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Abstract. It is well known that various questions of stability of polynomial vectors fields can be
reduced to quantifier elimination problems on real closed fields. More recently we have shown that
also the parametric question of the occurrence of Hopf bifurcations can be decided by quantifier
elimination. The combination of general purpose quantifier elimination systems has been sufficient
to solve some of the occurring quantifier elimination problems but did not succeed for many others
(on current computers). For the common case of equilibrium points with nonzero Jacobian deter-
minant we will show that there is a computationally well suited description that can serve as an
infrastructure for more efficient methods.

1 Introduction

Systems of ordinary differential equations are one of the most common mathematical structures used
to model processes in the natural sciences. In general, these models lead to nonlinear systems which
depend on parameters. Depending on the parameters their behavior might change dramatically. So the
development of symbolic methods for their study is an important topic.

During the last decade many advances have been made for the symbolic study of differential equations
[14, 13] using techniques such as Lie-symmetry methods [12, 17, 8] or differential Galois theory [15, 16].
This work is mainly aimed towards the symbolic solutions of systems and many important examples are
not solvable in symbolic form so that these techniques are not applicable.

Nevertheless, very often only the qualitative behavior of a system of differential equations in depen-
dency on the parameters is of interest. Also in ths respect great advances have been obtained recently,
e .g. for various questions of stability, such as the ones of some numerical integration schemes [9] or in
connection with control theory [10].

That work uses the powerful technique of quantifier elimination on real closed fields [18], to which the
questions on the differential equations are reduced—in the common case that the corresponding vector
field is a polynomial system in the variables and parameters.

In our previous work [2] we studied Hopf bifurcations of parameterized polynomial vector fields and
showed that the question of detecting such bifurcations can be reduced to a quantifier elimination problem.
More precisely, we have proven that a system undergoes a Hopf bifurcation, at an equilibrium point (u, x),
with empty unstable manifold if and only if

an(u, x) > 0, ∆n−1(u, x) = 0, ∆n−2(u, x) > 0, . . . , ∆1(u, x) > 0 ,

where an is, up to (−1)n, the determinant of the Jacobian matrix D(f) and the ∆i’s are the Hurwitz
determinants associated to the characteristic polynomial of D(f). For details on the notation, we refer
to Sec. 2. This leads to the following first order formula:

∃x (f(u, x) = 0, an(u, x) > 0, ∆n−1(u, x) = 0, ∆n−2(u, x) > 0 . . . , ∆1(u, x) > 0) (1)

In order to eliminate quantifiers from this formula one can use some existing quantifier elimination
software as a black box. However, due to the particular nature of the formulas to be handled it is
potentially much more efficient to integrate the quantifier elimination step into the general problem
solution procedure, and to develop specialized algorithms for eliminating quantifiers from the first order
formulas that arise from our analysis of the problem. As for many examples the existing quantifier
elimination packages did not return a result within some days of computation time, cf. [2], such specialized
methods are of great practical importance.
� Part of the work done while visiting Institut für Informatik II, University of Bonn, Germany.
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1.1 Contributions of the Present Work

The way we deal with this difficulty in the present work can be summarized as follows: as the questions we
ask on vector fields concern their equilibrium points, one expects that the obtained quantified formulas
will involve the system of equations f(u, x) = 0. On the other hand, in the formula (1), and in many
others arising from differential equations analysis, it is easy to see that the equilibrium points of interest
have a nonzero Jacobian determinant. It is therefore natural to undertake a study of the solutions of the
system f(u, x) = 0 that have a nonzero Jacobian determinant. As we shall see in Sec. 5.1, it turns out
that such solutions have a nice description. More precisely, we will show that the set of parameters u can
be partitioned into constructibles (i.e. sets given as solutions of polynomial equations and inequations)
such that over any constructible the solutions of f(u, x) = 0 with J(f)(u, x) �= 0 are given by a system
of the form

p(u, w) = 0, x1 = c(u)−1q1(u, w), . . . , xn = c(u)−1qn(u, w)

where c, p and the qi’s are polynomials depending on the constructible. Notice here that for any α in the
given constructible the solutions of f(α, x) = 0 are rational functions (c(α)−1qi(α, w)) in terms of the
roots of a univariate polynomial (p(α, w)). Such a representation is usually called a Rational Univariate
Representation, see e.g. [5].

Once the partition into contructibles is completed—together with a rational univariate representation
for each constructible—we use it to reduce the first order formulas into formulas with only one quantifier.
Then we can apply any quantifier elimination software onto the obtained formulas.

1.2 Outline of the Paper

This paper is divided into two different parts. The first one is aimed towards reducing different questions on
equilibrium points of polynomial vector fields—such as stability and bifurcations detection—to quantifier
elimination problems. The topic of the second part is a representation of the equilibrium points which is
well suited for performing quantifier elimination.

