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Abstract. Physarum polycephalum is a slime mold that is apparently
able to solve shortest path problems. A mathematical model for the
slime’s behavior in the form of a coupled system of differential equations
was proposed by Tero, Kobayashi and Nakagaki [TKN07]. We prove that
a discretization of the model (Euler integration) computes a (1 + ε)-
approximation of the shortest path in O(mL(log n + logL)/ε3) itera-
tions, with arithmetic on numbers of O(log(nL/ε)) bits; here, n and m
are the number of nodes and edges of the graph, respectively, and L is
the largest length of an edge. We also obtain two results for a directed
Physarum model proposed by Ito et al. [IJNT11]: convergence in the
general, nonuniform case and convergence and complexity bounds for
the discretization of the uniform case.

1 Introduction

Physarum polycephalum is a slime mold [BD97] that is apparently able to solve
shortest path problems. In [NYT00], Nakagaki, Yamada, and Tóth report on the
following experiment (see Figure 1): They built a maze, that was later covered
with pieces of Physarum (the slime can be cut into pieces that will merge if
brought into each other’s vicinity), and then fed the slime with oatmeal at two
locations. After a few hours, the slime retracted to the shortest path connecting
the food sources in the maze. The experiment was repeated with different mazes;
in all experiments, Physarum retracted to the shortest path. Tero, Kobayashi
and Nakagaki [TKN07] propose a mathematical model for the behavior of the
mold. Physarum is modeled as a tube network traversed by liquid flow, with the
flow satisfying the standard Poiseuille assumption from fluid mechanics. In the
following, we use terminology from the theory of electrical networks, relying on
the fact that equations for electrical flow and Poiseuille flow are the same [Kir10].

In particular, let G be an undirected graph1 with node set N , edge set E,
length labels l ∈ R

E
++

2and two distinguished nodes s0, s1 ∈ N . In our discussion,

1 One can easily generalize the model and extend our results to multigraphs at the
expense of heavier notation. Details will appear in the full version of the paper.

2 We let R
A, RA

+ and R
A
++ denote the set of real, nonnegative real, and positive real

vectors (respectively) whose components are indexed by A.
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Fig. 1. The experiment in [NYT00] (reprinted from there): (a) shows the maze uni-
formly covered by Physarum; the yellow color indicates the presence of Physarum. Food
(oatmeal) is provided at the locations labelled AG. After a while, the mold retracts to
the shortest path connecting the food sources as shown in (b) and (c). (d) shows the
underlying abstract graph. The video [You] shows the experiment.

x ∈ R
E
+ will be a state vector representing the diameters of the tubular channels

of the Physarum (edges of the graph). The value xe is called the capacity of edge
e. The nodes s0 and s1 represent the location of two food sources. Physarum’s
dynamical system is described by the system of differential equations [TKN07]

ẋ = |q(x, l)| − x. (1)

Equation (1) is called the evolution equation, as it determines the dynamics
of the system over time. It is a compact representation of a system of ordinary
differential equations, one for every edge of the graph; the absolute value operator
|·| is applied componentwise. The vector q ∈ R

E , known as the current flow, is
determined by the capacities and lengths of the edges, as follows (see Section 2
for the precise definitions). Force one unit of current from the source to the sink

in an electrical network, where the resistance re of edge e is given by re
def
= le/xe,

and call qe the resulting current across edge e. In [BMV12, Bon13], it was shown
that the dynamics (1) converges to the shortest source-sink path in the following
sense: the potential difference between source and sink converges to the length of
the shortest source-sink path, the capacities of the edges on the shortest source-
sink path3 converge to one, and the capacities of all other edges converge to
zero.

