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1 Introduction
Viceroy is a network with a constant degree and a logarithmic diameter. Such a network is
called a degree minimized network. But Viceroy is relatively complex. In this article, an elegant
and simple alternative will be introduced: the Distance Halving network.
In 2003 Moni Naor and Udi Wieder developed the Distance Halving network. Their goal

was not only to develop a new peer-to-peer network but they put great emphasis on the principle
of continuous graphs. They are actually used in the networks CAN and Chord but Naor and
Wieder formalized it first.

2 Continuous Graphs
A graph is a pair (V,E), where V is the vertex set and E ⊆ V × V is the edge set. In a
discrete graph, the vertex set V is finite, while in continuous graphs the vertex set V is infinite.
This section introduces the Distance Halving graph as an example for a continuous graph and
describes how one can get a discrete graph of it.
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2.1 The Distance Halving Graph
The Distance Halving graph G = (V,E) consists of the vertex set V = [0, 1) ⊆ R and the edge
set E ⊆ V × V with four types of edges (x ∈ [0, 1)):

• Left edges: (x, x2 )

• Right edges: (x, 1
2 + x

2 )

• Backward left edges: (x2 , x)

• Backward right edges: (1
2 + x

2 , x)

Consider two edges (x1, y1) and (x2, y2). If both are left edges or both are right edges, then |y1−
y2| = |x1−x2|

2 . Because of this fact, this network is called Distance Halving. Conversely, if
both are backward left edges or both are backward right edges, then |y1 − y2| = 2|x1 − x2|.

(x, x2 )

(x, 1
2 + x

2 )

0 1

Figure 1: The Distance Halving graph.

2.2 From Continuous Graphs to Discrete Graphs
Continuous graphs cannot be used directly as network topology because of the infinite number
of vertices. In order to get a discrete graph, the infinite vertex set V is partitioned into finite
many intervals, which will be the vertices of the discrete graph and are called segments. In this
case, the vertices or rather segments correspond to the peers in the network.
The simplest case would be to place the peers randomly in the interval [0, 1). Then they are

responsible for data form their position up to the position of their successor in the interval [0, 1).
Actually a modified positioning method is used in the Distance Halving network.
Denote the positions of the n peers by x1, . . . , xn in ascending order, i.e. xi < xj for i < j.

The peer xi, 1 ≤ i ≤ n, is assigned the segment s(xi) = [xi, xi+1). There is an edge between
two segments s(xi) and s(xj) iff points u ∈ s(xi) and v ∈ s(xj) exist such that (u, v) is an edge
in the continuous graph. In addition there are edges between adjacent segments. So there is a
ring structure. In this way, every path in the continuous graph can be mapped to a path in the
discrete graph. Doing the discretization of the graph described above, one gets the Distance
Halving network.
Because of the distance property, the degree of the Distance Halving network is constant

if the ratio of the biggest to the smallest interval is constant. The edges of a segment map
to an interval I which is for every type of edge at most twice as big as the segment itself.
Let ρ = max1≤i,j≤n

|s(xi)|
|s(xj)| be the ratio of the maximal segment size to the minimal segment size.

Then the interval I can only intersect with at most 2ρ+ 1 segments. A constant ratio of ρ = 4
can be achieved by the principle of multiple choice, which will be presented in the following.
Therefore the degree increases by a factor of nine because of the discretization, and hence the
Distance Halving network has a constant degree.
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0 1

Figure 2: Discretization of the Distance Halving graph.

3 Insertion of Peers and the Principle of Multiple Choice
This section introduces the principle of multiple choice and proves that the degree of the Distance
Halving network is constant if this principle is used.

3.1 The Principle of Multiple Choice
Instead of choosing a random position in the [0, 1) ring during insertion, every peer looks first
at k = c logn random positions y1, . . . , yk ∈ [0, 1), where c is a suitable chosen constant. For
every position yi the size a(yi) of the segment s(x∗) which surrounds the point yi is measured,
so the distance between the potential left and right neighbors in the [0, 1) interval. The biggest
of the segments found is chosen and the new peer is placed in the middle of that segment. In
this way, always a relatively big segment is chosen, which implies that the distances between the
peers are relatively uniformly.

c logn random positions

biggest found
segment

Figure 3: The insertion of a peer in the Distance Halving network.
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3.2 Two Lemmas Concerning the Principle of Multiple Choice
Lemma 1. If n = 2k, k ∈ N, peers are inserted in the [0, 1) ring using the principle of multiple
choice, only segments of sizes 1

2n ,
1
n and 2

n are left with high probability.

Proof. Since the segments are divided in the middle, all segment sizes are powers of two. Hence
it remains to show that no segments of size less than 1

2n and no segments of size greater than 2
n

arise (with high probability). In order to show the second point, first another lemma is proven:

Lemma 2. Let the biggest segment have the size g
n (g may depend on n). Then after insertion

of 2n
g peers all segments are smaller than g

2n .

Proof. Consider a segment of size g
n . If c logn possible positions are examined during the

insertion of every peer and 2n
g peers are inserted, the expected number of hits X in such an

interval is
E[X] = g

n
· 2n
g
· c logn = 2c logn.

