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Abstract. The present paper studies the application of symbolic facilities of Computer Algebra
Systems (CAS), in particular Maple, to the development of numerical methods. As will be shown the
complex algebraic relationships in the derivation of a particular numerical method can be captured
by computer algebra. We use the formalism of term rewriting system in order to demonstrate the
derivation of numerical schemes with the given properties, such as conservativity or non-linear
stability property (TVD schemes) using CAS Maple. In order to demonstrate our approach we
consider a two-dimensional inviscid gas flow involving shock waves.

1 Introduction

The rapid development of mathematical models and methods plays an important role in all fields of
science and engineering. We are interested in developing general methods on the symbolic-numerical
basis for solving modelling problems for inviscid fluid dynamics. The current methods of solving such
problems range from complex analytic and numerical models to extensive numerical code. The Problem
Solving Environments (PSE) are usually used to cope with this complexity. The existing PSEs, such as
SciNapse [23] or CTADEL [11], have a lot of very useful features. For example, the PSE transforms high
level description of initial- and boundary-value problems for PDE to efficient, documented and executable
code, which is typically generated in C or Fortran.

But the solving of modern fluid dynamics tasks requires not simply an automatable process of trans-
forming one description into another; it involves complex synthesis and analysis tasks in order to under-
stand the multilevel relationships between different objects in the particular numerical method.

Among the current methods for the numerical solution of the conservation laws (13) widely used in
fluid dynamics one can identify several groups of methods, which have gained a widespread acceptance:

– approximate Riemann solvers [24];
– Runge-Kutta finite volume schemes with artificial dissipators [6, 14, 17, 18];
– TVD methods [21, 24].

In [15, 16] we have shown how the graphical data modelling techniques can be used to obtain a
numerical Runge–Kutta finite volume Euler solver automatically. In this approach the developer has
to identify the objects involved in the Runge-Kutta method and to specify the relations among their
attributes. Such objects are, for example, finite volumes V n

j,k ordered in space and time with values
of pressure, density and Cartesian velocity components as attributes. Any numerical scheme can be
expressed as relationship between the attributes of the appropriate volumes objects. In this way the
specified associations between objects correspond, for example, to the numerical domain of dependence
of a particular scheme. Furthermore we have presented the tool prototype called GROOME that provides
graphical diagram editor to describe such objects and relations. It has been shown how the numerical
code according to the Jameson scheme can be generated automatically from such diagrams.

The present paper deals with a wide variety of TVD methods. At the same time we present some
important extensions of the general GROOME methodology concerning the usage of symbolic facilities
of computer algebra for the derivation of numerical methods. As will be shown the traditional symbolic
computation features of computer algebra systems, such as, for example, simplification, factorization
or expansion of expressions do not support the operations needed for the derivation of many very use-
ful numerical methods such as, for example, high order methods with TVD-property (Total Variation
Diminishing) widely used as a non-linear stability property.

It was shown in [2] how the conservative but not necessarily stable high order numerical schemes
can be derived from the integral form of physical laws algorithmically. The authors propose the usage of
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Fig. 1. Possible reduction of the Burgers equation

Gröbner Bases to obtain conservative high order schemes as a compatibility condition for the system of
equations consisting of equations describing the conservation of some quantities and equations describing
the integral approximation rules.

In this paper we investigate the usage of term rewriting systems to support the developer by deriva-
tion of numerical methods. The connection between Buchberger’s Gröbner Bases algorithm and critical-
pairs/completion of term rewriting systems was first observed in [22, 5], and more closely analysed in [3,
4].

We will show how the symbolic term rewriting can be used to derive the numerical schemes with
given properties, such as conservativity or TVD property. Our approach is motivated by the book of
Franz Baader and Tobias Nipkow ”Term Rewriting and All That” [1].

First of all let us give one example that illustrates some of the key issues arising in connection with
term rewriting systems generally and in particular with those that arise in connection with symbolic-
numerical methods (for a more precise introduction to term rewriting systems see [1]).

2 Motivating Example

As a simple example of a Term Rewriting System (TRS) consider the symbolic differentiation of arith-
metic expressions that are built with the operations +, * and /, indeterminates u (any function), c (any
constant), x, t and numbers 0, 1.

