II. Algorithms of the Internet 1. Routing and Packet Forwarding: Shortest Paths and Autonomous Systems

Tina Schmidt

Ferienakademie im Sarntal 2008 FAU Erlangen-Nürnberg, TU München, Uni Stuttgart

September 2008

1 Introduction

- The Origin of the Internet and Peer-to-Peer Networks
- The Different Layers of the Internet
- 2 IPv4
- 3 Routing and Packet Forwarding
 - Packet Forwarding
 - The Shortest Path Problem
 - Dijkstra's Algorithm
 - Practical Realizations of Routing Algorithms

4 Autonomous Systems

- Definition
- Intra-AS-Routing
- Inter-AS-Routing
- 5 Other Services of IP

1 Introduction

- The Origin of the Internet and Peer-to-Peer Networks
- The Different Layers of the Internet

2 IPv4

- 3 Routing and Packet Forwarding
 - Packet Forwarding
 - The Shortest Path Problem
 - Dijkstra's Algorithm
 - Practical Realizations of Routing Algorithms

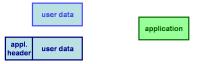
4 Autonomous Systems

- Definition
- Intra-AS-Routing
- Inter-AS-Routing
- 5 Other Services of IP

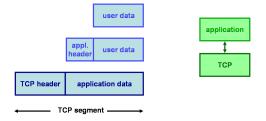
- Origin of the Internet: ARPANET = Advanced Research Project
 Agency Network (60s)
 - \Rightarrow Barely known in public
- Today: Internet links millions of computers

1 Introduction

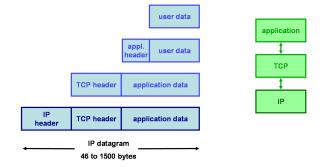
- The Origin of the Internet and Peer-to-Peer Networks
- The Different Layers of the Internet
- 2 IPv4
- 3 Routing and Packet Forwarding
 - Packet Forwarding
 - The Shortest Path Problem
 - Dijkstra's Algorithm
 - Practical Realizations of Routing Algorithms
- 4 Autonomous Systems
 - Definition
 - Intra-AS-Routing
 - Inter-AS-Routing
- 5 Other Services of IP

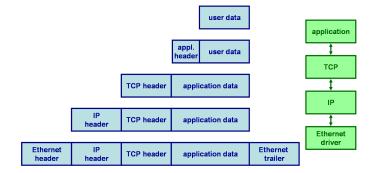

Overview over the Layers of the Internet

Application Layer	Peer-to-Peer-networks, e.g.
	Telnet = Telecommunication Network
	FTP = File Transfer Protocol
	HTTP = Hypertext Transfer Protocol
	SMTP = Simple Mail Transfer Protocol
Transport Layer	TCP = Transmission Control Protocol
	UDP = User Datagram Protocol
Internet Layer	IP = Internet Protocol
	ICMP = Internet Control Message Protocol
	IGMP = Internet Group Management Protocol
Host-to-Network Layer	device drivers
or Link Layer	(e.g. Ethernet or Token Ring drivers)



user data





- Two subprotocols: ICMP and IGMP
- Task: transmit datagrams
- Unreliable (simple troubleshooting)
- Connectionless protocol

IP Header Format 0 3 a 5 6 8 9 0 2 ਼੨ 7 8 |Type of Service| |Version| IHL Total Length Identification Flags Fragment Offset Time to Live | Protocol Header Checksum Source Address Destination Address Options Padding

Figure: IPv4 Header

IPv4 Addresses and DNS

- 32-bit-addresses, e.g. 65.114.4.69.
- Until 1993:
 - Host-ID: identification number for a computer (assigned by network administrator)
 - Net-ID: network address (assigned by the Internet Network Information Center)
- Since 1993: CIDR = Classless Inter-Domain Routing
 - Variable splitting of IP address
 - Subnetmask

IP-Address: 10000100.11100110.10010110.11110011 Subnetmask: 1111111.1111111.111111.00000000

DNS = Domain Name System

1 Introduction

- The Origin of the Internet and Peer-to-Peer Networks
- The Different Layers of the Internet

2 IPv4

3 Routing and Packet Forwarding

- Packet Forwarding
- The Shortest Path Problem
- Dijkstra's Algorithm
- Practical Realizations of Routing Algorithms

