Suffix Trees

Katharina Pentenrieder
Introduction

Usage

- Solving many string problems in linear time

History

- String algorithms
 - Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick

- Suffix tree algorithms
 - 1973 P. Weiner: first linear construction algorithm
 - 1976 E. M. McCreight: more space-efficient algorithm
 - 1993 E. Ukkonen: conceptually different approach
Outline

1. Data Structures
 - Suffix tries and trees

2. Construction Algorithms
 - Naïve algorithm
 - Algorithms of Weiner, McCreight & Ukkonen

3. Examples of Use
 - Exact string matching problems
 - Longest common substring
 - Assembly of Strings

4. Conclusion
Preliminaries

Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ</td>
<td>finite, non empty alphabet</td>
<td>$S=s_1s_2...s_n$</td>
</tr>
<tr>
<td>α, β, γ</td>
<td>possibly empty strings</td>
<td>$</td>
</tr>
</tbody>
</table>

Definitions

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S[i..j] = s_is_{i+1}...s_j$</td>
<td>substring of S</td>
</tr>
<tr>
<td>$S[1..i]$</td>
<td>prefix of S that ends at position i</td>
</tr>
<tr>
<td>$S_i = S[i..n], 1 \leq i \leq n+1$</td>
<td>suffix of S that starts at position i</td>
</tr>
<tr>
<td>S_{n+1}</td>
<td>empty string ε</td>
</tr>
<tr>
<td>$S(i)$</td>
<td>character at position i in S</td>
</tr>
<tr>
<td>$\sigma(S) = {S_i</td>
<td>1 \leq i \leq</td>
</tr>
</tbody>
</table>
Suffix Trie

Definition

A suffix trie for a string $S \subseteq \Sigma^n$ is a directed tree with edge labels $\in \Sigma$ where

- The concatenation of the labels of all paths from the root to a leaf just give $\sigma(S)$.
- The labels of sibling edges from one node start with different characters.
- Atomic tree

Termination Symbol $\$$

No suffix must be prefix of another suffix.
Suffix Tree

Definition

A suffix tree T for a string $S \subseteq \Sigma^n$ is a compact suffix trie. This means

- T has exactly n leaves numbered 1 to n.
- The concatenation of the labels from the root to a leaf i spells out S_i. (\rightarrow all paths give $\sigma(S)$)
- The labels of sibling edges from one node start with different characters.
- Every node except the root has at least two children. (\rightarrow compact)
More Definitions

Paths and Labels
- A path is a downwards connected sequence of edges.
- The label of a path is the concatenation of the edge labels on the path.
- The path-label of node n is the concatenation of the edge labels on the path to node n. (→ path-label of leaf i is S_i)

Reference pair (n, α) of s
- n: node on the path to s
- α: concatenation of edge-labels from n to s
- s not necessarily a node

Canonical reference pair
- n: last node on the path to s
A naïve algorithm

Suffix tree for S
- Start: single edge $S[1..n] = S_1$ → Tree T_1
- Successive adding of $S[i..n] = S_i$, i from 2 to n+1
 $T_{i-1} \rightarrow T_i$

- Find longest path from root in T_{i-1} matching a prefix of S_i.
- Matching ends at node n (eventually new created).
- Add new edge (n,i) labelled with unmatched suffix of S_i.

Time analysis
Inserting S_i takes $O(|S_i|)$ time → Complexity: $O(n^2)$
Ukkonen’s Algorithm I

Proceeding

- Construction of suffix tree for string S in $O(n)$ via implicit suffix trees $\mathcal{I}_1..\mathcal{I}_n$
 \rightarrow true suffix tree \mathcal{T}
- Start: $O(n^3)$ method to build \mathcal{T}
 \rightarrow optimization to linear time

Implicit suffix trees

- Remove every occurrence of $\$$.
- Re-establish suffix-tree conditions.
- \mathcal{I}_i implicit suffix tree for S[1..i]
 $(\mathcal{I}_n$ encodes all suffixes of S!)}
Ukkonen’s Algorithm II

Algorithm at a high level
Construct implicit suffix tree I_1.