For the partial derivative with respect to one of variables x and t we introduce the additional function
symbols Dx resp. Dt. The following rules are some of the well-known rules for computing the derivative:

(RSD1) Dx(c)→ 0,

(RSD2) Dx(c ∗ u)→ c ∗Dx(u),

(RSD3) Dx(a+ b)→ Dx(a) +Dx(b),

(RSD4) Dx(a ∗ b)→ a ∗Dx(b) + b ∗Dx(a).
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Fig. 2. Non-confluence of (RSD2), (RSD4), (RA1), (RA4), (RND1)–(RND11) leads to the possible derivation of
the non-conservative scheme (B)

(RSD5) Dx(a(b))→ Dx(a) ∗Dx(b)

The symbols a and b are variables that can be replaced by arbitrary expression. These variables should
not be confused with the indeterminates, for example, c and u, which are constant symbols. The rules
for the computation of time derivative Dt can be formulated in a similar way.

In order to demonstrate our example we need additionally some well-known algebraic rules.
The distributive law of arithmetics can be expressed with the aid of the bidirectional rewriting rule

as follows:

(RA1) a ∗ b + a ∗ d↔ a ∗ (b + d)

Note that this rule applied in ”←”-direction corresponds to expansion implemented in almost all computer
algebra systems (in Maple the command expand(a*(b+d))). In ”→”-direction this rule corresponds to
Maple command collect(a,a*b+a*d).

The associativity and commutativitiy of multiplication:

(RA2) a ∗ (b ∗ d)↔ (a ∗ b) ∗ d

(RA3) a ∗ b↔ b ∗ a

And the following rules that we will need to derive the TVD methods:

(RA4)
a

b
∗ b
d
→ a

d

(RA5)
a

b
+
d

b
→ 1

b
∗ (a+ d)

Starting with the left-hand side of the Burgers equation described by the term t = ∂
∂tu+ ∂

∂xcu
2 the above

defined rules lead to the possible reduction depicted in Fig. 1.
Obviously there are different ways of applying rules to a given term t leading to different derived

terms t1 and t2. As shown in Fig. 1 such terms in our example can be joined. But can we always find a
common term s that can be reached both from t1 and t2 by the rule application ? If this is the case the
TRS is called confluent.

If we add the following numerical differentiation rules to discretize the above Burgers equation in space
by left one-sided differences through replacing of the derivative operator Dx by the difference operator
D̃x, the function u by its value at the appropriate grid point ũ(n, j) (n and j are indeterminates) , the
continuous variables x, t by their discrete form x̃(n), t̃(j) and introducing the shift operator with respect
to a particular discretization variable, for example, Tx(ũ(n, j)) = ũ(n, j − 1)

(RND1) Dx(u)→ D̃x(u)
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(RND2) u→ ũ(n, j)

(RND3) D̃x(a)→ a− Tx(a)
d− Tx(d)

(RND4) Tx(a ∗ b)→ Tx(a) ∗ Tx(b)

(RND5) Tx(c)→ c

(RND6) Tx(ũ(n, j))→ ũ(n, j − 1)

(RND8) x→ x̃(j)

(RND9) t→ t̃(n)

(RND10) Tx(x̃(j))→ x̃(j − 1)

in (RSD1)–(RSD5), we lose the confluence. As shown in Fig. 2 we obtain two different discrete equations
that can not be joined. It is well known that one of them is conservative, another one is not.

In the present paper we consider the discretization of conservation laws widely used in fluid dynamics
as term rewriting strategies. Our aim is the development of such strategies in the way that would enable
us to obtain the numerical schemes with given properties, in particular, the non-linear stability or TVD
property.

3 Total Variation Diminishing Methods

A well established approach for constructing high-order TVD schemes is the flux limiter approach [21].
This requires a high-order flux FH associated with a scheme of accuracy greater than or equal to two
and a low-order flux FL associated with a monotone first-order scheme. At first we present the approach
in terms of model conservation law

ut + f(u)x = 0 (1)

and then show a term rewriting system based on this approach that enables one to obtain the TVD
schemes for a particular non-linear equation dependent on the user specified fluxes.