4 Autonomous Systems

- Definition
- Intra-AS-Routing
- Inter-AS-Routing

5 Other Services of IP

- Routing tables to determine the next vertex
- IP refers to the interface of a computer
 - Destination address = interface's IP ⇒ Delivery to transport layer
 - Destination address = other IP of routing table ⇒ Packet is forwarded
 - None of the above cases: default gateway
- TTL entry
 - Forwarding decreases this entry by one
 - If the entry is 0: ICMP-message
 - Prevents infinite packet forwarding

17/63

Sept. 2008

1 Introduction

- The Origin of the Internet and Peer-to-Peer Networks
- The Different Layers of the Internet

2 IPv4

3 Routing and Packet Forwarding

- Packet Forwarding
- The Shortest Path Problem
- Dijkstra's Algorithm
- Practical Realizations of Routing Algorithms

4 Autonomous Systems

- Definition
- Intra-AS-Routing
- Inter-AS-Routing
- 5 Other Services of IP

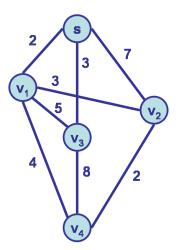
- Static routing: routing tables are created manually ⇒Only for small networks
- Dynamical routing: routing-tables are created automatically protocols: RIP, OSPF
- Constant way

Let G = (V, E) be a weighted graph containing a starting vertex $s \in V$ and weights $w_e \in \mathbb{R}_0^+$ for all edges $e \in E$. Searched are all paths from the starting vertex to all other vertices, which have the least sum of weights.

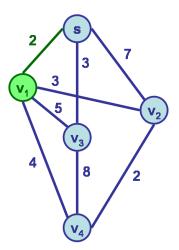
1 Introduction

- The Origin of the Internet and Peer-to-Peer Networks
- The Different Layers of the Internet

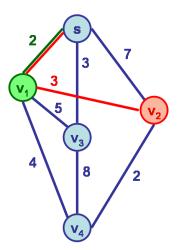
2 IPv4

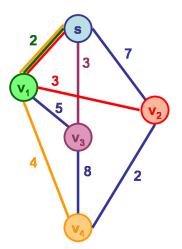

3 Routing and Packet Forwarding

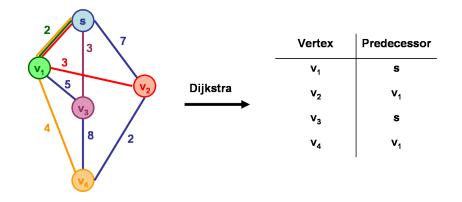
- Packet Forwarding
- The Shortest Path Problem
- Dijkstra's Algorithm
- Practical Realizations of Routing Algorithms

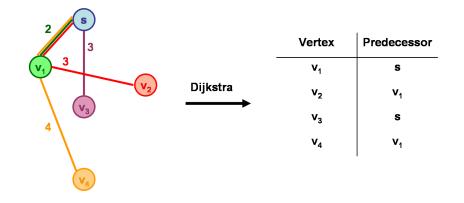

4 Autonomous Systems

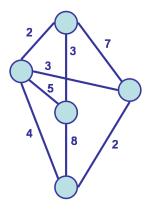
- Definition
- Intra-AS-Routing
- Inter-AS-Routing
- 5 Other Services of IP



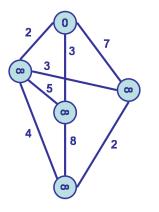







- Result: Table of predecessors with edges of shortest-path-tree (Predecessor(u), u)
- Shortest-Path-Tree is built gradually
- Greedy algorithm
- One step: add the vertex with the shortest distance to the starting vertex s
- Similar to breadth-first search

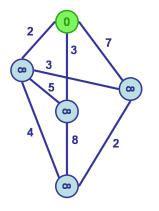
Dijkstra's Algorithm


```
Input: G = (V, E), s \in V, w : E \to \mathbb{R}_0^+
for all v \in V do
         Distance[v] \leftarrow \infty
         Predecessor[v] \leftarrow v
Distance[s] \leftarrow 0
S \leftarrow \emptyset
Q \leftarrow V
while Q \neq \emptyset do
         u \leftarrow \text{Element from } Q with minimal value \text{Distance}[u]
         S \leftarrow S \cup \{u\}
         Q \leftarrow Q \setminus \{u\}
         for all v \in V : (u, v) \in E do
                 if Distance[u] + w_{(u,v)} < Distance[v] then
                         Distance[v] \leftarrow Distance[u] + w_{(\mu,\nu)}
                         Predecessor[v] \leftarrow u
                                                                                       ПП
return {(Predecessor(u), u)|u \in V and u \neq Predecessor
```