In Sec. 2 we give a brief review on vector fields and stability criterions of equilibrium points. In Sec. 3
we give a link between Hurwitz determinants and subresultants theory. We then give explicit algebraic
criterions for detecting the presence of symmetric roots, with respect to the origin of coordinates, and
also the number of symmetric pairs for a given polynomial. We also study the behavior of Hurwitz
determinants in the presence of symmetric roots. In Sec. 4 we use the obtained results to show how one
can reduce various questions on equilibrium points of polynomial vector fields to quantifier elimination
problems. Sec. 5 is devoted to the study of equilibrium points with nonzero Jacobian determinant. We
give the main theoretical results which allow us to describe such points by using the concept of rational
univariate representation. We then illustrate the usefulness of the given results with an example in Sec. 6.

2 Preliminaries

Let f(u, x) = (f1, . . . , fn) be a parameterized vector field, where fi ∈ R[u, x] are polynomials, x =
(x1, . . . , xn) is a list of variables and u = (u1, . . . , uk) is a list of parameters. Let us consider the au-
tonomous ordinary differential system

ẋ = f(u, x)

and by Φt(u, x) let us denote the flow generated by the vector field f . A good place to start the study of
the nonlinear system ẋ = f(u, x) is to find its equilibrium points, which are given by the equation

f(u, x) = 0.

If u ∈ Rk and (u, x) is an equilibrium point of the specialized nonlinear system ẋ = f(u, x), the study
of the behavior of the flow Φt(u, x) when starting near the equilibrium point (u, x) is classically done
using the linear system

ζ̇ = D(f)(u, x) · ζ
where D(f)(u, x) is the Jacobian matrix of the vector field f(u, x) at the point x. The flow generated by
this linear system is then etD(f)(u,x) · ζ = D(Φt)(u, x) · ζ.

A fundamental result due to Hartman and Gröbman (see e.g. [1, 6]) states that in the case of hyperbolic
equilibrium point, i. e. the matrix D(f)(u, x) has no eigenvalue with zero real part, the nonlinear flow
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has the same topological behavior near the equilibrium point (u, x) as the linear flow near the origin 0.
In particular, the nonlinear flow Φt(u, x) is asymptotically stable near the equilibrium point (u, x) if and
only if all the eigenvalues of the matrix D(f)(u, x) have negative real part. According to the well known
Routh-Hurwitz criterion, see e. g. [3, 9], this last condition is equivalent to the signs conjunction

∆1(u, x) > 0, . . . , ∆n(u, x) > 0 ,

where the ∆i(u, x)’s are the Hurwitz determinants associated to the characteristic polynomial of the
matrix D(f)(u, x).

As the nonlinear system ẋ = f(u, x) is parameterized, a natural question is to ask for which values
u of the parameter u the specialized system ẋ = f(u, x) is asymptotically stable near all its equilibrium
points. This can be symbolically expressed by the first order formula

∀x (f(u, x) = 0 ⇒ ∆1(u, x) > 0, . . . , ∆n(u, x) > 0) . (2)

One can also ask for which values u of the parameter u the system ẋ = f(u, x) is asymptotically stable
near at least one of its equilibrium points. That is

∃x (f(u, x) = 0, ∆1(u, x) > 0, . . . , ∆n(u, x) > 0) . (3)

These questions, as many others, are thus reduced to quantifier elimination problems for first order
formulas in the language of real closed fields.

2.1 Notations

In all the rest we will denote by K a commutative field of characteristic zero and by K its algebraic
closure. Let A be an affine ring over K, i.e. a finitely generated K-algebra K[u1, . . . , uk]/J = K[u]/J .
By parameterized polynomial vector field f(x) with coefficients in A, or often a vector field over A[x],
we mean a list f = (f1(x), . . . , fn(x)) where fi ∈ A[x], and x = (x1, . . . , xn) is a list of variables. The
ideal generated by the fi’s is denoted by I(f), the Jacobian matrix of f is denoted by D(f) and the
determinant of D(f) is denoted by J(f).

Localization ring If A is a commutative ring with unit and M is a nonempty subset of A\ {0} which is
stable under multiplication, then we denote by AM the localization ring of A with respect to M . When
M is generated by a single element c, i.e. M = {cn , n ∈ N} (resp. M = A \ P where P is a prime ideal
of A) we use the notation Ac (resp. AP) for short instead of AM .

Monomial semigroup We denote by M = {xα ; α ∈ Nn} the multiplicative semigroup generated by
the indeterminates x1, . . . , xn. By an admissible order of M we mean a total order relation � on M which
is compatible with multiplication.

Leading monomial and leading term For a given polynomial p =
∑

α aαxα in A[x] we define the
leading monomial Lm(p,�) of p with respect to � to be xβ where xβ is the greatest monomial, with
respect to �, among the xα’s such that aα �= 0. The leading term of p with respect to � is Lt(p,�) = aαxα

with xα = Lm(p,�).

Initial ideal If I is an ideal of A[x] the ideal Lt(I,�) generated by the leading terms of the polynomials
in I is called the initial ideal of I. We also define the residue set of I with respect to � to be

Γ (I,�) = {xα ∈ M ; ∀p ∈ I Lm(p,�) �= xα}.

3 Spectral Analysis at the Equilibrium Points

By spectral analysis we mainly mean positioning, for a given equilibrium point, the eigenvalues of its
Jacobian matrix with respect to the imaginary axis. Such information is usually quantified by computing
the numbers of eigenvalues with positive, negative or zero real part.
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Most of the results of this section are valid for arbitrary commutative fields of characteristic zero.
Some others, specially those concerning spectrum positioning, require and order structure on the field.
We shall formulate these results in the general setting of real closed fields. In the sequel we let R be a
real closed field and C = R(i) its algebraic closure.