Our first contribution relies on a numerical approximation of (1), as given by
Euler’s method [SM03],

Δx = h · (|q(x, l)| − x) , (2)

or, making the dependency on time explicit,

x(t+ 1)− x(t) = h · (|q(x(t), l)| − x(t)) , (3)

where h ∈ (0, 1) is the step size of the discretization. We prove that the dynamics
(3) converges to the shortest source-sink path. More precisely, let opt be the
length of the shortest path, n and m be the number of nodes and edges of the

3 We assume uniqueness of the shortest path for simplicity of exposition.
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Fig. 2. Photographs of the connecting paths between two food sources (FS). (a) The
rectangular sheet-like morphology of the organism immediately before the presentation
of two FS and illumination of the region indicated by the dashed white lines. (b),(c)
Examples of connecting paths in the control experiment in which the field was uni-
formly illuminated. A thick tube was formed in a straight line (with some deviations)
between the FS. (d)-(f) Typical connecting paths in a nonuniformly illuminated field
(95 K lx). Path length was reduced in the illuminated field, although the total path
length increased. Note that fluctuations in the path are exhibited from experiment to
experiment. (Figure and caption reprinted from [NIU+07, Figure 2].)

graph, and L be the largest length of an edge. We show that, for ε ∈ (0, 1/300)
and for h = ε/mL, the discretized model yields a solution of value at most (1 +
O(ε))opt in O(mL(logn+ logL)/ε3) steps, even when O(log(nL/ε))-bit number
arithmetic is used. For bounded L, the time bound is therefore polynomial in
the size of the input data.

Our second contribution was inspired by the following experiment of Nakagaki
et al., reported in [NIU+07] (see also Figure 2). They cover a rectangular plate with
Physarum and feed it at opposite corners of the plate. Two-thirds of the plate are
put under a bright light, and one-third is kept in the dark. Under uniform lighting
conditions, Physarum would retract to a straight-line path connecting the food
sources [NYT00].However, Physarumdoes not like light and therefore forms a path
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with one kink connecting the food sources. The path is such that the part under
light is shorter than in a straight-line connection. In the theory section of [NYT00],
a reactivity parameter ae > 0 is introduced into (1):

ẋe(t) = |qe(x, l)| − aexe(t). (4)

Note that if, for example, qe(x, l) = 0, the capacity of edge e decreases with
a rate that depends on ae. To model the experiment, ae = 1 for edges in the
dark part of the plate, and ae = C > 1 for the edges in the lighted area, where
C is a constant. The authors of [NIU+07] report that in computer simulations,
the dynamics (4) converges to the shortest source-sink path with respect to the
modified length function aele. A proof of convergence is currently only available
for the uniform case ae = 1 for all e, see [BMV12, Bon13].

A directed version of model (4) was proposed in [IJNT11]. The graph G =
(N,E) is now a directed graph. For a state vector x(t), the flows are defined as
above. A flow qe(x, l) is positive if it flows in the direction of e and is negative
otherwise. The dynamics becomes

ẋe(t) = qe(x, l)− aexe(t). (5)

Although this model apparently has no physical counterpart, it has the advan-
tage of allowing one to treat directed graphs. Ito et al. [IJNT11] prove con-
vergence to the shortest source-sink path in the uniform case (ae = 1 for all
e). In fact, they show convergence for a somewhat more general problem, the
transportation problem, as does [BMV12] for the undirected model.

We show that the dynamics (5) converges to the shortest directed source-
sink path under the modified length function aele. This generalizes the conver-
gence result of [IJNT11] from the uniform (ae = 1 for all e) to the nonuniform
case, albeit only for the shortest path problem. Our proof combines arguments
from [MO07, MO08, IJNT11, BMV12, Bon13] and we believe it is simpler than
the one in [IJNT11]. Moreover, for the uniform case (that is, ae = 1 for all e),
we can prove convergence for the discretized model

xe(t+ 1) = xe(t) + h(qe(x, l)− xe(t)), (6)

where h ≤ 1/(n(4nm2LX2
0 )

2) is the step size; here, X0 is the maximum between
the largest capacity and the inverse of the smallest capacity at time zero. In
particular, let P ∗ be the shortest directed source-sink path and let ε ∈ (0, 1) be
arbitrary: we show xe(t) ≥ 1− 2ε for e ∈ P ∗ and xe(t) ≤ ε for e �∈ P ∗, whenever
t ≥ 4nL

h

(
3 lnX0 + 2 ln 2m

ε

)
.