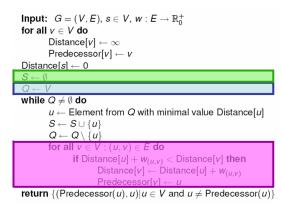
```
Input: G = (V, E), s \in V, w : E \to \mathbb{R}^+_0
for all v \in V do
         Distance[v] \leftarrow \infty
         Predecessor[v] \leftarrow v
Distance [s] \leftarrow 0
S \leftarrow \emptyset
Q \leftarrow V
while Q \neq \emptyset do
         u \leftarrow \text{Element from } Q \text{ with minimal value } \text{Distance}[u]
         S \leftarrow S \cup \{u\}
         Q \leftarrow Q \setminus \{u\}
         for all v \in V : (u, v) \in E do
                 if Distance[u] + w_{(u,v)} < Distance[v] then
                          Distance[v] \leftarrow Distance[u] + w_{(u,v)}
                          Predecessor[v] \leftarrow u
return {(Predecessor(u), u)|u \in V and u \neq Predecessor(u)}
```

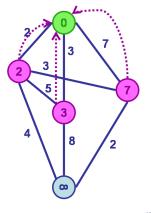

Input: $G = (V, E), s \in V, w : E \to \mathbb{R}^+_0$ for all $v \in V$ do Predecessor[v] $\leftarrow v$ Distance $[s] \leftarrow 0$ $S \leftarrow \emptyset$ $Q \leftarrow V$ while $Q \neq \emptyset$ do $u \leftarrow \text{Element from } Q \text{ with minimal value } \text{Distance}[u]$ $S \leftarrow S \cup \{u\}$ $Q \leftarrow Q \setminus \{u\}$ for all $v \in V$: $(u, v) \in E$ do if $Distance[u] + w_{(u,v)} < Distance[v]$ then Distance[v] \leftarrow Distance[u] + $w_{(u,v)}$ Predecessor[v] $\leftarrow u$ **return** {(Predecessor(u), u)| $u \in V$ and $u \neq$ Predecessor(u)}


```
Input: G = (V, E), s \in V, w : E \to \mathbb{R}^+_0
for all v \in V do
        Distance[v] \leftarrow \infty
        Predecessor[v] \leftarrow v
Distance [s] \leftarrow 0
while Q \neq \emptyset do
        u \leftarrow \text{Element from } Q \text{ with minimal value } \text{Distance}[u]
        S \leftarrow S \cup \{u\}
        Q \leftarrow Q \setminus \{u\}
        for all v \in V: (u, v) \in E do
                if Distance[u] + w_{(u,v)} < Distance[v] then
                        Distance[v] \leftarrow Distance[u] + w_{(u,v)}
                        Predecessor[v] \leftarrow u
return {(Predecessor(u), u)|u \in V and u \neq Predecessor(u)}
```

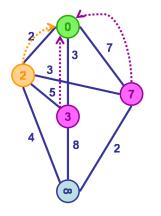



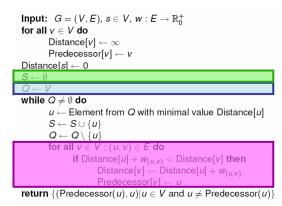
Input: $G = (V, E), s \in V, w : E \to \mathbb{R}^+_0$ for all $v \in V$ do Distance[v] $\leftarrow \infty$ Predecessor[v] $\leftarrow v$ Distance $[s] \leftarrow 0$ while $Q \neq \emptyset$ do $u \leftarrow \text{Element from } Q$ with minimal value Distance[u] $S \leftarrow S \cup \{u\}$ $Q \leftarrow Q \setminus \{u\}$ for all $v \in V$: $(u, v) \in E$ do if $Distance[u] + w_{(u,v)} < Distance[v]$ then Distance[v] \leftarrow Distance[u] + $w_{(u,v)}$ Predecessor[v] $\leftarrow u$ **return** {(Predecessor(u), u)| $u \in V$ and $u \neq$ Predecessor(u)}