Let χ(z) ∈ A[z] be a polynomial of degree n (typically χ(z) is the characteristic polynomial of a square
matrix of order n) and let us write

χ(z) = a0z
n + a1z

n−1 + . . . + an .

The square matrix H of order n defined by

H =




a1 a3 a5 . . . . . .
a0 a2 a4 . . . . . .
0 a1 a3 a5 . . .
0 a0 a2 a4 . . .

. . .




is called the Hurwitz matrix of the polynomial χ(z). The i-th order principal minor of the matrix H is
called the i-th Hurwitz determinant of the matrix H and is denoted by ∆i. When the considered ring is
a real closed field with order ≤ and a0 > 0 then the well known Routh-Hurwitz criterion states that the
polynomial χ has all its roots in the left half-plane (i.e. with negative real part) if and only if its Hurwitz
determinants satisfy the sign conditions

∆1 > 0, . . . , ∆n > 0 .

3.1 Hurwitz Determinants as Principal Subresultant Coefficients

In the sequel we shall use the Hurwitz determinants to give a criterion for the polynomial χ to have k pairs
of symmetric roots with respect to the origin of the plane. We shall also give a criterion for the polynomial
χ to have all its roots in the left half-plane except 2 roots iω and −iω which are in the imaginary axis.
For this, we shall first express the Hurwitz determinants in terms of the principal subresultant coefficients
of a pair of polynomials which are related to the polynomial χ(z). The proofs of the results we give in
this section can be found in [2]

Definition 1. Let P, Q ∈ A[y] be two polynomials,

P =
p∑

k=0

akyk Q =
q∑

k=0

bkyk

with deg(P ) ≤ p and deg(Q) ≤ q.
If i ∈ {0, . . . , min(p, q)− 1} we define the subresultant polynomial associated to P, p and Q, q of index

i as follows:

Sri(P, p, Q, q) =
i∑

j=0

di
jy

j

where every di
j is the determinant of the matrix built with the columns 1, 2, . . ., p + q − 2i − 1 and

p + q − i − j in the following matrix:

Mi

p+q−i︷ ︸︸ ︷


ap . . . a0

. . . . . .
ap . . . a0

bq . . . b0

. . . . . .
bq . . . b0





 q − i


 p − i

The determinant di
i is called i-th principal subresultant coefficient and denoted by

sri(P, p, Q, q) .
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When no confusion arises, we shall write sri instead of sri(P, p, Q, q) and Sri instead of Sri(P, p, Q, q).
Let χ(z) ∈ A[z] be a polynomial of degree n,

χ(z) = a0z
n + a1z

n−1 + . . . + an,

and let us write χ in the form
χ(z) = χ1(z2) + zχ2(z2) .

It is easy to see that deg(χ1) ≤ [n
2 ] and deg(χ2) ≤ [ (n−1)

2 ], where [.] denotes the floor function.
Moreover, at least one of the two inequalities is an equality.

The Hurwitz determinants sequence of the polynomial χ(z) is in fact closely related to the principal
subresultant sequence of the pair of polynomials χ1 and χ2. More precisely, one has the following theorem.

Theorem 1. Let A be a commutative ring and χ ∈ A[z] be a polynomial of degree n, and write

χ(z) = χ1(z2) + zχ2(z2).

Let ∆1, ∆2, . . . , ∆n be the Hurwitz determinants sequence of χ. Then for any 0 ≤ i ≤ [n/2]− 1 one has :

∆n−2i−1 = εisri(χ1, [n/2], χ2, [(n − 1)/2]),

∆n−2i = ε′isri(χ1, [n/2], yχ2, [(n − 1)/2] + 1),

where ε′i = (−1)
([(n+1)/2]−i)([(n+1)/2]−i−1)

2 and ε′i = (−1)
([(n+1)/2]−i)([(n+1)/2]−i+1)

2 .

As consequence of Theorem 1 we have the following algebraic criterion to detect the presence of
symmetric roots for a given polynomial.

Corollary 1. Let K be a commutative field of characteristic zero and χ(z) ∈ K[z] be a polynomial of
degree n. Then χ has k pairs of symmetric roots zj and −zj if and only if

∆n−1 = 0, . . . , ∆n−2k+1 = 0, ∆n−2k−1 �= 0 .

3.2 Hurwitz Determinants in the Case of Symmetric Roots

We turn now to investigate another aspect of the Hurwitz determinants, namely the behavior of the ∆i’s
when we add to the roots of the polynomial χ some pairs of symmetric points zj and −zj of the plane.

Theorem 2. Let χ(z), R(z) ∈ A[z] be polynomials with deg(χ) = n and deg(R) = r. Let

χ�(z) = χ(z)R(z2) .

If ∆�
i is the Hurwitz determinant of order i of the polynomial χ�(z) then

{
∆i = ∆�

i for i = 1, . . . , n,
∆�

i = 0 for i = n + 1, . . . , n + r

Remark 1. If we add to the roots of the polynomial χ the point 0 as root with multiplicity k, i.e. we take
χ�(z) = χ(z)zk, then we obtain the same conclusion as in Theorem 2.

