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Content: A logical tool in robust control theory for
systems of parametric inhomogeneous linear ODEs.

Topic: systems of linear ODEs with parametric
constant coefficients and parametric exponential po-
lynomials as inhomogeneities.

Goal: Find necessary and sufficient conditions on
number and function parameters in systems of line-
ar ODEs that guarantee certain stability conditions
and/or initial value conditions on solution functions.

Function domain: exponential polynomials

Logical Framework:
We study of boolean combinations of implicit mul-
tivariate linear ODEs of arbitrary order with pa-
rametric complex constant coefficients and parame-
tric inhomogeneuos parts with additional functions
and predicates referring to properties of function-
variables together with arbitrary complex polyno-
mial equations and inequalities (with order relation
restricted to real arguments).
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Function Domain:
D consists of complex exponential polynomi-
als, i. e. complex polynomials in the independent
realvariable x and in exp(λx) for arbitrary complex
values of λ.

They have a unique representation in the form

f :=
∑
α∈S

pα(x) exp(αx)

with non-zero complex polynomials pα(x) and S a
finite set of complex numbers.

We call S the spectrum spec(f ) of f, and |S| the
specsize specsize(f ) and the maximal degree of
all pα(x) the degree deg(f ) of f. We refer to the
elements α of spec(f ) and the coefficients of the
correponding polynomials pα(x) as the numerical
data of f. We call a function f ∈ D constrained
by some b ∈ N if b is a common upper bound for all
numbers specsize(f ) and deg(f ). If this is the case,
then the number of numerical data for f is bounded
by (b + 1)b.
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The critical spectrum of f is the set of all α ∈
spec(f ) with <(α) = 0, and the safe spectrum
of f is the set of α ∈ spec(f ) with <(α) < 0.
Astab(f ) holds if f is asymptotically stable i.e.
if the whole spectrum of f is safe. Stab(f ) holds if
f is stable i.e. if the whole spectrum of f is safe
or critical, and for all critical α the corresponding
polynomial pα is constant.

The classical results of Routh-Hurwitz and
Lienard-Chipart give quantifier-free conditions
in terms of signs of determinants in the (constant)
coefficients of a system of homogeneous ODEs for
all solutions to be stable or asymptotically stable.
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First Main Result:

We show that the solvability of such a system of con-
ditions including initial value conditions and/or po-
sitive and negative stability conditions can be equi-
valently reduced to a boolean combination of poly-
nomial equations and inequalities in the parametric
number-coefficients, and the following numerical da-
ta of the function parameters u:
The elements α of spec(u) and the coefficients of
the corresponding polynomials pα(u).
Proviso: All function-parameters u have to be cons-
trained.

The reduction is achieved by an constrained al-
gorithmic quantifier elimination (QE) pro-
cedure using non-linear real and complex
QE-algorithms.

5



The non-linearity is in contrast to the situati-
on without stability conditions that can be hand-
led by linear differential elimination methods within
domains of germs of meromorphic functions (W.
CASC 2005).
The result can be construed as a strong generalizati-
on of the classical criteria of Routh-Hurwitz and
Lienard-Chipart.

Contrasting Warning: We show that even see-
mingly simply problems on ODEs with parametric
non-constant coefficients turn out to be algorith-
mically undecidable in the domain of holomorphic
functions.

Second Main Result:

Sample solutions of such a parametric system of con-
ditions can be represented symbolically uniformly in
the parametric number-coefficients, and the nume-
rical data of the function parameters u.
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Technical Details:
The logical framework is as follows:
We have two sorts of variables, the F -variables
ranging over D and the N -variables ranging over C.
In the N -sort we have constants for all rational num-
bers and for I :=

√
−1, the ring operations +,−, ·,

the operations < and = and the order relation (re-
stricted to R).
In the F -sort we have the operations +,−,′ and
for every natural number b the unary predicates
Specsizeb(y) and Degb(y).

In addition we have mixed function symbols for sca-
lar multiplication of an N -term with an F -term, and
for all natural numbers i, j unary function-symbols
speci(y) and speci,j(y) mapping F−terms into N -
terms.

Semantics: speci(y) denotes the i-th element of
the spectrum of y in the lexicographical order. speci,j(y)
denotes the j-th coefficient of the polynomial pα(x)
belonging to α = speci(y) in the unique represen-
taion of y. In the exceptional case i > specsize(y)
we put both values to zero.
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Atomic formulas are equations s = t between
two F -terms s, t, or equations s = t or inequalities
s < t between two N -terms s, t, or finally predica-
tes Specsizes(t) and Degd(t) for an F -term t.

The first type represents parametric inhomoge-
neous implicit linear ODEs, the second type
complex polynomial equations of inequali-
ties and the third type constraints of function
parameters.

Quantifier-free formulas are arbitrary combi-
nations of atomic formulas by ∧ (and), ∨ (or), ¬
(not).