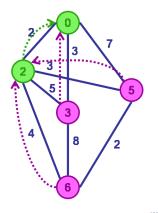




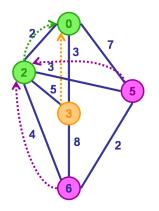
Input: $G = (V, E), s \in V, w : E \to \mathbb{R}_0^+$ for all $v \in V$ do Distance[v] $\leftarrow \infty$ Predecessor[v] $\leftarrow v$ Distance $[s] \leftarrow 0$ while $Q \neq \emptyset$ do $u \leftarrow \text{Element from } Q \text{ with minimal value } \text{Distance}[u]$ $S \leftarrow S \cup \{u\}$ $Q \leftarrow Q \setminus \{u\}$ for all $v \in V$: $(u, v) \in E$ do if $Distance[u] + w_{(u,v)} < Distance[v]$ then Distance[v] \leftarrow Distance[u] + $w_{(u,v)}$ Predecessor[v] $\leftarrow u$ **return** {(Predecessor(u), u) | $u \in V$ and $u \neq$ Predecessor(u)}

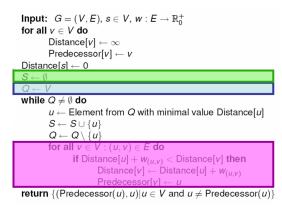


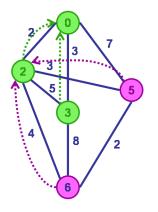




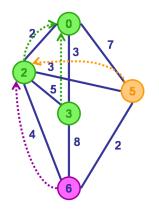
Input: $G = (V, E), s \in V, w : E \to \mathbb{R}_0^+$ for all $v \in V$ do Distance[v] $\leftarrow \infty$ Predecessor[v] $\leftarrow v$ Distance $[s] \leftarrow 0$ while $Q \neq \emptyset$ do $u \leftarrow \text{Element from } Q \text{ with minimal value } \text{Distance}[u]$ $S \leftarrow S \cup \{u\}$ $Q \leftarrow Q \setminus \{u\}$ for all $v \in V$: $(u, v) \in E$ do if $Distance[u] + w_{(u,v)} < Distance[v]$ then Distance[v] \leftarrow Distance[u] + $w_{(u,v)}$ Predecessor[v] $\leftarrow u$ **return** {(Predecessor(u), u)| $u \in V$ and $u \neq$ Predecessor(u)}

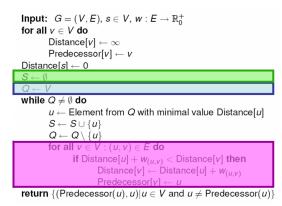


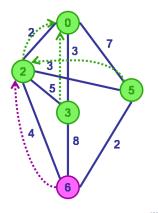




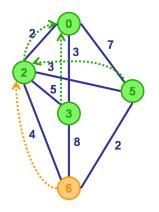
Input: $G = (V, E), s \in V, w : E \to \mathbb{R}_0^+$ for all $v \in V$ do Distance[v] $\leftarrow \infty$ Predecessor[v] $\leftarrow v$ Distance $[s] \leftarrow 0$ while $Q \neq \emptyset$ do \leftarrow Element from Q with minimal value Distance[u] $S \leftarrow S \cup \{u\}$ $Q \leftarrow Q \setminus \{u\}$ for all $v \in V$: $(u, v) \in E$ do if $Distance[u] + w_{(u,v)} < Distance[v]$ then Distance[v] \leftarrow Distance[u] + $w_{(u,v)}$ Predecessor[v] $\leftarrow u$ **return** {(Predecessor(u), u)| $u \in V$ and $u \neq$ Predecessor(u)}

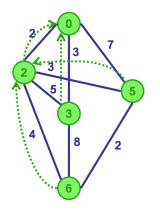




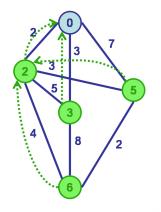


Input: $G = (V, E), s \in V, w : E \to \mathbb{R}^+_0$ for all $v \in V$ do Distance[v] $\leftarrow \infty$ Predecessor[v] $\leftarrow v$ Distance $[s] \leftarrow 0$ while $Q \neq \emptyset$ do \leftarrow Element from Q with minimal value Distance[u] $S \leftarrow S \cup \{u\}$ $Q \leftarrow Q \setminus \{u\}$ for all $v \in V$: $(u, v) \in E$ do if $Distance[u] + w_{(u,v)} < Distance[v]$ then Distance[v] \leftarrow Distance[u] + $w_{(u,v)}$ Predecessor[v] $\leftarrow u$ **return** {(Predecessor(u), u)| $u \in V$ and $u \neq$ Predecessor(u)}

