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Abstract

A simple probabilistic algorithm for solving the NP-comigdgroblemk-SAT is recon-
sidered. This algorithm follows a well-known local-seapdradigm: randomly guess an
initial assignment and then, guided by those clauses tkatatrsatisfied, by successively
choosing a random literal from such a clause and changingdiresponding truth value,
try to find a satisfying assignment. Papadimitriou [11]daanced this random approach and
applied it to the case of 2-SAT, obtaining an expecika?) time bound. The novelty here
is to restart the algorithm aftémn unsuccessful steps of local search. The analysis shows
that for any satisfiablé-CNF formula withn variables the expected number of repetitions
until a satisfying assignment is found this way(®s- (k — 1)/k)™. Thus, for 3-SAT the
algorithm presented here has a complexity which is withimlgrpmial factor of(4/3)™.
This is the fastest and also the simplest among those digwiknown up to date for 3-
SAT achieving aro(2") time bound. Also, the analysis is quite simple, as compaved t
other such algorithms considered before.

1 Prediminaries

The decision problen:-SAT consists of the set of satisfiable formulas in conjwectiormal
form (CNF) where each clause has at miobterals (a literal being a variable or a negated vari-
able). Byn we denote the number of variables that occur in a given faamibr convenience
we assume that in &-SAT formula each clause ha&xactlyk literals. This can be achieved
by doubling some of the literals. The “naive algorithm” foiSAT which tries out alR™ truth
value assignments to thevariables has a complexity which is within a polynomial tacbf



2". By the fact that:-SAT is NP-complete [2, 6] for every > 3, it would follow that P=NP

if a polynomial-time algorithm could be devised for this piem (which seems very difficult if
not impossible). But still, it is interesting and desirafdepractical purposes to find algorithms
which are better than the nai2é algorithm. A milestone paper in this respect is by Monien
and Speckenmeyer [9] where a deterministic algorithnk#&AT is presented. For 3-SAT their
bound is1.618". The best bounds so far have been obtained by probabiligbadam (cf. [10])
which started by the paper [12] and was further improved hyribd@udlak, Saks, and Zane in
[13]. Their algorithm is based on a probabilistic versiortloé Davis-Putham procedure. In
the case of 3-SAT the bound given in [13]1i$62". Here we present a different probabilistic
algorithm for k-SAT based on local search that achieves the bc(L?Hfg@)n In the case of

3-SAT the complexity is thereforé;i)n. This is the fastest known algorithm for 3-SAT up to
date (but see the remark at the end of this paper). Also, dwitim and its analysis is quite
simple as compared to its predecessors. Comparing our bautite cases > 4, these bounds
are slightly beaten by the probabilistic algorithm develdpy Paturi, Pudlak, Saks and Zane
[13]. They obtainl.476", 1.569", and1.637™ for the caseg = 4, 5, 6.

Since we are dealing with exponential complexity bounds haesymptotically, it is conve-
nient to ignore polynomial factors. The following notatitumns out to be very useful. Say that
the functionsf, g : IN — IR arepolynomially relatedif there is a polynomiagp such that for
all n,

f(n) <p(n)-g(n), and g(n) <p(n)-f(n)

Symbolically we writef =< ¢ in this case.

2 TheAlgorithm and ItsAnalysis

In the following we describe and analyze our algorithm. tiosider the following probabilis-
tic procedure:

Procedurdry ( F': aformula ink-CNF withn variables ) : Boolean;

Guess an initial assignmemtc {0, 1}, uniformly at random;
RepeaBn times:
If the formula is satisfied by the actual assignment therrmetu
Let C' be some clause not being satisfied by the actual assignment;
Pick one of thek literals in the clause uniformly at random and flip
its value in the current assignment;
Return O;

If F'is a formula which is unsatisfiable, the resulttof( F') will always be 0. But ifF is
satisfiable, suppose the probability of obtaining the tekid p (wherep depends om). Then
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it is clear that the expected number of repetitions of theg@daretry until we find a satisfying
assignment (i.etry(F') = 1) is 1/p. The probability that we do not find a satisfying assignment
aftert repetitions with independent random bits(is— p)* < e ?'. Therefore, to achieve an
acceptable error probability of, say;?° one needs to chooge= 20/p independent repetitions

of try. Itis shown below thap > § . (Q(k’“_1>)n. Therefore, the following algorithm

Fori:=1 To 30- (@)n Do If try(F)=1 Then Write(F is satisfiable”);Stop;

Write(“No satisfying assignment found”)

has complexity which is within a polynomial factor é@)n and achieves a (one-sided)
error probability of no more than2°. A potential error occurs only in the case when the
formula is satisfiable, and the algorithm does not find afyatig assignment.