4 From Spectral Analysis to Semi-Algebraic Descriptions

In this section we explain, through some examples of well known bifurcations, how the tools developed
in Sec. 3 can be used to produce first-order formulas describing any given kind of bifurcation.
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4.1 The Case of Hopf Bifurcations

We are now able to give a semi-algebraic description of the set of real coefficients polynomials of a given
degree which have one pair of roots, iω and −iω, in the imaginary axis and no other root with zero real
part.

Theorem 3. Let χ(z) ∈ R[z] be a degree n polynomial and write

χ(z) = a0z
n + a1z

n−1 + . . . + an = χ1(z2) + zχ2(z2)

with a0 > 0. Let ∆1, ∆2, . . . , ∆n be the Hurwitz determinants sequence of χ. Then χ(z) has a pair of
distinct roots, iω and −iω, in the imaginary axis and no other root with zero real part if and only if

∆n−1 = 0, an∆n−2∆n−3 > 0 .

As consequence of Theorems 1 and 2 we also get a nice semi-algebraic description of the set of real
coefficients polynomials of a given degree which have all their roots in the left half-plane except one pair,
iω and −iω, in the imaginary axis.

Theorem 4. Let χ(z) ∈ R[z] be a degree n polynomial and write

χ(z) = a0z
n + a1z

n−1 + . . . + an = χ1(z2) + zχ2(z2)

with a0 > 0. Let ∆1, ∆2, . . . , ∆n be the Hurwitz determinants sequence of χ. Then χ(z) has a pair of
distinct roots, iω and −iω, in the imaginary axis and all the other roots in the left half–plane if and only
if

an > 0, ∆n−1 = 0, ∆n−2 > 0, . . . , ∆1 > 0 .

As consequence of the last theorem, one can describe the parameters set for which a Hopf bifurcation
with empty unstable manifold occurs by the following first-order formula :

∃x (f(u, x) = 0, an(u, x) > 0, ∆n−1(u, x) = 0, ∆n−2(u, x) > 0 . . . , ∆1(u, x) > 0)

4.2 The General Case

Bifurcations that may occur in a given parameter dependent polynomial vector field are combinations of
the two following cases:

– The value 0 is an eigenvalue of multiplicity m: This can be detected by checking whether the m first
coefficients of the characteristic polynomial are zero, while the coefficient of degree m is not zero.

– There are k pairs of eigenvalues of the form ±iω, where ω is a positive real number: this can be detected
by checking whether the polynomials χ1 and χ2 have a gcd χ3 of degree ≥ k with k negative roots.
To get a semi-algebraic description in this case, one first has to introduce a disjunction depending on
whether the degree of χ3 is k, k+1, . . . (this can be achieved by using Corollary 1). Then one needs to
express the fact that χ3 has exactly k negative roots for each potential degree. This can be done e.g.
by using the Sturm-Habicht sequence of χ3 and its first derivative (obtained from the subresultant
sequence by signs modifications so that the root counting problems can be handled).

4.3 Comparison with Existing Algebraic Methods

In [7] the authors basically deal with the problem of detecting Hopf bifurcation in parameter dependent
vector fields. Even though their concern is mainly aimed towards numerical algorithms, the method they
use is similar to ours in so far as they use the subresultant sequence of χ1 and χ2. However, they only
establish similar results to the ones given in Corollary 1 and Theorem 3.

Another main feature of our method, which is due to Theorems 1 and 2, is that we can address at
the same time and with the same tool, namely Hurwitz determinants, two questions: The problem of
detecting symmetric roots but also the problem of positioning the rest of the roots with respect to the
imaginary axis. There are no analogous results to Theorem 1 and Theorem 2 in [7], and therefore many
important questions on equilibrium points, such as bifurcations with empty unstable manifold, cannot be
detected by their method.
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5 Equilibrium Points with Nonzero Jacobian Determinant

In the rest of this section we shall be concerned with equilibrium points of a vector field f(u, x) with
nonzero Jacobian determinant. More precisely, we shall investigate the structure of the set

V(f) = {(u, x) ∈ K
k+n

/ f1(u, x) = 0, . . . , fn(u, x) = 0, J(f)(u, x) �= 0},
and its projection

W(f) = {u ∈ K
k | ∃ x ∈ K

n
, (u, x) ∈ V(f)}.

This undertaking is motivated by the following easy fact: the equilibrium points (u, x) of the system
which are asymptotically stable (formulas (2) and (3)), as well as those undergoing a Hopf bifurcation
(formula (1)) have a nonsingular Jacobian matrix so that they belong to V(f).