Outline of the paper. The remainder of the paper is structured as follows. In
Section 2 we give basic definitions and properties. In Section 3 we study the
discrete dynamics (3). Section 4 concerns the directed models (5) and (6). We
close with some concluding remarks in Section 5.
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2 Electrical Networks

Without loss of generality, assume that N = {1, 2, . . . , n}, E = {1, 2, . . . ,m}
and assume an arbitrary orientation of the edges.4 Let A = (ave)v∈N,e∈E be the
incidence matrix of G under this orientation, that is, ave = +1 if v is the tail of
e, ave = −1 if v is the head of e, and ave = 0, otherwise. Then q is defined as the
unit-value flow from s0 to s1 of minimum energy, that is, as the unique optimal
solution to the following continuous quadratic optimization problem, related to
Thomson’s principle from physics [Bol98, Theorem IX.2]:

min qTRq such that Aq = b. (7)

Here, R
def
= diag(l/x) ∈ R

E×E is the diagonal matrix with value re
def
= le/xe

for the e-th element of the main diagonal, and b ∈ R
N is the vector defined by

bv = +1 if v = s0, bv = −1 if v = s1, and bv = 0, otherwise. The value re is
called the resistance of edge e. Node s0 is called the source, node s1 the sink. The

quantity η
def
= qTRq is the energy; the quantity bs0 = 1 is the value of the flow

q. The optimality conditions for (7) imply that there exist values p1, . . . , pn ∈ R

(potentials) that satisfy Ohm’s law [Bol98, Section II.1]:

qe = (pu − pv)/re, whenever edge e is oriented from u to v. (8)

By the conservation of energy principle, the total energy equals the difference
between the source and sink potentials, times the value of the flow [Bol98, Corol-
lary IX.4]:

η = (ps0 − ps1)bs0 = ps0 − ps1 . (9)

3 Convergence of the Undirected Physarum Model

In this section we characterize Physarum’s convergence properties in the undi-
rected model, as given by equation (3):

x(t+ 1) = x(t) + h · (|q(x(t), l)| − x(t)) .

Assumptions on the input data: We assume that the length labels l and the
initial conditions x(0) satisfy the following:

a. each s0-s1 path in G has a distinct overall length; in particular, there is a
unique shortest s0-s1 path;

b. all capacities are initialized to one:

x(0) = 1; (10)

4 In the directed model discussed in Section 4, this orientation is simply the one given
by the directed graph.
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c. the initially minimum capacity cut is the source cut, and it has unit capacity:

1T
S · x(0) ≥ 1T

0 · x(0) = 1, for any s0-s1 cut S, (11)

where 1S is the characteristic vector of the set of edges in the cut S, and 10

is the characteristic vector of the set of edges incident to the source. Notice
that this can be achieved even when s0 has not degree 1, by connecting a
new source s′0 to s0 via a length 1, capacity 1 edge.

d. every edge has length at least 1.

Basic properties: The first property we show is that the set of fractional s0-s1
paths is an invariant for the dynamics.

Lemma 1. Let x = x(t) be the solution of (3) under the initial conditions
x(0) = 1. The following properties hold at any time t ≥ 0: (a) x > 0, (b)
1T
S · x ≥ 1T

0 · x = 1, and (c) x ≤ 1.

Proof. (a.) Let e ∈ E be any edge. Since |qe| ≥ 0, by the evolution equation (3)
we have Δxe(t) = h(|qe|−xe(t)) ≥ −hxe(t). Therefore, by induction, xe(t+1) ≥
xe(t)− hxe(t) = (1− h)xe(t) > 0 as long as h < 1.

(b.) We use induction. The property is true for x(0) by the assumptions on
the input data. Then, using (3), induction, and the fact that 1T

S · |q| ≥ 1 for any
cut S,

1T
S ·x(t+1) = 1T

S ·(x(t)+h(|q|−x(t))) = (1−h)1T
S ·x(t)+h1T

S ·|q| ≥ 1−h+h = 1.

