
Chapter 1

Data Structures for Pattern
Matching
Olga Sergeeva

For many applications, efficient string processing is crucial. Searching for a
substring or a subsequence in a string; searching for common substrings of a
set of strings; finding out the number of direct repetitions these are just a few
important examples of the problems often appearing in work with strings. In the
applications, there is need in solving these problems as efficient (in asymptotic)
as possible, and also to store the strings ’economically’. So, there arises a
question of efficient strings representations, both being compact and providing
good bases for algorithms.

This paper is concerned with two representations, in some sense revealing the
structure of the initial string and thus meeting many demands: suffix trees and
suffix arrays.

1.1 Suffixes

Definition 1.1. Let s be a string. s′ is called a suffix of s, if s = as′ for some
a. Note, that an empty string is a suffix of any string.

It turns out, that if the suffixes are well structured , the resulting construction
can be very informative and can be a good base for developing efficient algo-
rithms. Also, both structures we are to discuss can be built in time, linear in
the length of the initial string (in this paper, always n).

Why is it possible to build representations, based on suffix relations, efficienly?
The very simple (but also very general) idea is that the suffixes are closely re-
lated, being parts of each other. Maybe it s worth looking at how this idea
refracted in combination with other ideas, and what it lead to in different algo-
rithms, as they historically appeared. But we in this paper will discuss mostly
those which made the most of it.

One of the string representations of interest is suffix tree.

9

10 CHAPTER 1. DATA STRUCTURES FOR PATTERN MATCHING

1.2 Suffix trees

1.2.1 Definitions, examples, background

Definition 1.2. Suffix tree for a string s is a rooted tree with edges, marked
with substrings of s, having the following properties:

1. Any concatenation of the marks along each path from the root to a leaf
forms a suffix and every suffix appears once.

2. The marks on the edges, having a common root, begin with different
symbols of the alphabet.

From the definition, you can see that there must be as many leaves in the suffix
tree as there are non-empty suffixes in s, i.e. n.
What is good in such a representation? The following bright example can give
some comprehension of the advantages of suffix trees.

Example 1.1 (Substring search). Suppose that we have a string s and a
(shorter) string p, for which we are to answer if it occurs in s.
In fact, even this is not enough detailed description of the problem. The context
is important: will we work with s and p once? Or we have a constant pattern,
which we are to search in many strings? Or we have a fixed string s, and are
to answer many queries about different p? Answers to such questions of course
greatly influence the structures and the algorithms preferred.
Suppose that this is s which is fixed (some encyclopedia, for example). So it is
s to be preprocessed how can we answer if p is a substring of s, having its suffix
tree S?
If p is a substring, then it s a beginning of some suffix. In S, every suffix must
appear as a concatenation of marks from the root to a leaf, so if p begins with
a symbol, with which no branch from the root begins, we can definitely say
that p is not a substring. Otherwise, we should search only in the subtree,
corresponding to the branch beginning with this symbol (there is only one such
branch from the root!) Reasoning the same for the consequent vertices, we will
answer our question, making in each vertex a constant number of comparisons
(the alphabet is constant), and there will be no more then the length of p
(denote: |p|) steps. So overall time is O(|p|) operations plus O(|s|) to build the
suffix tree.
Note that for our case the distribution of work is very successful: although for
the first query we spend O(|p| + |s|) time, for all the consequent queries time
will be linear in the length of the pattern! So, although for the first query
the time is the same with, for example, Knuth-Moris-Pratt algorithm, but in
that algorithm p needs |s| time preprocessing, not s. So in fact we have an
algorithm which, after initial preprocessing, answers the queries in time, linear
in the length of p. Mention, that Donald Knuth did not believe in existence of
such an algorithm, until suffix trees were invented.

Suffix trees have many other applications, for instance, in search for the longest
common substring of a pair (and, further a set of) strings; for repetitions; for
longest common ancestor.
It is also like a ’bridge’ to much more difficult and important problem of inexact
matching when given strings may contain errors and in practice they will contain
them!

1.2. SUFFIX TREES 11

Figure 1.1: Suffix tree and implicit tree for ’gamma’.

Note. We gave a definition of suffix tree, but didn t check correctness of the
definition: does suffix tree exist for an arbitrary s? Indeed, if we want to have
a leaf for each suffix, then it is impossible to build a suffix tree for a string, in
which one suffix s1 is a prefix of another suffix s2 we will inevitably spell out
the shorter suffix, spelling out the longer one. This problem is easy to solve: if
we add a symbol not from alphabet (say, ′$′) to the end of s, then no suffix will
be a prefix of another suffix.

We will call a tree for a string without additional symbol an implicit tree for S.
In implicit tree, there is exactly one path spelling out any suffix, but the ends
of some suffixes are not marked anyhow.