Our purpose in this section will be the construction of a list

[Ji, ci(u), pi(u, w), qi,1(u, w), . . . , qi,n(u, w) ; i = 1, . . . , m],

where Ji = I(ai,1, . . . , ai,ri) is an ideal of K[u] and ci(u), pi(u, w) and the qi,j ’s are polynomials, satisfying
the following properties:

(i) The sequence (Ji)1≤i≤m is increasing, J1 = {0} and ci ∈ Jj+1;
(ii) the constructibles Ci = {α ∈ K

k
; ai,1(α) = . . . ai,ri(α) = 0 , ci(α) �= 0} form a partition of W(f);

(iii) for any i = 1, . . . , m and any α ∈ Ci the solutions of the system f(α, x) = 0 are given by the rational
univariate representation

pi(α, w) = 0, x1 = ci(α)−1qi,1(α, w), . . . , xn = ci(α)−1qi,n(α, w).

We need the following well-known lemma, see e.g. [19].

Lemma 1. Let A be an integral affine ring of transcendence degree k over a field K and f be a vector
field over A[x]. Then the following assertions hold:

(i) Any minimal prime divisor P of I(f) such that J(f) /∈ P is of dimension k and A ∩ P = {0}.
(ii) If J(f) is not a zero divisor in A[x]/I(f) then the ideal I(f) is radical equidimensional of dimension

k. In particular, A ∩ I(f) = {0} and A[xi] ∩ I(f) �= {0} for any i = 1, . . . , n.

Remark 2. If A is a field and f is a vector field over A[x] such that J(f) is a unit in A[x]/I(f) then the
ideal I(f) is radical and zero-dimensional. In particular it has finitely many zeros, each one of multiplicity
1.

Let us now state the main procedure to be iterated in order to obtain the required description of the
zeros of I(f) that have a nonzero Jacobian determinant.

Theorem 5. Let A = K[u]/J be an affine ring, f be a vector field over A such that J(f) is a unit in
A[x]/I(f), and assume that I(f) ∩ A = {0}. Then there exist a polynomial c(u) ∈ K[u] and polynomials

p(u, w), q1(u, w), . . . , qn(u, w) ∈ K[u, w]

satisfying the following properties:

(i) The polynomial c(u) is non-nilpotent in A.
(ii) The leading coefficient, with respect to w, of the polynomial p(u, w) is a unit in the localization ring

Ac.
(iii) For any zero α of J in K

k
such that c(α) �= 0 the zeros in K

n
of the system f(α, x) = 0 are given by

the system
p(α, w) = 0, x1 = c(α)−1q1(α, w), . . . , xn = c(α)−1qn(α, w) .

Proof. Before giving the details of the proof of the theorem, we will give some explanations concerning
the meaning of the claimed properties should be given. This should help to clarify what will be done in
the proof.

For our purpose the ring A[x]/I(f) represents—undoing multiplicities—the zeros (α, β) in K
k+n

of the
ideal generated over K[u, x] by J and I(f), and our goal will be to find a rational univariate representation
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of such points. In general, it is not possible to find a uniform rational univariate representation for all
these points. The role of c(u) will be precisely the selection of points—by the constraint c(u) �= 0—, for
which such a representation is possible. The constraint c(u) �= 0 selects a nonempty set if and only if
c(u) is non-nilpotent in A. This is the reason why property (i) is required. By property (ii) we ensure
that for any solution α of J such that c(α) �= 0 the number of solutions of the system f(α, x) = 0 is the
same. The purpose of property (iii) is that the points with c(α) �= 0 have a uniform rational univariate
representation.

Let us now give the details of the proof. In fact, the construction of the polynomials

c(u), p(u, w), q1(u, w), . . . , qn(u, w)

will be achieved in several steps, and we need to construct several intermediate objects to achieve this
goal. Each one of these steps can be seen as a subroutine of an algorithmic procedure that allows us to
construct the required polynomials.

First step : Let � be an admissible order on M and let B = {aα(1)xα(1)
, . . . , aα(r)xα(r)} be a minimal

generating system of the initial ideal Lt(I(f),�).

– If all the aα’s are non-nilpotent in A then we let a =
∏

α aα and this ends the current step.
– If some of the aα’s are nilpotent in A then we let J1 be the ideal of K[u] generated by J and the

nilpotents among the aα’s. We then replace A by A1 = K[u]/J1 and go back to compute a minimal
generating system of the initial ideal Lt(A1[x]I(f),�). Let us notice here that J ⊆ J1 ⊆ √J so that
J and J1 have the same zeros in K

k
.

Since K[u] is Noetherian, after a finite number of iterations of the previous loop we will get an ideal
Js (with As = K[u]/Js) such that J ⊆ Js ⊆ √J and the initial ideal Lt(As[x]I(f),�) has a minimal
generating system B = {aα(1)xα(1)

, . . . , aα(r)xα(r)} with a =
∏

α aα non-nilpotent in As. For seek of
simplicity and without loss of generality we will suppose in the sequel that A = As.

Second step : Now we turn to the construction of the polynomials p and qi’s. Since a is non-nilpotent in
A the localization ring Aa is not reduced to {0}. Moreover, the initial ideal Lt(Aa[x]I(f),�) is generated
by {xα(1)

, . . . , xα(r)}, and hence the ring B = Aa[x]/Aa[x]I(f) is free of finite rank as Aa-module.
Let t = (t1, . . . , tn) be a list a indeterminates. Then the rings Aa[t] and B—viewed as Aa-algebras—are

linearly disjoint over Aa. Thus, any basis of B over Aa is a basis of B[t] over Aa[t].
Let v = t1x1 + . . . + tnxn and let Lv be the Aa[t]-endomorphism of the multiplication by v in B[t].