For i from 1 to $n-1$ { for j from 1 to $i+1$ {

1. find end of path from root labelled $S[j..i]$ in I_i
2. apply appropriate extension rule ($S[j..i+1]$ in tree)
 1. $S[j..i]$ ends at leaf \rightarrow add $S(i+1)$ to edge label
 2. No path from end of $S[j..i]$ starts with $S(i+1)$ \rightarrow add new leaf edge labelled $S(i+1)$ and leaf node j
 3. \exists path from $S[j..i]$ beginning with $S(i+1)$ \rightarrow do nothing

} \ extension
} \ phase

Time $O(n^3)$
Ukkonen’s Algorithm III

Suffix Links
Definition
Suffix link \((u, s(u))\) is a pointer from internal node \(u\) labelled \(x\alpha\) to node \(s(u)\) labelled \(\alpha\).

Single Extension Algorithm
1. Find first node \(u\) up from \(S[j-1..i]\) that has suffix link or is root (at most one edge up!)
2. If \(u \neq\) root: walk down from \(s(u)\) following path for \(\alpha\).
 If \(u =\) root: walk down from root following path for \(S[j..i]\).
3. Apply appropriate extension rule \(\rightarrow S[j..i]S(i+1)\) in the tree
4. If new internal node \(w\) was created, create suffix link \((w, s(w))\)

Time complexity
Worst case not yet improved: \(O(n^3)\)
Ukkonen’s Algorithm IV

Problem:
Down-walking along path labelled α costs $\mathcal{O}(|\alpha|)$ time

Trick 1: Skip/Count
- Skip edge if |unmatched part of α| > |edge label|
- Time complexity
 - Traversing of edge $\mathcal{O}(1) \rightarrow$ down-walk in $\mathcal{O}(\#\text{nodes})$
 - \rightarrow 1 phase in $\mathcal{O}(n) \rightarrow$ algorithm in $\mathcal{O}(n^2)$

Edge-label compression
- Time for algorithm \geq size of its output ($\Theta(n^2)$)
 - \rightarrow different representation scheme for edge labels
- Pair of indices (i,j)
 - i beginning position of substring in S
 - j ending position of substring in S
Ukkonen’s Algorithm V

Trick 2: Rule 3 is a show stopper
- If rule 3 applies for $S[j..i]$ it also applies for any $S[k..i]$, $k>j$ (Implicit extensions)
- End phase after first extension j^* where rule 3 applies

Trick 3: Once a leaf, always a leaf
- $j_i = \# \text{ initial extensions in phase } i \text{ where rule 1 or 2 applies} \rightarrow j_i \leq j_{i+1}$
- In phase $i+1$ do
 - Label new created leaf-edges $(n,e) \rightarrow S[n..i+1]$ (e global symbol denoting current current end)
 - In extensions 1 to j_i only increment $e \rightarrow$ rule 1 for leaf-edges

Combination
In phase $i+1$ explicit extensions only from
- Extension $j_i + 1 = \text{ active point}$ to
- Extension $j^* = \text{ end point}$
Ukkonen’s Algorithm VI

Single phase algorithm
1. Increment index e to $i+1$
2. Explicitly compute successive extensions (using SEA) starting at j_i+1 until first extension j^* where rule 3 applies (or until all extensions are done)
3. Set j_{i+1} to j^*-1 to prepare for next phase.

Time complexity
Suffix Links + Edge Compression + Trick 1-3 allows construction of suffix tree for String S in $O(|S|)$.

Creating the true suffix tree
Conversion in $O(|S|)$.
1. Add termination symbol $\$$ to end of S.
2. Let Ukkonen’s algorithm continue with extended string.
3. Replace each index e on every leaf edge with n.
McCreight’s Algorithm I

Definitions

- T_i: intermediate suffix tree encoding suffixes S_1 to S_{i-1}
- McHead(i): longest prefix of S_i that is also prefix of S_j, $j < i$
- McTail(i): S_i-McHead(i)

Proceeding

The “Algorithm M” inserts suffixes in order from S_1 to S_n.