The fact that 1T
0 · x = 1 can be shown similarly.

(c.) Easy induction, along the same lines as the proof of (a.). ��
An equilibrium point of (3) is a vector x ∈ R

E
+ such that Δx = 0. Our assump-

tions imply that there are a finite number of equilibrium points: each equilibrium
corresponds to an s0-s1 path of the network, and vice versa.

Lemma 2. If x = 1P for some s0-s1 path P , then x is an equilibrium point.
Conversely, if x is an equilibrium point, then x = 1P for some s0-s1 path P .

Proof. The proof proceeds along the same lines as for the continuous case, see
[Bon13, Lemma 2.3]. ��

Convergence: Recall that, by (9),

η =
∑

e∈E

req
2
e = qTRq = ps0 − ps1 , (12)

and let
V

def
= lTx =

∑

e∈E

lexe =
∑

e∈E

rex
2
e = xTRx. (13)

Here η is the energy dissipated by the system, as well as the potential difference
between source and sink. Notice that the quantity V can be interpreted as the
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“infrastructural cost” of the system; in other terms, it is the cost that would
be incurred if every link were traversed by a flow equal to its current capacity.
While η may decrease or increase during the evolution of the system, we will
show that η ≤ V and that V is always decreasing, except on equilibrium points.

Lemma 3. η ≤ V .

Proof. To see the inequality, consider any flow f of maximum value subject to
the constraint that 0 ≤ f ≤ x. The minimum capacity of a source-sink cut is 1
at any time, by Lemma 1(b). Therefore, by the Max Flow-Min Cut Theorem,
the value of the flow f must be 1. Then by (7),

η = qTRq ≤ fTRf ≤ xTRx = V. ��
Lemma 4. V is a Lyapunov function for (3); in other words, it is continuous
and satisfies (i) V ≥ 0 and (ii) ΔV ≤ 0. Moreover, ΔV = 0 if and only if
Δx = 0.

Proof. V is continuous and nonnegative by construction. Moreover,

ΔV/h = lTΔx/h = lT (|q| − x) by (3),

= xTR |q| − xTRx by l = Rx,

= (xTR1/2) · (R1/2 |q|)− xTRx

≤ (xTRx)1/2 · (qTRq)1/2 − xTRx by Cauchy-Schwarz [Ste04],

= (ηV )1/2 − V,

≤ V − V by Lemma 3.

= 0.

Observe thatΔV = 0 is possible only when equality holds in the Cauchy-Schwarz
inequality. This, in turn, implies that the two vectors R1/2x and R1/2 |q| are
parallel, that is, |q| = λx for some λ ∈ R. However, by Lemma 1(b), the capacity
of the source cut is 1 and, by (7), the sum of the currents across the source cut
is 1. Therefore, λ = 1 and Δx = h(|q| − x) = 0. ��
Corollary 1. As t → ∞, x(t) approaches an equilibrium point of (3), and η(t)
approaches the length of the corresponding s0-s1 path.

Proof. The existence of a Lyapunov function V implies [LaS76, Theorem 6.3]
that x(t) approaches the set {x ∈ R

E
+ : ΔV = 0}, which by Lemma 4 is the

same as the set {x ∈ R
E
+ : Δx = 0}. Since this set consists of isolated points

(Lemma 2), x(t) must approach one of those points, say the point 1P for some
s0-s1 path P . When x = 1P , one has η = V = 1T

P · l. ��
Convergence to an approximate shortest path and convergence time: We will
track the convergence process via three main quantities: two of these, η and V ,
have already been introduced. The third one is defined as

W
def
=

∑

e∈P∗
le lnxe,
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where P ∗ is the shortest path. Recall that opt denotes the length of P ∗. Observe
that W (t) ≤ 0 for all t (due to Lemma 1(c)) and W (0) = 0 due to the choice of
initial conditions. Also observe that V (0) = lT ·x(0) = ∑

e∈E le ≤ mL, where m
is the number of edges of the graph and L is the length of the longest edge.