Let χ(w) be the characteristic polynomial of Lv. This can be viewed as polynomial in K(u)[t, w], and
multiplying it by a suitable power of a we get a polynomial P (u, t, w) in K[u, t, w]. Let us remark that

P (u, t, t1x1 + . . . + tnxn) = 0 (4)

in the ring B[t], and hence for any τ = (τ1, . . . , τn) ∈ K
n

and any zero (α, β) of I(f) in K
n

such that
a(α) �= 0 we have

P (α, τ, τ1β1 + . . . + τnxn) = 0 . (5)

Moreover, for any zero α of J such that a(α) �= 0 we have

P (α, t, w) = ar
N∏

i=1

(w − β
(i)
1 t1 − . . . − β(i)

n tn) , (6)

where r ≥ 0 and β(1), . . . , β(N) are the zeros of the system f(α, x) = 0.

Let D(u, t) be the discriminant of P with respect to w. Then given a zero α of J such that a(α) �= 0 and
following equation (6) we have

D(α, t) = a(α)s
∏
i�=j

∑
k

(β(i)
k − β

(j)
k )tk

where s depends only on r and N . This proves in particular that D(α, t) �= 0 and as by product that
D(u, t) is non-nilpotent in A[t].
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The polynomial p(u, w) we are looking for will be obtained from P (u, t, w) by a suitable specialization
of the parameters list t. Before we show how this can be done, let us construct polynomials Qi(u, t, w)
which will give qi(u, w) after specialization. For this let us write

D(u, t) = U(u, t, w)P (u, t, w) + V (u, t, w)∂wP (u, t, w)

and let Qi(u, t, w) = −V (u, t, w)∂ti(u, t, w). Applying the differential operator ∂ti to equation (4) we get

∂tiP (u, t, t1x1 + . . . + tnxn) + xi∂wP (u, t, t1x1 + . . . + tnxn) = 0

in B[t], and multiplying both sides of this equality by V (u, t, t1x1 + . . .+ tnxn) we get, after simplification,

D(u, t)xi − Qi(u, t, t1x1 + . . . + tnxn) = 0 (7)

in B[t]. Now let α be any zero of J such that a(α) �= 0. Then according to equation (6) the roots of
the polynomial P (α, t, w), when viewed as polynomial with coefficients in K(t), are of the from γ =
β1t1 + . . . + βntn, where β = (β1, . . . , βn) is a zero of the system f(α, x) = 0. Moreover, according to
equation (7), the βi’s are given by βi = D(α, t)−1Qi(α, t, γ).

This means that the system

P (u, t, w) = 0, x1 = D(u, t)−1Q1(u, t, w), . . . , xn = D(u, t)−1Qn(u, t, w)

is a rational univariate representation of the zeros (α, β) of I(f) such that a(α) �= 0. To obtain the desired
rational univariate representation we just need to get rid of the parameters list t in the previous one.
This will be achieved by suitably specializing t and excluding more points than the ones excluded by the
condition a(u) = 0.

Let z be an indeterminate and let D1(u, z) = D(u, 1, z, . . . , zn−1). Given a zero α of J such that
a(α) �= 0 and β(1), . . . , β(N) the zeros of the system f(α, x) = 0 we have

D1(α, z) = a(α)s
∏
i�=j

∑
k

(β(i)
k − β

(j)
k )zk−1 �= 0

and hence D1(u, z) is non-nilpotent in A[z]. Let h be the degree of D1(u, t) with respect to z and write
D1(u, z) = chzh + . . . + c1z + c0. For any k = 0, 1, . . . , h let ek = D(u, k). Then we have

(e0, . . . , eh)T = M(c0, . . . , ch)T

where M is the Vandermonde matrix associated with 0, 1, . . . , h. Since A is of characteristic zero the
matrix M is invertible and we have

(c0, . . . , ch)T = M−1(e0, . . . , eh)T .

In particular, the ck’s are linear combinations of the ek’s. On the other hand, since D1(u, z) is non-
nilpotent in A[z], at least one of its coefficients is non-nilpotent in A and hence at least one of the ek’s is
non-nilpotent in A, say ek0 .

Now let c(u) = D1(u, k0), p(u, w) = P (u, 1, k0, . . . , k
n−1
0 , w), and qi(u, w) = Qi(u, 1, k0, . . . , k

n−1
0 , w)

(for i = 1, . . . n). Then the constructed polynomials satisfy the claimed properties.

Remark 3. (i) A step by step analysis of the previous proof shows that all the involved objects can be
computationally constructed, and hence it leads to an effective algorithm that allows to compute
the required polynomials, namely c(u), p(u, w) and the qi(u, w)’s. Moreover, the basic operation
used, apart from the computation of characteristic polynomials, is nilpotency checking. This can for
example be effectively carried out using Gröbner bases computations.