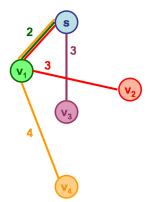


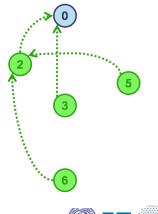


Input: $G = (V, E), s \in V, w : E \to \mathbb{R}_0^+$ for all $v \in V$ do Distance[v] $\leftarrow \infty$ Predecessor[v] $\leftarrow v$ Distance $[s] \leftarrow 0$ while $Q \neq \emptyset$ do $u \leftarrow \text{Element from } Q \text{ with minimal value Distance}[u]$ $S \leftarrow S \cup \{u\}$ $Q \leftarrow Q \setminus \{u\}$ for all $v \in V$: $(u, v) \in E$ do if $Distance[u] + w_{(u,v)} < Distance[v]$ then Distance[v] \leftarrow Distance[u] + $w_{(u,v)}$ Predecessor[v] $\leftarrow u$ **return** {(Predecessor(u), u)| $u \in V$ and $u \neq$ Predecessor(u)}




```
Input: G = (V, E), s \in V, w : E \to \mathbb{R}^+_0
for all v \in V do
         Distance[v] \leftarrow \infty
         Predecessor[v] \leftarrow v
Distance [s] \leftarrow 0
while Q \neq \emptyset do
         u \leftarrow \text{Element from } Q \text{ with minimal value } \text{Distance}[u]
         S \leftarrow S \cup \{u\}
         Q \leftarrow Q \setminus \{u\}
        for all v \in V: (u, v) \in E do
                 if Distance[u] + w_{(u,v)} < Distance[v] then
                         Distance[v] \leftarrow Distance[u] + w_{(u,v)}
                        Predecessor[v] \leftarrow u
return {(Predecessor(u), u)|u \in V and u \neq Predecessor(u)}
```






```
Input: G = (V, E), s \in V, w : E \to \mathbb{R}^+_0
for all v \in V do
         Distance[v] \leftarrow \infty
         Predecessor[v] \leftarrow v
Distance [s] \leftarrow 0
S \leftarrow \emptyset
Q \leftarrow V
while Q \neq \emptyset do
         u \leftarrow \text{Element from } Q \text{ with minimal value } \text{Distance}[u]
         S \leftarrow S \cup \{u\}
         Q \leftarrow Q \setminus \{u\}
         for all v \in V : (u, v) \in E do
                 if Distance[u] + w_{(u,v)} < Distance[v] then
                          Distance[v] \leftarrow Distance[u] + w_{(u,v)}
                          Predecessor[v] \leftarrow u
return {(Predecessor(u), u)|u \in V and u \neq Predecessor(u)
```


1 Introduction

- The Origin of the Internet and Peer-to-Peer Networks
- The Different Layers of the Internet

2 IPv4

3 Routing and Packet Forwarding

- Packet Forwarding
- The Shortest Path Problem
- Dijkstra's Algorithm

Practical Realizations of Routing Algorithms

4 Autonomous Systems

- Definition
- Intra-AS-Routing
- Inter-AS-Routing

5 Other Services of IP

- Practical realization of Dijkstra's Algorithm
- Every vertex needs to know all connections of the network
- Broadcast: spreading connection information through the network
- Low costs for communication in a running state

Distance Table for A				Distance Table for C				
	over		Routing			over		Routing
from A	В	Е	Table Entry	from C	В	D	Е	Table Entry
to B	2	15	В	to A	3	14	18	В
С	3	19	В	В	1	9	16	В
D	7	10	В	D	6	4	11	D
Е	13	9	E	E	7	5	10	D
A 9 E 1	2 10 D							<u>۳</u> ۳

Distance Table for A			Dist	Distance Table for B					
	over	Routing		over		Routing			
from A	В	Table Entry	from B	A	С	Table Entry			
to B	2	В	to A	2	4	А			
С	3	В	С	5	1	С			

Distance Table for A			Distance Table for B					
	over	Routing Table Entry		over		Routing Table Entry		
			from B	Α	С	Table Entry		
to B	2	В	to A	2 5	4	А		
С	2 3	В	С	5	1	С		

	over	Routing		over		Rou	uting		
from A	В	Table Entry	from B	A	С	Tab	le Entry		
to B	2	В	to A	2	-	Α			
С	3	В	С	5	-	Α		ПШ	