Equation (1) is approximated by the following difference scheme:

un+1
i = un

i −
∆t

∆x
(Fi+1/2 − Fi−1/2) (2)

One then defines a high-order TVD flux as

FTV D
i+1/2 = FL

i+1/2 + φi+1/2(FH
i+1/2 − FL

i+1/2) (3)

FTV D
i−1/2 = FL

i−1/2 + φi−1/2(FH
i−1/2 − FL

i−1/2), (4)

where φi±1/2 is a flux limiter function yet to be determined.
To preserve some generality we assume that FL

i+1/2 and FH
i−1/2 are respectively of the form

FL
i+1/2 = −a1α1u

n
j + a1α1u

n
j+1

FH
i+1/2 = −a1β1u

n
j + a1β1u

n
j+1

FL
i−1/2 = a1α0u

n
j − a1α0u

n
j−1

FH
i−1/2 = a1β0u

n
j − a1β0u

n
j−1 (5)

for some a1, α0, β0, α1, β1.
The following theorem of Harten can be used to give the constraints on the φi±1/2:
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Theorem (Harten) 1 . In order for the method of the form

un+1
j = un

j − Cj−1(uj − uj−1) +Dj(uj+1 − uj) (6)

to be TVD, the following conditions on the coefficients are sufficient:

Cj−1 ≥ 0 ∀j
Dj ≥ 0 ∀j (7)

Dj + Cj ≤ 1 ∀j

Proof. The half-page proof of this Theorem can be found in [21].

Note that the coefficients Cj−1 andDj are in general assumed to be dependent on the data un
j−k . . . u

n
j+k

for some k.
The substitution of (3) and (4) in (2) yields:

un+1
i = un

i −
∆t

∆x
[(FL

i+1/2 − FL
i−1/2) + φi+1/2(FH

i+1/2 − FL
i+1/2)− φi−1/2(FH

i−1/2 − FL
i−1/2)] . (8)

The problem to find φi±1/2 in equation (8) in accordance with the TVD condition given by Harten
theorem can now be solved in two steps:

– determine the coefficients Cj−1 and Dj in (6) with regard for (8)
– apply any user defined flux limiter function φ to Cj−1 and Dj that would guarantee (7) (a well

established flux limiter function is minmod, see, for example, [21]).

Let us add the function symbol F (u) (flux function) to our TRS. Then application of (RSD5) to our
model problem reduces it to the so-called wave form:

D(u, t) +D(F (u), x)→ D(u, t) +D(F (u), u) ∗D(u, x) .

If we add the rule

(RND12) T (F (a), d)→ F (T (a, x))

both terms D(u, t)+D(F (u), x) and D(u, t)+D(F (u), u)∗D(u, x) can be discretized to the same unique
irreducible form

un+1
j − un

j

∆t
+
F (un

j )− F (un
j−1)

∆x
(9)

by using (RND1)–(RND12) and (RA4).
Furthermore we add the following rule with two new function symbols Fi±1/2:

(RND13) F → Fi+1/2 − Fi−1/2

According to (3) and (4) let us add the TVD flux rules:

(RTVD1) Fi+1/2 → FL
i+1/2 + φi+1/2(FH

i+1/2 − FL
i+1/2)

(RTVD2) Fi−1/2 → FL
i−1/2 + φi−1/2(FH

i−1/2 − FL
i−1/2)

But with regard for (5) the following rules must hold too:

(RTVD3) FL
i+1/2 → −a1α1u

n
j + a1α1u

n
j+1

(RTVD4) FH
i+1/2 → −a1β1u

n
j + a1β1u

n
j+1
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Fig. 3. Application of rules (RTVD1)-(RTVD6) and (RA1) to flux limiter scheme 2 in order to obtain the algebraic
form corresponding to Harten theorem. The underlined symbols denote the terms to which the appropriate rules
are applied

(RTVD5) FL
i−1/2 → a1α0u

n
j − a1α0u

n
j−1

(RTVD6) FH
i−1/2 → a1β0u

n
j − a1β0u

n
j−1

Starting from equation (9) obtained with (RND1)–(RND12) and (RA5) the reduction depicted in Fig.
3 leads to the following equations in order to satisfy the Harten theorem:

Dj = a1α1 + φi+1/2a1β1 − φi+1/2a1α1 ≥ 0 (10)

Cj−1 = a1α0 + φi−1/2 (a1β0 − a1α0) ≥ 0 (11)

1− Cj−1 −Dj = 1− (a1α1 + φi+1/2a1β1 − φi+1/2a1α1)−
(a1α0 + φi−1/2 (a1β0 − a1α0)) ≥ 0 (12)

In Appendix A we present the Maple implementation of the used TRS to the derivation of these conditions.
In particular, one can use the minmod function to fulfill the conditions (10), (11), and (12) (see [20]).