In the formation of arbitrary formulas we allow
in addition arbitrary quantification ∃y, ∀y over F -
variables and over N -variables ∃ξ, ∀ξ - provided
ξ does not occur in any atomic formula of the F -sort.
Constrained formulas allow only quantification
over explicitly constrained function variables.
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Expressive power of quantifier-free formu-
las:
They can express:

• parametric initial value conditions on functions
and their derivatives

• global conditions on stability or asymptotic sta-
bility

• local stability conditions on functions.
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A Constrained QE-procedure computes for eve-
ry constrained input formula an equivalent cons-
trained quantifier-free formula under the hypothesis
that all function parameters are explicitly constrai-
ned.

Main technical result: Constrained QE

Theorem 1 There is a constrained QE-procedure
for (C, D) in this language. Specifically: For eve-
ry natural number b and every constrained for-
mula ϕ(η1, . . . , ηm, u1, . . . un) one can compute a
quantifier-free formula ϕ′b(η1, . . . , ηm, u1, . . . un) such
that in (C, D) the following holds:

n∧
i=1

(Specsizeb(ui) ∧ Degb(ui)) −→

(ϕ(η1, . . . , ηm, u1, . . . un) ←→ ϕ′b(η1, . . . , ηm, u1, . . . un))

Moreover, if the input formula is purely existenti-
al, then it may also contain unconstrained quan-
tifiers.
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Second technical result: Extended Constrained
QE

Theorem 2 For an existential input formula with
constrained function parameters one can construct
a finite system of pairs of quantifier-free formu-
las and formal expressions in the parameters that
serve as sample solutions for the quantified va-
riables. These formulas form a complete case di-
stinction and the corresponding formal expressi-
ons are the numerical data of a solution in the
given case.
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Example: Harmonic Oscillator

Let b = 1 and let ϕ(η, u) for a complex number-
variable η and a function-variable u be the following
formula ϕ :

∃y(my′′ + cy′ + ky = u ∧ y 6= 0 ∧ Stab2(y))

Then Specsize1(u) ∧ Deg1(u) implies the equiva-
lence of ϕ with explicitly computable quantifier-free
formula ϕ′ in the entities

m, c, k, spec1(u), spec1,0(u), spec1,1(u)

that is necessary and sufficient for the stability of a
solution.
In particular it analyses, when resonance occurs.
Moreover - modulo a finite case distinction - we get
solutions given by exponential polynomials with nu-
merical data given by formal expressions in the same
parameters

m, c, k, spec1(u), spec1,0(u), spec1,1(u).
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Main steps of the algorithm:
Elimination of a number-quantifier: Use a
real QE-procedure extended to complex numbers.

Elimination of a function-quantifier ∃y in
front of a quantifier-free formula with constrained
free function variables.

Reduce the given formula to a conjunction.

Reduce to at most one positive occurrence of an
ODE containing y by order reduction with case di-
stinctions.

Replace ∃y by a tuple of existential number quanti-
fiers describing the numerical data of y i.e. the pos-
sible spectrum and coefficients of associated poly-
nomials in the canonical representation of a possi-
ble solution. Here one has to choose an appropriate
constraining number b for y depending on the cons-
traints for the function-parameters and on the order
of the positive ODE in y. Be careful to choose b lar-
ge enough to cover the resonance case!.
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This reduces ODEs containing y to a conjuction of
non-linear polynomial equations in the new number
variables and expressions of the form speci(t), speci,j(t)
for F -terms containing function parameters. At this
point the elimination of number-quantifiers is called
in order to eliminate the quantifiers w.r.t. the newly
introduced number variables.

An extended real and complex QE for number quan-
tifiers yields now a corresponding extended constrai-
ned QE for function quantifiers, where functions are
represented by their parametric numerical data.

What about parametric ODEs with
non-constant coefficients?
Works well in domains of germs of meromorphic
functions without stability conditions (W. CASC
2005). The present note answers a question of A.
Weber at CASC 2005.
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But Warning for the domain of holomorphic func-
tions:

Theorem 3 Let K be a subfield of C and let R
be a differential subring of K[[X ]] in the langua-
ge L := {0, 1, X, +,−, ·,′ }. Consider systems ϕ
of linear homogeneous ODEs and of polynomial
equations over K. Then the solvability of ϕ in
(R,K) is an undecidable problem.

Proof. The system of linear differential equations
X · y′ = a · y, y 6= 0, a′ = 0 has a solution y in R
iff a ∈ N. So one can code Hilbert’s 10. problem. 2

Open Problems:

•What happens with decidability in this theorem,
if one drops the constant “X ′′ and/or restricts
the polynomial equations to linear ones?

•What is the asymptotic complexity of the cons-
trained QE procedure?

• Is the constrained QE procedure practically fea-
sable (e.g. in REDLOG)?
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