Distance Table for A				Distance Table for B					
	over	Routing Table Entry		over		Routing Table Entry			
			from B	Α	С	Table Entry			
to B	2 3	В	to A	2	-	А			
С	3	В	С	5	-	А			

	over	Routing		over		Routing		
from A	В	Table Entry	from B	A	С	Table Entry		
to B	2	В	to A	2	-	A		
С	7	В	С	5	-	A 🥝) TLM	

Distance Table for A				Distance Table for B					
	over	Routing Table Entry		over		Routing Table Entry			
			from B	Α	С	Table Entry			
to B	2	В	to A	2	-	А			
С	2 7	В	C	5	-	А			

	over	Routing		over		Rou	ıting		
from A	В	Table Entry	from B	A	С	Tabl	le Entry		
to B	2	В	to A	2	-	Α			
С	7	В	С	9	-	Α		ТШП	

Solutions for the Count-to-Infinity-Problem

Poisoned Reverse

- Spread information about a lost connection
- Lost connection: distance is set infinity
- Split Horizon
 - Cannot ask router from which it had learned about the connection
- Problem: both algorithms do not work reliably

1 Introduction

- The Origin of the Internet and Peer-to-Peer Networks
- The Different Layers of the Internet

2 IPv4

- 3 Routing and Packet Forwarding
 - Packet Forwarding
 - The Shortest Path Problem
 - Dijkstra's Algorithm
 - Practical Realizations of Routing Algorithms

4 Autonomous Systems

Definition

- Intra-AS-Routing
- Inter-AS-Routing
- 5 Other Services of IP

- Impossible to generate routing-tables for all existing routers (too many)
- Implementation of a hierarchy: partition into autonomous systems
- Boundary routers connect the different autonomous systems
- Path for a packet:
 - Intra-AS-Routing
 - Inter-AS-Routing

1 Introduction

- The Origin of the Internet and Peer-to-Peer Networks
- The Different Layers of the Internet

2 IPv4

- 3 Routing and Packet Forwarding
 - Packet Forwarding
 - The Shortest Path Problem
 - Dijkstra's Algorithm
 - Practical Realizations of Routing Algorithms

4 Autonomous Systems

- Definition
- Intra-AS-Routing
- Inter-AS-Routing

5 Other Services of IP

- Uses Distance-Vector-Routing algorithm
- New connected computer
 - Only knows distances to neighbors
 - Asks for routing-tables of neighbors
- Routing tables are exchanged regularly
- Advertisement: offer of new routers
- Problems:
 - Routing information does not spread fast
 - Count-to-Infinity Problem

- LSD = Link-State-Database: List of all neighbored routers
- Dijkstra's algorithm used to calculate the shortest path
- Larger networks are devided:
 - Local area
 - Backbone
- Today used for IPv4 and IPv6

- Based on Distance-Vector-Routing Protocol
- RIP: 15 network vertices away \Rightarrow network is called out of reach IGRP: increased to 255
- Better scalability (metric of costs)
- Routing loops are avoided

1 Introduction

- The Origin of the Internet and Peer-to-Peer Networks
- The Different Layers of the Internet

2 IPv4

- 3 Routing and Packet Forwarding
 - Packet Forwarding
 - The Shortest Path Problem
 - Dijkstra's Algorithm
 - Practical Realizations of Routing Algorithms

4 Autonomous Systems

- Definition
- Intra-AS-Routing
- Inter-AS-Routing
- 5 Other Services of IP

- BGP = Border Gateway Protcol
- Table with entries about subnets or entries with IP-address-prefixes
- Based on Path-Vector-Protocol

ICMP = Internet Control Message Protocol

Ping

- ICMP-Echo-Request-packet
- ICMP-Echo-Reply-packet
- Traceroute
 - Calculates the route inbetween two computers
 - Measures time for delivery

62 / 63

Sept. 2008

- The main protocol of the Internet Layer, IP, is a connectionless and unreliable datagram delivery service.
- Dijkstra's Algorithm is used to solve the Shortest Path Problem for Routing.
- Since the Internet contains millions of computers, it is devided into autonomous systems.
- Outlook
 - There was no good solution to the Count-to-Infinity Problem presented.
 - What happens to packets as they pass through other layers?