Using the Chernoff bound (see theorem 4 in the appendix), one gets for 0 ≤ δ ≤ 1:

Pr[X ≤ (1− δ)E[X]] ≤ n−δ2c.

If δ2c ≥ 2, all these intervals are hit at least 2(1 − δ)c logn times. Now one has to regard that
every time an interval is divided by a peer the (c logn) − 1 other hits of that peer (in possibly
other big intervals) may not cause divisions. For 2(1−δ) ≥ 1, every interval of minimum length g

n
will be divided with high probability.

If one applies the previous lemma for g = n
2 ,

n
4 , . . . , 4, then no interval of size g

n exists with
high probability. The number of used peers ist 4+8+ · · ·+ n

4 + n
2 ≤ n. After the last round there

are no segments bigger than 2
n . Since here only O(logn) events have to arrive, the statement

holds with high probability.
Now it remains to show that no segments smaller than 1

2n arise. The total length of all
segments of size 1

2n is at most n
2 before insertion. The probability that only such segments are

chosen by c logn tests is at most 2−c logn = n−c. For c > 1, a segment of size 1
2n is farther

divided only with polynomially low probability.

3.3 Insertion of Peers
Until now we have disregarded that an approximation value of the number n of peers in the
network is needed in order to check c logn positions on the ring during insertion. As in the
Viceroy network, this estimation can be achieved by the distance of neighbors on the ring
structure. By using the principle of multiple choice and particularly the previous lemma, the
estimation in the Distance Halving network is exact except for a factor of 4, lastly the biggest
segment has size 2

n and the smallest segment has size 1
2n with high probability.

During insertion the c logn segments that have to be checked are localized by a search. For
this, O(logn) steps are needed, as we will see shortly. After the biggest segment was chosen,
the peer to insert will be embedded in the ring structure and then it establishes the other
connections to the other peers with the help of the adjacent peers on the ring. Accordingly, the
other neighbors in the network update, too.

4 Routing in the Distance Halving Network
We want to have a routing algorithm for the Distance Halving network which, in spite of the
constant degree, only needsO(logn) steps and at the same time distributes congestion uniformly.
In order to show the basic idea of the routing in this network, first a simplified version will be
presented which distributes congestion not as uniformly as the other algorithm does but also
needs only a logorithmical number of steps.
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4.1 Simple Algorithm

leftRouting(src, dest)
if src and dest adjacent then

send message from src to dest
else
newSrc ← leftPointer(src)
newDest ← leftPointer(dest)
send message from src to newSrc
leftRouting(newSrc, newDest)
send message from newDest to dest

Figure 4: Routing algorithm using only left edges.

Figure 5: Example for routing in the Distance Halving network using only left edges.

This algorithm only uses the left edges. The source peer calculates two intermediate stations
and reduces routing to half the distance. This continues until the source and destination nodes
are adjacent. One could get the impression that the destination node takes part in the search,
which is not correct. Lastly he does not “know” that he is in demand. The calculation of the
intermediate stations is done by the source node. Then the intermediate stations must be told
which path the message has to be carried on. Surely, routing also works using right edges:

rightRouting(src, dest)
if src and dest adjacent then

send message from src to dest
else
newSrc ← rightPointer(src)
newDest ← rightPointer(dest)
send message from src to newSrc
rightRouting(newSrc, newDest)
send message from newDest to dest

Figure 6: Routing algorithm using only right edges.

In both algorithms, the distance between source and destination is halved every recursion
step, and every recursion step needs two steps. Since all interval sizes differ only by a factor
of ρ = 4, the routing algorithm needs at most 1 + logn recursions to deliver a message. It
concludes that the routing cost is 2 logn+ 3:

Lemma 3. The routing in the Distance Halving network needs at most 2 logn+3 messages and
steps with high probability.

4.2 Congestion Optimized Algorithm
Since the left and the right edges can be exchanged arbitrarily in these algorithms, the possibility
arises to decide orientation (pairwise) by coin toss. While the first two algorithms tend to send
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traffic into the outermost left or right corner, this algorithm arranges a good distribution of
congestion. One can show here that congestion is very low [1].

randomRouting(src, dest)
if src and dest adjacent then
send message from src to dest

else
if coin shows number then
newSrc ← leftPointer(src)
newDest ← leftPointer(dest)

else
newSrc ← rightPointer(src)
newDest ← rightPointer(dest)

send message from src to newSrc
randomRouting(newSrc, newDest)
send message from newDest to dest

Figure 7: Routing algorithm using both left and right edges.

Figure 8: Example for routing in the Distance Halving network using both left and right edges.

5 Conclusion
We have seen that the Distance Halving network is a degree minimized network, i.e. it has a
constance degree and a logarithmic diameter. This peer-to-peer network is an elegant and simple
alternative to the complex Butterfly graph based Viceroy network.

Appendix
Theorem 4 (Chernoff bound). Let X1, . . . , Xn be independent Bernoulli experiments with prob-
ability Pr[Xi = 1] = p and X =

∑n
i=1Xi. Then, for δ ≥ 0,

Pr[X ≥ (1 + δ)pn] ≤ e−
1
3 min{δ,δ2}pn .

Furthermore, if 0 ≤ δ ≤ 1,
Pr[X ≤ (1− δ)pn] ≤ e−

1
2 δ

2pn .
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