For a fixed ε ∈ (0, 1/300), we set h = ε/mL. We will bound the number of
steps before V falls below (1 + 3ε)3opt < (1 + 10ε)opt.

Definition 1. We call a V -step any time step t such that η(t) ≤ (1+3ε)opt and
V (t) > (1+3ε)3opt. We call a W -step any time step t such that η(t) > (1+3ε)opt
and V (t) > (1 + 3ε)3opt.

Lemma 5. The number kV of V -steps is at most O((log n+ logL)/(hε)).

Proof. For any V -step t we have, by the proof of Lemma 4 and the assumptions
on η and V ,

ΔV ≤ h((ηV )1/2 − V ) = hV ((η/V )1/2 − 1)

≤ hV (1/(1 + 3ε)− 1) ≤ −hV (3ε/(1 + ε)) ≤ −hεV

so that V (t + 1) ≤ (1 − hε)V (t). In other words, V decreases by at least an hε
factor at each V -step. Moreover, V is nonincreasing at every step of the whole
process, and after it gets below (1+3ε)3opt there are no more V -steps. Therefore,
the number of V -steps, kV , is at most log1/(1−hε)(V (0)/opt) ≤ (lnV (0))/(hε) =
O(log(mL)/(hε)) (we used the assumption that opt ≥ 1). ��

Lemma 6. At every W -step, W increases by at least opt · hε/2.

Proof. Let P ∗ be the shortest path, so that 1TP∗ · l = opt. For a W -step t, we
have

W (t+ 1)−W (t) =
∑

e∈P∗
le ln

xe(t+ 1)

xe(t)
=

∑

e∈P∗
le ln

(
1 + h

( |pu − pv|
le

− 1

))
,

where u, v are the endpoints of edge e. Using the bound ln(1 + z) ≥ z/(1 + z),
which is valid for any z > −1 (recall that h < 1), we obtain

W (t+ 1)−W (t) ≥
∑

e∈P∗
le

h
(

|pu−pv |
le

− 1
)

1 + h
(

|pu−pv|
le

− 1
) =

∑

e∈P∗

h (|pu − pv| − le)

1 + h
(

|pu−pv|
le

− 1
)

= h ·
( ∑

e∈P∗

|pu − pv|
1 + h

(
|pu−pv |

le
− 1

) −
∑

e∈P∗

le

1 + h
(

|pu−pv |
le

− 1
)
)

≥ h ·
(

∑

e∈P∗

|pu − pv|
1 + hη

−
∑

e∈P∗

le
1− h

)

,
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where we used |pu−pv |
le

− 1 < η (we are using the assumption le ≥ 1 for all e).
Since

∑
e∈P∗ |pu − pv| ≥ η and η ≤ V ≤ mL, we obtain further

W (t+ 1)−W (t) ≥ h

(
η

1 + hmL
− opt

1− h

)
= h

(
(1− h)η − (1 + hmL)opt

(1− h)(1 + hmL)

)

≥ opt · h
(
(1− ε)(1 + 3ε)− (1 + ε)

(1− h)(1 + ε)

)
> opt · hε− 3ε2

1 + ε
≥ opt · hε

2
,

where the third inequality follows since ε = hmL by definition of h and since h =
ε/(mL) ≤ ε (note that mL ≥ 1 from the definition of L). The fourth inequality
follows from simple calculus, while the fifth follows since (1− 3ε2)/(1+ ε) ≥ 1/2,
whenever ε ≤ 1/3. ��
Lemma 7. At every V -step, W decreases by at most 2opt · h.
Proof. Trivially, xe(t+1) ≥ (1−h)xe(t), hence lnxe(t+1) ≥ lnxe(t)− ln(1/(1−
h)) ≥ lnxe(t) − 2h (since h < 1/2). The claim follows from the definition of
W . ��
Lemma 8. The number kW of W -steps is at most 4kV /ε = O(mL(log n +
logL)/ε3).