Let us demonstrate some results obtained by the application of this technique to a more complex fluid
dynamics task involving the shock waves in a two-dimensional gas flow.

4 Equations to Solve

Consider the Euler equation in the following conservation form:

∂w

∂t
+
∂f(w)
∂x

+
∂f(w)
∂y

= 0, (13)
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where x and y are Cartesian coordinates and

w =




ρ
ρu
ρv
ρE


 , f(w) =




ρu
ρu2 + p
ρuv
ρuH


 , g(w) =




ρv
ρvu

ρv2 + p
ρvH


 . (14)

Here p, ρ, u, v, E and H denote the pressure, density, Cartesian velocity components, total energy, and
total enthalpy. For a perfect gas

E =
p

(γ − 1)ρ
+

1
2
(u2 + v2), H = E +

p

ρ
, (15)

where γ is the ratio of specific heats.
As a flow problem we have chosen a simple problem of inviscid flow developed by an oblique stationary

shock wave reflecting from a rigid surface (Fig. 4). This test problem is often used for the validation of new
numerical methods in computational fluid dynamics. The advantage of this test is that it is possible to
obtain the exact solution for it by using the theory of stationary oblique shocks. This solution represents
a piecewise constant function. We have used the value ϕ = π/6 for the angle between the incident shock
wave front and the x axis (see Fig. 4). In the case of perfect gas (air) with γ = 1.4, the constants of the
exact solution in subregions 1, 2, and 3 indicated in Fig. 4 are as follows:

�

�

� �

���	

�

�

�
1

2

3

ϕ

ϕ3 x

y

0.0 4.0
0.0

1.0

Incident
shock Fig. 4. Spatial region in the shock

reflection problem

Subregion 1 Subregion 2 Subregion 3
u1 = 1.0 u2 = 0.890755053 u3 = 0.806645743
v1 = 0.0 v2 = −0.189217798 v3 = 0.0
p1 = 0.084932903 p2 = 0.194177850 p3 = 0.390838939
ρ1 = 1.0 ρ2 = 1.776135164 ρ3 = 2.898621574
M1 = 2.90 M2 = 2.327642861 M3 = 1.856588584

Here M1,M2, and M3 are the values of the Mach number M =
√
u2 + v2/c in subregions 1, 2, and

3, respectively; c is the sound velocity, c =
√
γp/ρ. The reflected shock wave front makes the angle

ϕ3 = 0.418279545 with the positive direction of the x-axis.
Initial conditions. Initially, the entire flow field is set equal to the free stream supersonic inflow values

given above for subregion 1, that is the initial gas flow is parallel with the x-axis.
Analytical boundary conditions. The spatial region has the size 4 along the x-axis and the size 1 along

the y-axis. The boundary conditions are given as follows:
(a) supersonic inflow at x = 0, 0 ≤ y ≤ 1, which allows the values of u, v, p, ρ to be fixed at free stream
conditions given above as subregion 1;
(b) prescribed fixed values from subregion 2 at y = 1, 0 ≤ x ≤ 4, which produce the desired shock
strength and shock angle;
(c) supersonic outflow at x = 4, 0 ≤ y ≤ 1;
(d) a rigid flat surface at y = 0, 0 ≤ x ≤ 4, which is properly represented by the condition v = 0 with
the additional condition ∂p/∂y = 0 at y = 0 from the normal y-momentum equation.

Numerical boundary conditions. The supersonic outflow values wJ,k, k = 1, . . . ,K, are obtained by
zeroth-order extrapolation, i.e., wJ,k = wJ−1,k, k = 1, . . . ,K.