Now we calculate. Supposé is satisfiable. Fix some satisfying assignme&ntUndera*,
in each clause of at least one literal is set to 1. In each clause weXactly onditeral which
is setto 1 undesi*. Call this literal thespecial literalof the respective clause. Since each clause
has exactlyk literals, in each step of the procedurg the probability of selecting the special
literal is exactlyl/k. Let X; € {0,1,...,n} (t = 0,1,2,...) be the random variable which
counts the number of bits in which the actual assignnaeintthe procedurery differs from
our fixed satisfying assignmeant, i.e. the Hamming distanc&a, a*) betweersz anda*. The
indext refers to the number of repetitions performed within thecpouretry. Since the initial
assignment is chosen uniformly at randonX, follows a symmetric binomial distribution,

Pr(XO:j)zz—"(”_> forj=0,1,....n
J

Each time when a literal is randomly selected in the procettyrand its value is flipped
we either decrease the Hamming distadge o*) by one or we increase it by one, i ;| =
X;+1or X, ; = X; — 1. Decreasing the Hamming distance means that we pick on®@séth
literals in the clause which are satisfied undér Notice that it might be the case that the
procedurdry finds at a certain stepa satisfying assignment different fram. In this case the
procedure returns 1 and the stochastic process stops.sinabeé (and also in the case that the
procedure hits on*) we defineX;, X, 1, X;,o,...t0 be 0.

The actual stochastic proced3, X, X5, ... is a Markov chain with reflecting barrier at
staten, and has varying time- and state-dependent transfer pittlestsuch asl /k, 2/k, and
so on. Also note that the apparent worst-case of reachitgystanot bad at all, since the com-
plementary assignmentis a satisfying assignment in this case. Therefore, one trmigialify
the algorithm such that it always checks whether the comgieraf the actual assignment is
satisfying. Instead of analyzing this somewhat complida®chastic process we choose to
analyze another closely process Y1, Y3, ... which is a Markov chain with infinitely many



stated), 1,2,.... LetY; denote the random variable which takes as value the statberuoh
this Markov chain aftet steps. Initially, this Markov chain is started like the stastic process
above, i.eY; = X,. As long as the procedutey is operating we let; ; = Y; — 1 if the
procedure selects the special literal for flipping, otheemive set;,; = Y; + 1 (even if the
selected literal is satisfied under). After the proceduréry has stopped we continue with the
same transfer probabilities, namely

kE—1

. : 1 . .
Pr(Y;tH:]_lH/;:]):E and Pr(n+1:]+1|Y;:]):T

By induction ont, it is clear that for each, X; < Y;. Therefore we can lower bound the
above-mentioned probabilityas follows

p=Pr(3t<3n: X;=0) > Pr(3t<3n:Y,=0)

since3n is the chosen repetition number within the proceduye

If the Markov chain starts in some statdi.e. Y, = j), then it can reach the state 0n
steps by transfering through the stajes 1,j — 2,...,1,0. The probability of this to happen
is (%)J Also, fori = 1,2, 3, ... the state O can be reached aftér ;j steps where there are
i steps which increase the state number and; steps which decrease the state number. Let
q(i, 7) be the probability that5;, ; = 0, such that the state 0 is not reached in any earlier step —
under the condition that the Markov chain started in sfate. Y, = j. More formally,

q(i,j) == Pr(Yyy; =0andY, > 0forallk < 2i+j|Y, =)

Clearly,q(0,7) = (%)] In the general case(i, j) is (%)Z (%)lﬂ times the number of ways
of arranging increasing steps and+ j decreasing steps such that the whole sequence starts in
statej, ends in state 0 and does not reach 0 before the last stepeBglibt theorem(see [7],

3.10 (6), page 77, or [5], page 73), this number is

2i+5)\ j
i % + j

o 21+ 7 ' k—1\i ,1\i+j
q(z’]):( j_]>2lij( ) ()

The expression is not defined in the case j = 0. In this caseg(0,0) = 1. Thus we get

Therefore, we have

p > Pr(3t<3n:Y;,=0)

= 22%(?) > q(i,g)

2i+5<3n
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Here, the asymptotic estimation

() (7 =

1=0

is justified as follows. We set= «; and estimate the summalé%ijj) . (%)Z . (%)m by

() Cre) ™ ) ()T

this holds since by Stirling’s inequalityl < (n/e)", and then

n\ n! _ (n/e)" O n o \n—k
(k) Tk =k T (k) ((n—k)Je)nk (E) ' (n— k)

Therefore, fol) < o < 1,

n 1\a 1 1—a]™
(om) - [(&) ' (1 — a) }
wherean is assumed to be an integer.

Since there are just polynomially many summands the valtieeo$um is polynomially re-
lated to its greatest summand. The greatest summand cateomaesd by setting the derivative
of the above expression in brackets to zero. It turns outttieagreatest summand is obtained

1

for = 55 Inserting this value fon yields (H)] as claimed.

We have proved the following theorem.
Theorem. For everyk > 2 there is a probabilistic algorithm which solves th&AT problem

in time which is within a polynomial factor q2(k — 1) /k)™ wheren is the number of variables
in the input formula.



Symbolically,

k-SAT € RTIME (poly(n) : (%)ﬂ

The complexity class RTIME(n)) denotes those decision problems that can be solved by

probabilistic algorithms with expected running timig:) having just one-sided errors (with
probability less than 1/2), denoting a generalization efdlass RP, cf. [1].
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This paper is based on the conference presentation [14].