Proof. At every W -step, W increases by at least opt · hε/2. But W is always
bounded above by 0, is decreased by at most 2opt · h · kV , and starts with
W (0) = 0. The claim follows. ��
Theorem 1. After at most O(mL(log n + logL)/ε3) steps, V decreases below
(1 + 10ε)opt.

Proof. Until the time that V gets below (1 + 3ε)3opt ≤ (1 + 10ε)opt, every
step is either a V -step or a W -step, of which there can be at most kV + kW =
O(mL(log n+ logL)/ε3) in total. ��
Approximate Computation. Real arithmetic is not needed for the results of the
preceding section; in fact, arithmetic with O(log(nL/ε)) bits suffices. The proof
that approximate arithmetic suffices mimics the proof in the preceding section;
details are deferred to a full version of the paper.

4 Convergence of the Directed Physarum Model

We characterize Physarum’s convergence properties in the directed model. We
assume (A1) xe(0) > 0 for all e, (A2) There is a directed path from the source
to the sink, (A3) Edge lengths are integral, and (A4) The shortest source-sink
path is unique. It is convenient to study the dynamics

ẋe(t) = ae(qe(t)− xe(t)) (14)

instead of (5). This is simply a change of variables and a rescaling of the
edge lengths. We define several constants: amin = min(1,mine ae), xmax(0) =

max(1,maxe xe(0)), xmin(0) = min(1,mine xe(0)), X0 = max
(
xmax(0),

1
xmin(0)

)
,

and L = maxe le. P
∗ denotes the shortest directed source-sink path. We prove:
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Theorem 2. Assume (A1)–(A4) and let ε ∈ (0, 1) be arbitrary. If t ≥ nL
amin

·(
3 lnX0 + 2 ln 2m

ε

)
, then xe(t) ≥ 1− 2ε for e ∈ P ∗ and xe(t) ≤ ε for e �∈ P ∗.

Electrical flows are uniquely determined by Kirchhoff’s and Ohm’s laws. In our
setting, the electrical flow q(t) and the vertex potentials p(t) are functions of
time. For an edge e = (u, v), let ηe(t) = pu(t) − pv(t), and let η(t) = ps0(t) −
ps1(t). We have the following facts: (1) For any directed source-sink path P ,∑

e∈P ηe(t) = η(t). (2) xe(t) ≤ max(1, xe(0)) ≤ xmax(0) for all t. (3) xe(t) > 0
for all e ∈ E and all t (the existence of a directed source-sink path is crucial

here). (4) lnxe(t) = lnxe(0) + ae

(
η̂e(t)
le

− 1
)
· t, where η̂e(t) = (1/t)

∫ t

0
ηe(s)ds

is the average potential drop on edge e up to time t. For a directed source-sink
path P , let

lP =
∑

e∈P

le and wP (t) =
∑

e∈P

le
ae

lnxe(t).

be its length and its weighted sum of log capacities, respectively. The quantity wP

was introduced in [MO07, MO08], and the following property (15) was derived
in these papers.

Lemma 9. Assume (A1), (A2) and let P be any directed source-sink path. Then

ẇP (t) = η(t)− lP and
d

dt
(wP (t)− wP∗(t)) = lP∗ − lP . (15)

Moreover, wP (t) ≤ (3nL lnX0)/amin − t, if P is a non-shortest source-sink
path and (A3) holds: For ε ∈ (0, 1), let t1 = nL(3 lnX0 + ln(1/ε))/amin. Then
mine∈P xe(t) ≤ ε for t ≥ t1.

The last claim states that for any non-shortest path P , mine∈P xe(t) goes to
zero. This is not the same as stating that there is an edge in P whose capacity
converges to zero. Such a stronger property will be shown in the proof of the
main theorem.

The Convergence Proof: The proof proceeds in two steps. We first show that
the vector of edge capacities becomes arbitrarily close to a nonnegative non-
circulatory flow and then prove the main theorem. A flow is nonnegative if
fe ≥ 0 for all e, and it is non-circulatory if fe ≤ 0 for at least one edge e on
every directed cycle.