- $T_i \rightarrow T_{i+1}$
- Find end of path labelled McHead(i)
- $n =$ node labelled McHead(i) (eventually new created)
- Add new leaf i and new edge (n,i) labelled McTail(i)

More efficiency

- Edge compression, suffix links
- Lemma: McHead(i-1) = $x\delta \Rightarrow \delta$ is a prefix of McHead(i)
McCreight’s Algorithm II

Step i of “Algorithm M”

1. Starting from McHead(i-1) = $\xi \alpha \beta$ walk upwards till first node a (labelled $\xi \alpha$); if a = root go to 3.
2. Follow suffix link to node c (labelled α)
3. “Rescanning”: walk downwards along path labelled β using skip/count trick \rightarrow node d
4. Add suffix link (a,d)
5. “Scanning”: search downwards along path labelled γ (unknown length!) \rightarrow node e
6. Add leaf i and edge (e,i)

Time complexity

Rescanning and scanning in $O(1) \rightarrow O(n)$
Weiner’s Algorithm I

Definitions
- \mathcal{W}_i: suffix tree for $S_i = S[i..n]$
- $\text{WHead}(i)$: longest prefix of S_i that is also prefix of $S_{j, j>i}$

Proceeding
Build $\mathcal{W}_{n+1} = \text{edge (root, n+1) labelled }$
For i from n to 1 do
- Find $\text{WHead}(j)$ in \mathcal{W}_{j+1}
- $w =$ node labelled $\text{WHead}(j)$ (eventually new created)
- Create new leaf j and edge (w,j) labelled $S[j..n]-\text{WHead}(j)$

More efficiency
- Edge compression
- 2 vectors: Indicator Vector $I_u(x)$ and Link Vector $L_u(x)$
Weiner’s Algorithm II

The Vectors

- $\mathcal{I}_u(x) = 1 \iff u$ labelled α & \exists partial path in \mathcal{W} labelled $x\alpha$
- $\mathcal{L}_u(x) = \uparrow \hat{u} \iff \hat{u}$ labelled $x\alpha$ & u labelled α; otherwise $\mathcal{L}_u(x) = \text{null}$

Vector Usage

$\mathcal{W}_{i+1} \rightarrow \mathcal{W}_i$:

- Start at leaf $i+1$, find first u with $\mathcal{I}_u(S(i)) = 1$ (u labelled α)
- Continue till first u' with $\mathcal{L}_{u'}(S(i)) \neq \text{null}$ ($l_i = |u-u'|$)
 - u, u' don’t exist $\rightarrow \mathcal{W}\text{Head}(i) = \epsilon$
 - u, u' exist $\rightarrow \mathcal{W}\text{Head}(i) = S(i)\alpha$ & $\mathcal{W}\text{Head}(i)$ ends l_i chars below \hat{u}
 - u exists, u' doesn’t $\rightarrow \mathcal{W}\text{Head}(i)$ ends l_i chars below root

Time complexity

Head (i) found in $O(1) \rightarrow$ Complexity of algorithm $O(n)$
Exact string matching

Find all occurrences for pattern \(P \) in text \(T \):
- Build suffix tree in \(\mathcal{O}(|T|) \) and match \(P \) along unique path \(\mathcal{O}(|P|) \).
- \(P \) exhausted: numbers of leaves below are starting points for \(P \)
- Mismatch: \(P \) does not occur

Comparison with KMP and BM algorithms
- \(P \) and \(T \) fix; \(P \) fix \(\rightarrow \) same time and space bound
- Fixed \(T \) and varying \(P s \) \(\rightarrow \mathcal{O}(|T|) + \sum_{P} \mathcal{O}(|P|+|T|+\#occurrences of P|) \)
 \(\rightarrow \) vastly better performance