For the computation of the TVD corrections in the Chakravarthy–Osher method, the numerical so-
lution values are needed in two rows of image cells adhering to the spatial region boundaries. We have
specified the values of the components of the solution vector w in image cells in accordance with the
symmetry technique presented in [10]:
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Rigid wall Outflow boundary x = 4
pj,0 = pj,1; pj,−1 = pj,2 wJ,k = wJ−1,k

ρj,0 = ρj,1; ρj,−1 = ρj,2 wJ+1,k = wJ−2,k

uj,0 = uj,1; uj,−1 = uj,2

vj,0 = −vj,1; vj,−1 = −vj,2

The numerical solution values in two rows of cells adhering to the inflow boundaries x = 0 and y = 1
were specified similarly to the case of the outflow boundary x = 4.

As a criterion for the convergence of pseudo-unsteady difference solution wn to the stationary limit
we checked the inequality Res(n) < ε, where ε is a user-specified small positive number;

Res(n) = max
j,k

{
max

(|Rn
1,j,k|, |Rn

2,j,k|, |Rn
3,j,k|, |Rn

4,j,k|
)}
,

where
{
Rn

1,j,k, R
n
2,j,k, R

n
3,j,k, R

n
4,j,k

}T =
f̃n

j+1/2,k − f̃n
j−1/2,k

h1
+
g̃n

j,k+1/2 − g̃n
j,k−1/2

h2

in the case of the Chakravarthy–Osher scheme (16); the superscript T denotes the transposition operation.

4.1 Chakravarthy-Osher Scheme

The following scheme proposed by S.R. Chakravarthy and S. Osher [7] belongs to a wide class of the
TVD schemes (see also [21, 24]) and can be derived by flux limiter method using the combination of
Lax-Wendroff and Beam-Warming methods. As we have shown in Sec. 3 our TRS can be used to perform
this task.

Applied to the Euler equations (13), (14) this scheme has the following form:

wn+1
j,k − wn

j,k

τ
+
f̃n

j+1/2,k − f̃n
j−1/2,k

h1
+
g̃n

j,k+1/2 − g̃n
j,k−1/2

h2
= 0, (16)

where h1 and h2 are the steps of a uniform rectangular grid along the x- and y- axes, respectively. The
fluxes f̃n

j+1/2,k and g̃n
j,k+1/2 are computed as follows:

f̃n
j+1/2,k =

1
2

[
f(wn

j+1,k) + f(wn
j,k)− ψ(A)j+1/2,k∆j+1/2,kw

n
j,k

]− W̃n
j+1/2,k,

g̃n
j,k+1/2 =

1
2

[
g(wn

j,k+1) + g(wn
j,k)− ψ(B)j,k+1/2∆j,k+1/2w

n
j,k

]− W̃n
j,k+1/2, (17)

where
∆j+1/2,kw

n
j,k = wn

j+1,k − wn
j,k, ∆j,k+1/2w

n
j,k = wn

j,k+1 − wn
j,k,

ψ(A)j+1/2,k = R
(1)
j+1/2,kDiag (ψ(λ(1)

1 , ψ(λ(1)
2 , ψ(λ(1)

3 , ψ(λ(1)
4 ))j+1/2,k

(
R

(1)
j+1/2,k

)−1

,

ψ(B)j,k+1/2 = R
(2)
j,k+1/2Diag (ψ(λ(2)

1 ), ψ(λ(2)
2 ), ψ(λ(2)

3 ), ψ(λ(2)
4 ))j,k+1/2

(
R

(2)
j,k+1/2

)−1

. (18)

In each of the expressions (17), the expression 1
2 [. . .] ensures the first order of accuracy of the scheme.

The terms W̃n
j+1/2,k, W̃n

j,k+1/2 involve the monotonizing corrections ensuring the second or third order of
approximation in space.

The matrices A and B entering (17) and (18) are the Jacobi matrices corresponding to the flux vectors
f(w) and g(w) (14), that is

A(w) =
∂f(w)
∂w

, B(w) =
∂g(w)
∂w

.