(ii) The fact that we have added n indeterminates t1, . . . , tn to compute p and the qi’s is not really
necessary, and has been done only for seeking simplicity in the formulation of the qi’s. In fact, only
one added indeterminate z suffices, provided that we pay the price of computing some traces of
endomorphisms defined over B[z] (we refer to [5] for the details of such methods).
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5.1 Description of Equilibrium Points with Nonzero Jacobian Determinant

Now we have all of the necessary material to state the main result of this section.

Theorem 6. Let f be a vector field over K[u] such that J(f) is a unit in the quotient ring K[u, x]/I(f).
Then there exists a list

[Ji, ci(u), pi(u, w), qi,1(u, w), . . . , qi,n(u, w) ; i = 1, . . . , m],

where Ji = I(ai,1, . . . , ai,ri) is an ideal of K[u] and ci(u), pi(u, w) and the qi,j’s are polynomials, satisfying
the following properties:

(i) the sequence (Ji)1≤i≤m is increasing and J1 = {0},
(ii) the constructibles Ci = {α ∈ K

k
; ai,1(α) = . . . ai,ri(α) = 0 , ci(α) �= 0} form a partition of W(f),

(iii) for any i = 1, . . . , m and any α ∈ Ci the solutions of the system f(α, x) = 0 are given by the rational
univariate representation

pi(α, w) = 0, x1 = ci(α)−1qi,1(α, w), . . . , xn = ci(α)−1qi,n(α, w) .

Proof. The main idea consists in iterating the procedure of Theorem 5 until all the points of W(f) are
filled. We apply the procedure to f viewed over K[u] to compute polynomials c1(u), p1(u, w), q1,1(u, w), . . . , q1,n(u, w)
such that for any α ∈ K

k
with c1(α) �= 0 the zeros of the system f(α, x) = 0 are given by the rational

univariate representation

p1(α, w) = 0, x1 = c1(α)−1q1,1(α, w), . . . , xn = c1(α)−1q1,n(α, w) .

Now we should deal with the points α such that c1(α) = 0,. For this purpose we let J2 = I(c1(u)) and
apply the same theorem to the vector field f , which is now viewed over (K[u]/J2) [x]. This allows us
to construct polynomials c2(u), p2(u, w), q2,1(u, w) ,. . . , q2,n(u, w) such that for any zero α of J1 with
c2(α) �= 0 the zeros of the system f(α, x) = 0 are given by the rational univariate representation

p2(α, w) = 0, x1 = c2(α)−1q2,1(α, w), . . . , xn = c2(α)−1q2,n(α, w).

Now we let J3 = I(J1, c2(u)) and continue in the same way with the vector field f viewed over
(K[u]/J3) [x]. Notice here that c2 is non-nilpotent in (K[u]/J2) [x] and hence J2 ⊂ J3.

Continuing this way we construct the required sequence with the claimed properties. Since K[u] is
Noetherian and the sequence (Ji) is increasing it will stop after a finite number of iterations, say m
iterations. The fact that for any zero α of I(Jm, cm) the system f(α, x) = 0 has no solution is a direct
consequence of Theorem 5.

6 Computational Examples

6.1 Using General Purpose Quantifier Elimination Systems

On the basis of the evolving software-component architecture described in [4, 20] we implemented the
method stated in Sec. 4.1 in a combined system of Maple, Redlog, and Qepcad, cf. [2]. Using these
“general purpose quantifier elimination systems” we were able to solve the parametric question on the
existence of Hopf bifurcations.

Example 1. On of the examples given in [2] is the famous “Lorenz System”, which is given by the following
system of ODEs:

ẋ(t) = α (y(t) − x(t))
ẏ(t) = r x(t) − y(t) − x(t) z(t)
ż(t) = x(t) y(t) − β z(t)

Applying our program described in [2] to the Lorenz system imposing positivity conditions on the
parameters gave the following answer after some seconds of computation time:

α2 + αβ − αr + 3α + βr + r = 0 ∧ αr − α − β2 − β ≥ 0 ∧ 2α − 1 ≥ 0 ∧ β > 0

Thus we have found a simple closed from description involving three free parameters, which coincides
(after some elementary transformation) with the result of a hand computation given in [6].
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A system arising in epidemiology The following example is from [11]. In this research paper the
investigation on the existence of Hopf bifurcations is an important part. The differential equations come
from epidemiological models with varying population size and dose-dependent latency period.

Example 2. The following parameterized system of differential equations describes the so called SEIS1

models of [11]
ṡ(t) = b − b s(t) + δ i(t) − (β − α) s(t) i(t)
ė(t) = −b e(t) + β s(t) i(t) + α i(t) e(t) − ε e(t)
i̇(t) = −(b + δ + α) i(t) + α i(t)2 + ε e(t)

In [11] it is proved that this system does not have a Hopf bifurcation for any parameter values for the
epidemiological relevant cases: all parameters and variables are positive and s(t) + e(t) + i(t) = 1.

Using our previously developed software, the quantifier elimination programs did not succeed for the
general system with 3 variables and 5 parameters within one day of computation time.

When specializing 4 of the 5 parameters with various values, the combination of Redlog and Qepcad
returned the correct result, namely false, within some seconds of computation time.

6.2 Computing the Constructibles

We have not implemented the method described in Sec. 5 yet. However, we will show on the example of
the SEIS model that the method given Sec. 5 can be performed on systems, on which the general method
has failed.

