is {z1[t], z2[t], z3[t], z4[t]}. Approximations (19) are condi-
tionally periodic and they formally satisfy equation (18), but the procedure ConditionForPeriodicity
results in the condition for an orbital stability. A separate paper discussing this subject is in preparation.
In the case of the double pendulum case, this procedure results in a condition:

−0.564279z1[t]z2[t]+ 1.48528z1[t]2z2[t]2 + 0.579792z1[t]3z2[t]3 + (23)
6.91055z3[t]z4[t]+ 4.84095z1[t]z2[t]z3[t]z4[t]+ 58.0101z1[t]2z2[t]2z3[t]z4[t] +

69.8654z3[t]2z4[t]2 + 268.305z1[t]z2[t]z3[t]2z4[t]2 + 746.679579792z3[t]3z4[t]3 = 0

This condition can be solved in a, b constants giving:

a = b(3.49953 + 89.1055b2 + 8868.38b4).
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5 Summary

The authors revisit the normal form method and discuss its implementation in Mathematica. The high
order normal form for systems of ordinary differential equations can be calculated.

A separate package enabling one to work with truncated multivariate power series is discussed. The
demo version of PolynomialSeries package can be accessed on
www.mathsource.com. Authors are going to develop new features of the package. The power series package
should use the O(xn) mechanism. Truncation of power series allows one to control the length of truncated
series by a correct way as it is done in Maple. Therefore, an existing version is enough for a support of
a normal form method. An important procedure for solving equations in power series is planned to be
added to the package [6].

The method produces approximate formulas for the approximation of crude and periodic solutions of
autonomous nonlinear ODEs. The comparison of Mathematica package with an earlier version of normal
form package (NORT) written in LISP demonstrates that the calculations within the Mathematica system
are more flexible and convenient but are considerably slower than under the LISP.
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