The matrices R(m) and (R(m))−1, m = 1, 2, which enter formulas (18), are taken from the decompositions

A = R(1)D1

(
R(1)

)−1

, B = R(2)D2

(
R(2)

)−1

,
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where

Dm = Diag
(
λ

(m)
1 , λ

(m)
2 , λ

(m)
3 , λ

(m)
4

)
, m = 1, 2,

λ
(1)
1 = u− c, λ(1)

2 = u, λ
(1)
3 = u+ c, λ

(1)
4 = u; (19)

λ
(2)
1 = v − c, λ(2)

2 = v, λ
(2)
3 = v + c, λ

(2)
4 = v.

The explicit expressions for the matrices R(m) and (R(m))−1, m = 1, 2, for the case of the ordering
of eigenvalues λ(m)

k in accordance with (19) may be found in [25], therefore, we do not present these
expressions here for the purpose of brevity.

The function ψ(z) entering (18) is defined as [25, 21]

ψ(z) =



|z|, |z| ≥ δ
z2 + δ2

2δ
, |z| < δ,

(20)

where δ is a positive user-specified constant taken in the interval [0.01, 0.25].
We now present the expressions for the corrections W̃n

j+1/2,k. The formulas for W̃n
j,k+1/2 are similar,

therefore, we do not present them for the purpose of brevity.

W̃n
j+1/2,k =

1− φ
4

[
∆f̃−

j+3/2,k−∆f̄+
j−1/2,k

]
+

(1 + φ)
4

[
∆f̄−

j+1/2,k−∆f̃+
j+1/2

]
, (21)

where

∆f̃−
j+3/2,k = R

(1)
j+3/2,kminmod

[
σ−

j+3/2,k, βσ
−
j+1/2,k

]
,

∆f̄+
j−1/2,k = R

(1)
j−1/2,kminmod

[
σ+

j−1/2,k, βσ
+
j+1/2,k

]
,

∆f̄−
j+1/2,k = R

(1)
j+1/2,kminmod

[
σ−

j+1/2,k, βσ
−
j+3/2,k

]
, (22)

∆f̃+
j+1/2,k = R

(1)
j+1/2,kminmod

[
σ+

j+1/2,k, βσ
+
j−1/2,k

]
,

σ±
j+1/2,k =

1
2
(D1 ± |D1|)j+1/2,k(R(1)

j+1/2,k)−1∆j+1/2,kw
n
j,k.

1
2
(Dm ± |Dm|) = Diag

(
1
2
(λ(m)

1 ± |λ(m)
1 |), 1

2
(λ(m)

2 ± |λ(m)
2 |), 1

2
(λ(m)

3 ± |λ(m)
3 |),

1
2
(λ(m)

4 ± |λ(m)
4 |

)
, m = 1, 2;

minmod(x, y) = sgn(x) ·max(0,min(|x|, sgn(x)y)).

The entries of matrices R(1)
j+1/2,k, (R(1)

j+1/2,k)−1, etc., were computed by using the cell interface val-
ues ρj+1/2,k, uj+1/2,k, vj+1/2,k, cj+1/2,k averaged in accordance with Roe’s approach; the corresponding
formulas may be found in [7].

The time step τ entering (16) was specified with regard for the results of [7] by formula

τ =
4θ

5− φ+ β(1 + φ)
·
[
max

( |u|+ c

h1
,
|v|+ c

h2

)]−1

, (23)

where θ is the safety factor, 0 < θ ≤ 1, c is the local speed of sound, c = (γp/ρ)0.5, γ is the ratio of the
gas specific heats entering (15).

The constant φ entering the correction (21) is a user-specified parameter, which regulates the up-
windedness: φ = 1 yields central differencing, φ = −1 second-order accurate upwind-biased differencing,
φ = 1/3 third-order accurate upwind-biased differencing. The parameter β entering (23) is a ”compres-
sion” parameter determined in the range given by [7] as

1 < β ≤ 3− φ
1− φ. (24)

If a larger value of β satisfying (24) is taken then a switch of scheme (16) from a higher order of
approximation to the first order occurs in a lesser number of spatial grid nodes.
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5 Results

In this section we will present some results obtained by the Osher-Chakravarthy scheme applied to the
above described shock reflection problem. Note that in our previous work [16], we have generated a code
implementing the Jameson scheme applied to the same problem.