Lemma 10. Assume (A1) and (A2): For t > t0
def
= (1/amin) ln(3mX0), there is

a nonnegative non-circulatory flow f(t) with

|fe(t)− xe(t)| ≤ 5mX0 · e−amint. (16)

Proof. We follow the analysis in [IJNT11], taking reactivities into account. ��

We are now ready for the proof of the main theorem.
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Proof (of Theorem 2). Let P be the set of non-shortest simple source-sink paths,
and let t > t0, where t0 is defined as in Lemma 10. The nonnegative non-
circulatory flow f(t) can be written as a sum of flows along simple directed
source-sink paths, i.e.,

f(t) = αP∗(t)1P∗ +
∑

P∈P
αP (t)1P

with nonnegative coefficients αP . This representation is not unique. However,
there is always a representation with at most m nonzero coefficients.5 For any
edge e and any path P with e ∈ P , the flow fe(t) is at least αP (t).

Let ε ∈ (0, 1) be arbitrary. For

t ≥ 1

amin
max

(
ln

10m2X0

ε
, nL

(
3 lnX0 + ln

2m

ε

))
,

we have |fe(t)− xe(t)| ≤ ε/(2m) for all e (Lemma 10) and mine∈P xe(t) ≤
ε/(2m) for every non-shortest path P (Lemma 9). Thus, every non-shortest path
contains an edge e with fe(t) ≤ ε/m. Thus, αP (t) ≤ ε/m for all non-shortest
paths P , and hence,

xe(t) ≤ mε/m ≤ ε for all e �∈ P ∗.

The value of the flow f is one. The total flow along the non-shortest paths is at
most ε. Thus the flow along P ∗ is at least 1− ε. Hence xe(t) ≥ 1− ε− ε/(2m) ≥
1− 2ε for all e ∈ P ∗. Finally, ln 10m2X0

ε ≤ nL(3 lnX0 + 2 ln 2m
ε ). ��

Discretization. We study the discretization of the system of differential equations
(14). We proceed in discrete time steps t = 0, 1, 2, . . . and define the dynamics

xe(t+ 1) = xe(t) + hae(qe(t)− xe(t)), (17)

where h is the step size. We will need the following additional assumptions: (A5)
ae = 1 for all e, and (A6) there is an edge e0 = (s0, s1) of length nL and initial
capacity 0. Observe that the existence of this edge does not change the shortest
directed source-sink path. Our main theorem becomes the following; the proof
structure for the discrete case is similar to the one for the continuous case.

Theorem 3. Assume (A1)–(A6) and h ≤ 1
24·n(4nm2L(X0)2)

2 . Let ε ∈ (0, 1) be

arbitrary. For

t ≥ 4nL

h

(
3 lnX0 + 2 ln

2m

ε

)
,

xe(t) ≥ 1− 2ε for e ∈ P ∗ and xe(t) ≤ ε for e �∈ P ∗.

5 Let αP∗(t) be the minimum value of fe(t) for e ∈ P ∗. Subtract αP∗(t)1P∗ from f(t).
As long as f(t) is not the zero flow, determine a source-sink path P carrying nonzero
flow and set αP (t) to the minimum value of fe(t) for e ∈ P . Subtract αP (t)1P from
f(t).
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5 Conclusions and Future Work

We summarize our three main results: the discretization (3) of the undirected
Physarum model computes an (1 + ε)-approximation of the shortest source-
sink path in O(mL(logn + logL)/ε3) iterations with arithmetic on numbers
of O(log(nL/ε)) bits. The dynamics (5) of the nonuniform directed Physarum
model converges to the shortest directed source-sink path under the modified
length function aele. Within time nLa−1

min·
(
3 lnX0 + 2 ln 2m

ε

)
, an ε-approximation

is reached. For the uniform model (ae = 1), we also prove convergence of the
discretization.

There are many open questions: (i) Convergence of the nonuniform undirected
model; (ii) Convergence of the discretized nonuniform directed model; (iii) Are
our bounds best possible? In particular, can the dependency on L be replaced
by a dependency on logL?
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