Exact set matching

Task: Find all \(k \) occurrences of a set of strings \(\mathcal{P} \) in text \(T \)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Tree</th>
<th>Search</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aho-Corasick</td>
<td>(\mathcal{O}(\Sigma</td>
<td>P</td>
<td>))</td>
</tr>
<tr>
<td>Suffix Trees</td>
<td>(\mathcal{O}(</td>
<td>T</td>
<td>))</td>
</tr>
</tbody>
</table>
Longest common substring

Generalized suffix tree

- **Definition:** Tree which represents the suffixes of a set \(\{S_1, S_2, \ldots, S_n\} \)
- **Construction:** Variation of Ukkonen’s algorithm
 1. Build tree for \(S_1 \)$
 2. Match \(S_2 \)$ against path in tree, first mismatch \(S[i+1] \)
 \(\rightarrow \) tree encodes \(\sigma(S_1) \) and implicitly \(\sigma(S_2[1..i]) \)
 3. Resume Ukkonen’s algorithm on \(S_2 \) in phase \(i+1 \)
 4. Repeat for each string

Longest common substring (lcs)

- **Proceeding:**
 - Build generalized suffix tree for \(S_1 \) and \(S_2 \)
 - Mark internal nodes \(v \) with 1(2) if leaf in subtree of \(v \) represents suffix of \(S_1(S_2) \)
 - Search node marked 1 and 2 with longest path-label (= lcs)

- **Time complexity:** \(O(\Sigma |S_i|) \)
Introduction

- **Application:** DNA Analysis
- **Definition:** Superstring Problem
 For a given set of strings \(\{S_1, S_2, \ldots, S_n\} \) find superstring \(S \) which contains every \(S_i \) as substring.
- **Solution:** Blending
 Assembling of two strings \(S_i, S_j \) as follows:
 Find longest suffix \(\alpha \) of \(S_i \) which is prefix of \(S_j \) and create new string \(\text{blend} \ (S_i, S_j) = S_i - \alpha + S_j = S_i - \text{ov}(S_i, S_j) + S_j \)

- GREEDY-Heuristic with Suffix Trees (Kosaraju/Delcher)
 \(\rightarrow \) approximate solution for smallest \(S \)
String Assembly II

GREEDY-Heuristic with Suffix Trees

- Generalized suffix tree \mathcal{T}:
 - leaf numbers: $(i, p) \rightarrow$ suffix $S_1[p..|S_1|]$
 - implicit \rightarrow $\$$ omitted, internal nodes can be leaves
 - substrings of other strings and copies of identical strings removed

- Arrays & Sets:
 - chain \rightarrow already blended strings
 - wrap \rightarrow unavailable suffixes and prefixes
 - S_u \rightarrow suffixes available at node u
 initially $S_u = \{i|u$ has leaf number $(i,1)\}$
 - P_u \rightarrow prefixes available at node u
 initially $P_u = \{i|u$ has leaf number $(i,d), d>1\}$
Proceeding

1. Find node u with largest string-depth
2. Find pair (i, j) with
 - $i \in S_u$, $j \in P_u$
 - $\text{chain}(i) = 0$, $\text{wrap}(i) \neq j$
3. Discard all i from S_u with $\text{chain}(i) \neq 0$
4. Remove i from S_u and j from P_u and set
 - $\text{chain}(i) = j$
 - $\text{wrap}(\text{wrap}(i)) = \text{wrap}(j)$, $\text{wrap}(\text{wrap}(j)) = \text{wrap}(i)$
5. Repeat 2. – 4. until no further blends are feasible
6. Union remaining P_u to set P of u’s parent
7. Discard S_u and remove u from string-depth-order
9. Generate superstring from chain array
Conclusion

Suffix Trees

Implementation Details

Comparison of the algorithms

- Time
- Space
- Comprehensibility

Applications