1 2 3 4 x

0.1

0.2

0.3

0.4
p

1 2 3 4

0.2
0.4
0.6
0.8
1

(a) (b)

Fig. 5. Shock reflection problem, the Chakravarthy–Osher scheme (16): (a) pressure profile in the section y =
0.4875, (—) the exact solution, (◦ ◦ ◦) the numerical solution; (b) predicted Mach number contours

In Fig. 5 we show the numerical results obtained on a mesh of 160× 40 cells by the Chakravarthy–
Osher scheme. It can be seen that this TVD scheme produces monotone solution profiles. It may be seen
in Fig. 5, (b) that two oblique shocks are generated: one of them is the incident shock, and the other
is the reflected shock. These shocks are well visible as the subregions, in which different Mach number
contours coalesce.

6 Appendix A

In this appendix we will present the implementation of TRS (RTVD1)–(RTVD6) in Maple and demon-
strate its application to the model problem described in section 3.

Let us describe the TRS rules as follows:

> RTVD1:=F[i+1/2]=F[i+1/2]^L+phi[i+1/2]*(F[i+1/2]^H-F[i+1/2]^L);
> RTVD2:=F[i-1/2]=F[i-1/2]^L+phi[i-1/2]*(F[i-1/2]^H-F[i-1/2]^L);
> RTVD3:=F[i+1/2]^H=a[1]*beta[1]*(-u[n,j]+u[n,j+1]);
> RTVD5:=F[i-1/2]^H=a[1]*beta[0]*(u[n,j]-u[n,j-1]);
> RTVD4:=F[i+1/2]^L=a[1]*alpha[1]*(-u[n,j]+u[n,j+1]);
> RTVD6:=F[i-1/2]^L=a[1]*alpha[0]*(u[n,j]-u[n,j-1]);

The first rewriting step depicted in Fig. 3 is then obtained by:

> s1:=subs(RTVD1,RTVD2,RTVD3,RTVD4,RTVD5,RTVD6,
F[i+1/2])-F[i-1/2];

s1 := a1α1 (−un,j + un,j+1) +
φi+1/2 (a1β1 (−un,j + un,j+1)− a1α1 (−un,j + un,j+1))− Fi−1/2

In order to apply the bidirectional rule (RA1) to particular terms underlined in Fig. 3 at the second
rewriting step we use the Maple commands expand and collect:

> s3:=collect(expand(s2),u[n,j+1]):
> s4:=collect(s3,u[n,j-1]):
> s5:=collect(s4,u[n,j]);

s5 :=
(−a1α1 − φi+1/2a1β1 + φi+1/2a1α1

)
un,j +(

a1α1 + φi+1/2a1β1 − φi+1/2a1α1

)
un,j+1 − Fi−1/2

And the similar application of (RTVD1)–(RTVD6), (RA1) but only to Fi−1/2:
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> s1b:=subs(RTVD1,RTVD2,RTVD3, RTVD4, RTVD5,RTVD6,
op(s5)-op(1,s5)-op(2,s5));

> s3b:=collect(s2b,u[n,j+1]):
> s4b:=collect(s3b,u[n,j-1]):
> s5b:=collect(s4b,u[n,j]):

As a result we have obtained the algebraic form of flux limiter method corresponding to Harten
theorem:

(−a1α0 − φi−1/2 (a1β0 − a1α0)
)
un,j +(

a1α0 − φi−1/2 (−a1β0 + a1α0)
)
un,j−1 +(−a1α1 − φi+1/2a1β1 + φi+1/2a1α1

)
un,j +(

a1α1 + φi+1/2a1β1 − φi+1/2a1α1

)
un,j+1
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Selçuk J. Appl. Math. 1 (2000) 21–46

14. Ganzha, V.G., Vorozhtsov, E.V.: Stability investigation of Runge-Kutta schemes with artificial dissipator on
curvilinear grids for the Euler equations. Math. and Computers in Simulation 58 (2001) 1–36

15. Ganzha, V.G., Chibisov, D., Vorozhtsov, E.V.: GROOME – tool supported graphical object oriented modelling
for computer algebra and scientific computing. In: Computer Algebra in Scientific Computing/ CASC 2001,
V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov (Eds.), Springer-Verlag, Berlin (2001) 213–232

16. Ganzha, V.G., Chibisov, D., Vorozhtsov, E.V.: Problem solving for scientific computing: data modelling
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