Tree Isomorphism Algorithms.
Oleg Eterevsky VS. Arist Kojevnikov

based on

Tree Isomorphism Algorithms: Speed vs. Clarity
Douglas M. Campbell
Observation 1. Since a tree isomorphism preserves root and edge incidence, the level number of a vertex (the number of edges between the root and the vertex) is a tree isomorphism invariant.

Conjecture 1. Two trees are isomorphic if and only if they have the same number of levels and the same number of vertices on each level.
Observation 2. *Since a tree isomorphism preserves root and edge incidence, the number of paths from the root to the leaves is a tree isomorphism invariant.*

Conjecture 2. *Two trees are isomorphic if and only if they have the same degree spectrum.*
Observation 3. *Since a tree isomorphism preserves longest paths, the number of levels in a tree (the longest path) is a tree isomorphism invariant.*

Conjecture 3. *Two trees are isomorphic if and only if they have the same degree spectrum at each level.*
Observation 4. The number of leaf descendants of a vertex and the level number of a vertex are both tree isomorphism invariants.
AHU algorithm

Input: trees T_1 and T_2.

1. Assign to all leaves of T_1 and T_2 the integer 0.

2. Inductively, assume that all vertices of T_1 and T_2 at level $i - 1$ have been assigned integers. Assume L_1 is a list of the vertices of T_1 at level $i - 1$ sorted by non-decreasing value of the assigned integers. Assume L_2 is the corresponding list for T_2.

3. Assign to the non-leaves of T_1 at level i a tuple of integers by scanning the list L_1 from left to right and performing the following actions: For each vertex on list L_1 take the integer assigned to v to be the next component of the tuple associated with the father of v. On completion of this step, each non-leaf w of T_1 at level i will have a tuple (i_1, i_2, \ldots, i_k) associated with it, where i_1, i_2, \ldots, i_k are integers, in non-decreasing order, associated with the sons of w. Let S_1 be the sequence of tuples created for the vertices of T_1 on level i.

4. Repeat step 3 for T_2 and let S_2 be the sequence of tuples created for the vertices of T_2 on level i.

5. Sort S_1 and S_2 lexicographically. Let S_1' and S_2' respectively, be the sorted sequences of tuples.

6. If S_1' and S_2' are not identical then halt; the trees are not isomorphic. Otherwise, assign the integer 1 to those vertices of T_1 on level i represented by the first distinct tuple on S_1', assign the integer 2 to the vertices represented by the second distinct tuple, and so on. As these integers are assigned to the vertices of T_1 on level i, make a list L_1 of the vertices so
assigned. Append to the front of L_1 all leaves of T_1 on level i. Let L_2 be the corresponding list of vertices of T_2. These two list can now be used for the assignment of tuples to vertices of level $i + 1$ by returning to step 3.

7. If the roots of T_1 and T_2 are assigned the same integer, T_1 and T_2 are isomorphic.
Post_Order_Version_One(v: vertex)
Begin

if v is childless then

Give v the tuple name (0)

else

begin

For each child w of v do

Post_Order_Version_One(w);

Concatenate the names of all the children of v to temp;

Give v the name (temp);

end

end
Post_Order_Version_Two(v: vertex)
Begin

 if v is childless then

 Give v the tuple name 10

 else

 begin

 For each child w of v do

 Post_Order_Version_Two(w);

 Sort the names of the children of v;

 Set temp to the concatenation if v’s sorted children’s names;

 Give v the tuple name 1temp0;
Observation 5. *Induction on the level number proves that a vertex’s canonical name is a tree isomorphism invariant.*

Observation 6. *Two trees are isomorphic if and only if their roots have identical canonical names.*
Observation 7. For all levels i, the canonical name of level i is a tree isomorphism invariant.

Observation 8. Two trees T_1 and T_2 are isomorphic if and only if for all levels i, the canonical level names of T_1 and T_2 are identical.
Tree_Isomorphism($T_1, T_2 :$ trees)

Begin

Assign all vertices of T_1 and T_2 to level numbers lists and let h_i be the largest level number in T_i;

If $h_1 <> h_2$ then
 write(‘trees are not isomorphic’); Halt;
else
 set h to h_1; \{ $h_1 = h_2$ \}

\{ process from bottom to top level \}
for $i := h$ downto 0
 begin
 \{ assign vertices their string name \}
 For all vertices v of level i do
 If v is a leaf then
 assign v the string 10
 Else
 assign v the tuple $1i_1i_2...i_k0$, where $i_1i_2...i_k$ are the strings associated with the children of v in non-decreasing order;
 \{ assign vertices to temporary sorting lists \}
 For all vertices v of level i do
 If v belongs to T_j then
 add v’s string to $T_j(i)$;
 Sort $T_1(i)$ and $T_2(i)$ lexicographically;
 If $T_1(i) <> T_2(i)$ then
 write(‘trees are not isomorphic t level’, i); Halt;

 \{ assign condensed canonical names \}
 For all vertices v of level i do
 If v is the k-th element in $T_j(i)$ then
 assign v the binary string for the integer k
 end;
 write(‘the trees are isomorphic’);
 end