Very recently, the algorithm presented here has been fuetttended and improved for the
special case of 3-SAT [15]. Instead of guessing the iniggignments unifomly at random, a
different probability distribution is used which dependastbe formulaF’. The improvement is
from (4/3)™ to 1.3303",

The deterministic algorithms presented in [3, 4] can be iciemed as derandomized versions
of our probabilistic algorithm here. The obtained boundche tase of 3-SAT i$.481".

For valuable remarks and discussions | want to thank S. Banélollas, O. Kullmann,
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Appendix

In this Appendix we give an alternative analysis of the alhon using calculations involving
power series. These calculations have been generousliedipp the author by Emo Welzl.
The advantage here is that no polynomial "slack” terms accur

Again, consider the Markov chain given by the random vadsahbj, Y7, Y5, . ... We want to
estimatePr (3t < 3n : Y; =0). Letqg = % be the probability of decreasing the state number on
the Markov chain by 1. Led; be the random variable that counts the number of steps betil t
first encounter of stateé, assuming that the process starts in sjaiee. Yy = j. (Notice that it
is possible that the state O will never be reached).

Lemmal. Forg < i andj € IV, it holds:

_ q
Proof: By the ballot theorem the number of walks of length+ j from j to O where the first
encounter of 0 happens in the last steéQf;s*j)#ﬂ.. Hence,

© (2 +j) j .
Pr(N; < = 1—q)'q™
<o = £ (1) -

& (2i45) i
= o3 (M) -0
= ¢ (Ba(a(1 - ),

for By(z) being the generalized Binomial series defined by

82(2>=Z(2i+1> 2 R e

i 7

2i+1 22

for which

(Bz(2))" = Z(

i

2i+r\ r
z
1 2t +r

for all r € Ny, cf. [8]. So

2(1 —q)q 1—¢q

(1T —dgtag)’ 1y
Pr(Nj<oo):q]< q + Q> :qﬂ( )J

Lemma2. Forg < i andj € IV, it holds:

E(N; | Nj <o0) = =y



Proof:

E(N; | N; < 00) = mi(zwj)-(%zrj)-Qiij-(l—q)iq"“
= =g (M)t -0 byLemmas
. (B2(g(1 —q)))
= 1 J
j(1—q) 4 g
_J
1-2

O

Notice that it is not really necessary to resort to poweressio prove Lemmas 1 and 2. The
standard approach of putting up a difference equation wasksell (for similar examples see

[7D.

Let N be the random variable that counts the number of steps watéd 8 is encountered
for the first time. Here the initial distributiory, of the Markov chain is taken into account.

Lemma3. Forg < 1 it holds:

Proof:

Pr(N <o0) = i

<
:‘:‘>
VR
. 3

,)2” -Pr(N; < o0)

= > (n> 27" (L)j by Lemma 1
j=0 J 1- q
1 n . .
= ( ) by the binomial theorem
2(1—q)
O
Lemma4. Forg < 1 it holds:
an
E(N|N<oo) =
(VN <) = 70



n

— Zi-Z(?)2‘"-Pr(Nj:i|N<oo)

i §=0
_ 2 (") iy, =)
~ Pr(N <o0) =\ iZ 3=t
_ 2 S (") BV | N < o0) - PR, < )
T PN <o) &\ 7S e 7=
=~ (n J q
= (1—¢)" , . by Lemmal, 2, and 3
-0 (1) ) b
_on(l—g" & (n—l) q \J
1—2¢q jZO j—1 (1—q)
n(l-—qg)" ¢ q \n- ng
= (14 22— =
1—-2¢ 1—¢q (+1—q) 1—2¢q
0
Lemmab. Forg < 1 andX > 1it holds:
Aqn 1 1 n
Pr(N < 1——
(V22 > (- Do)
Proof: Write i for E(N | N < co). Observe that
1
Pr(N>Mu| N<oo) < 3
by Markov’s inequality, and
Pr(N <Au) = Pr(N <M | N < o0)-Pr(N < o)
since(N < Ap A N <o0) & (N < Ap). 0

Now usingg = , k > 3, and\ = 3, we obtain

2 ko \n
Pr(3t <3n:Y;=0) = Pr(N <3n) > §'(2(k—1)) '

Thus the number of repetitions necessary to obtain an erotyapility which is less than=2°
IS

3 2(k—=1)\n
203 ( ; )"
whereas, for a satisfiable formula, tBepectechumber of repetitions of procedutey until a

satisfying assignment is found is at most




It is interesting to note here that we did not work with a rdfteg barrier at state. In this
case the expected number of steps until zero is reachedddirshtime is on the order of”,
which forbids a direct application of Markov's inequalityhe (apparent) detour via omitting
this barrier works here, because then, conditional on tleatetat zero is reached at all, the
expected number of steps until this happens is on the orderwhich makes the tail estimate
an easy consequence of Markov’s inequality.

Finally, we remark that it is possible to use Lemma 2 direttlprove the estimate

n

E(N | N <
(VN <o) < 5

which is somewhat weaker than Lemma 4. This estimate implies

1

Pr(N < dn) > - (ﬁ)"

This would be good enough if the searchypwould be fordn steps instead dfn.
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