We will do the computation on the model with 2 parameters. We set b = α = β = 1, and use x, y, z
as names of the variables instead of s, i, e.

Thus let us consider the vector field f = (p, q, r) with coefficients in R[δ, ε] given by

p = 1 − x + δ y
q = −z + yx + yz − ε z
r = (2 + δ) y + y2 + ε z

The first constructible we find is given by the constraint

ε δ (ε + 1) (δ + 1) (ε δ + ε + 2 + δ) �= 0

and the corresponding rational univariate representation

(−1 + x) (−δ + x − 1)
(
x − ε δ − δ2ε − 1 − δ2 − 2 δ

)
= 0

y = ε v (ε + 1) (δ + 1) (ε δ + ε + 2 + δ) (−1 + x)
z = v (ε + 1) (−1 + x) (−7 + 3 x − 8 ε2v − vε4 − 5 δ2 − 4 ε v + 2 vε4δ x + vε4δ2x

− δ3ε − 9 δ − 6 ε δ + 4 vε x + 4 ε3δ2vx − 4 δ2ε − 4 ε + ε xδ − 13 ε2δ v
− 9 ε3δ v − 4 ε3δ2v − 5 ε2δ2v − 6 ε δ v + 5 ε2δ2vx + 2 ε δ2vx − δ3 + 9 ε3δ vx
+ 6 ε δ vx + 13 ε2δ vx + 2 xε − 2 ε δ2v − 2 vε4δ − vε4δ2 + vε4x
+ 8 ε2vx + 5 ε3vx − 5 ε3v + xδ)

where v stands for the inverse of ε δ (ε + 1) (δ + 1) (ε δ + ε + 2 + δ) . Here there was no need to introduce
a new variable w (this means according to the notations of Theorem 6 that we take t = 0). Now we turn
to partition the algebraic set given by the equation

ε δ (ε + 1) (δ + 1) (ε δ + ε + 2 + δ) = 0 (8)

As this equation is presented in factored form it is easier to investigate each factor alone. For the equation
δ + 1 = 0 and ε + 1 = 0 we find the same representation

x = 1
y = 0
z = 0

1 SEIS stands for susceptibles (S), which can become exposed (E), i. e. are infected but not yet infectious, which
will become infectious (I), which then become susceptibles (S) again.
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For the equation ε = 0 we find the representation

(−1 + w)
(
w + 3 + 3 δ2 + 8 δ

)
= 0

x =
1
3
(2 vδ w + 4 vw − w − 2 vδ − 4 v + 4)

y = −v (2 + δ) (−1 + w)

z =
1
3
− (2 v + 1 + vδ) (−1 + w)

where v is in this case the inverse of (2 + δ) (3 δ + 2) . This gives the constructible defined by the con-
straints

ε = 0, (2 + δ) (3 δ + 2) �= 0.

Before going back to the other factors of equation (8) we should see what happens for the algebraic set
given by

ε = 0, (2 + δ) (3 δ + 2) = 0.

Here again we exploit the factored form to split it into the two algebraic sets given respectively by

ε = 0, (2 + δ) = 0

and
ε = 0, 3δ + 2 = 0.

Over the first one there are no equilibrium points, and this finishes the computations in this branch. Over
the second one we have the representation

−10 x + 9 x2 + 1 = 0
y = 1

2 (3 − 3x)
z = 1

2 (x + 1)

Let us now go back to the equation ε δ+ε+2+δ = 0. Here again we find another constraint ε (2 + δ) �= 0
so that over the constructible defined by

ε δ + ε + 2 + δ = 0, ε (2 + δ) �= 0

we have the representation
x = 1 + δ
y = 1
z = −εv − δ

Over the algebraic set given by

ε δ + ε + 2 + δ = 0, ε (2 + δ) = 0

the are no equilibrium points, and this finishes the computations in this branch.
The last equation we have to treat is δ = 0. Here again we need to introduce the constraint (ε+2)(ε+1)ε �=
0 so that over the constructible defined by

δ = 0, (ε + 2)(ε + 1)ε �= 0

the equilibrium points have the representation

y3 − y2ε − 3 y2 + yε + 2 y = 0
x = 1
z = −ε2vy2 − 3 ε vy2 − 2 vy2 + 2 ε2vy + 6 vyε + 4 vy

where v stands for the inverse of (ε + 2)(ε + 1)ε. Now it remains to see what happens over the algebraic
sets given respectively by

δ = 0, ε = 0,

δ = 0, ε + 1 = 0,

δ = 0, ε + 2 = 0.
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For these sets we have the representations

y2 − y = 0
x = 1
z = −y

x = 1
y = 0
z = 0

x = 1
y = 1

z =
1
2

Now we have a partition of W(f) into several constructibles. We can for example check whether the given
system undergoes a Hopf bifurcation (or any other kind of nonzero eigenvalue bifurcation) by verifying
on each constructible. Computations tell us that the given system does not undergo a Hopf bifurcation.
In the present example we remark that the polynomials involved in the rational presentations factor
into linear polynomials. This means that we can reduce the questions of bifurcations to linear quantifier
elimination which is much easier to achieve than the general case.
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