1.2.2 Algorithms

The suffix tree can be built naively , adding suffixes to the tree one by one,
beginning from the longest suffix (which is the string itself). To add a new
suffix, we try to spell it out in the tree, and at the point it s no more possible,
create a new branch, marked with the not spelled remainder. This approach
demands O(|s|2) time.
The first linear-time algorithm, by Weiner, appeared in 1973, in his article Linear
Pattern Matching Algorithms . Although it was linear in time, it was space-
consuming. A less complex and less space-consuming algorithm was invented
in 1976 (McCreight. A Space-Economial Suffix Tree Construction Algorithm).
Eventually, in 1993, Ukkonen in his On-Line Construction of Suffix Trees intro-
duced his simpler algorithm, having several nice features.

1.2.3 Ukkonen’s algorithm

Description

We will start with a simple but not efficient algorithm, and then in several steps,
suggested by common sense (’how not to do excessive work?’), will transform it
to linear.
Ukkonen s algorithm is on-line: it is split up into |s| phases, after each of them
there is an implicit(!) tree for a prefix of s. We begin with the string, containing

12 CHAPTER 1. DATA STRUCTURES FOR PATTERN MATCHING

Figure 1.2: Extending ’yea’ to ’year’ in different trees.

only the first symbol of s, and each phase increase the length of the processed
string by one. Phase i+ 1 is itself split into i+ 1 extensions, one extension for
each from the i+ 1 suffixes of s[1..i+ 1]. In the extension j in the phase i+ 1
algorithm finds the end of the path, marked with s[j..i]. It then extends this
substring, adding s(i + 1) to its end, if it doesn’t exist in the tree. So, in the
phase i+ 1 it one by one inserts the strings s[1..i+ 1], s[2..i+ 1], .., s[i+ 1] into
the tree, if they do not exist.
T1 consists of one edge, marked with s(1).
After the last phase, we will carry out one more phase , adding symbol $. The
resulting implicit tree for s$ will be a real suffix tree, as we already pointed out.
The formal definition of the algorithm is as follows.

Algorithm.
Build T1.
for i from 1 to m− 1 do begin {phase i+ 1}

for j from 1 to i+ 1 begin {extension j}
find in the current tree the end of the path with mark S[j..i].
If needed, extend the path with s(i+ 1), providing existence
of the string s[j..i+ 1].

end;
end;

Let’s look closely on the possible cases of extention (see Fig. 2).

1. We are just to extend a mark on an edge

2. When we are to add an edge (and maybe to split an existing edge into
two)

3. When nothing is needed to be done.

We will refer to these cases as the first rule, the second rule and the third rule
for the algorithm.
What do we spend time for? For looking for the end of the current suffix in a
tree after this, we spend constant to prolong it. So, it is essential how we search
for the ends of the suffixes in Ti.
We can find the end of a suffix s in O(|s|), walking from the root each time. In
this case, we will build the Ti+1 from Ti in O(i2), so the final tree will appear

1.2. SUFFIX TREES 13

after O(n3) operations, comparing to O(n2) in the naive algorithm! We ll reduce
this to O(n) using some observations and techniques. Each of them is (just!) a
useful heuristics, which cannot qualitatively change estimation of time for the
worst case, but applied together they result in essential speeding-up.

Suffix links

Definition 1.3. Suffix link is a pointer from an inner vertex v with the path
mark xα to a vertex s(v) with mark α, if it exists in the tree, where x is a
symbol, and α is a string. Notice, that if α is empty, suffix link points to the
root.

It is easy to see that there is a vertex s(v) for every inner vertex of the tree.
Moreover, the following statement is true: if a vertex v with path mark xα is
added to the tree in the extension j of the phase i+1 (that is, the second rule is
applied), then the vertex s(v) either already exists in the tree of will be created
in the next extension, in this phase. In both cases, we will find it incidentally,
so adding a pointer will not require additional search.
Using suffix links can substantially reduce amount of search.
First, we will maintain a pointer to the end of the longest suffix s[1..i], so for the
first extension we need only to prolong a mark on the given edge - no search.
To proceed with the next one, we will not move from the root every time we
search for the end of the next suffix. Instead, we will get from the available
ending point up to the first inner vertex v (if it s not an inner vertex itself),
walk along its suffix link s(v) and search only in the subtree of s(v). If our
current suffix can be written in the form xαβ, where xα is the mark of the
path to v, then s(v) is marked with α, so trying to spell out the next suffix
(which is αβ), we would surely have come to s(v). Adding new suffix links after
transformation of the tree in each extension (if needed), we will easily maintain
the tree in this pleasant for processing form.

Note. This note will help us to estimate the algorithm complexity.
Denote by depth of a vertex the number of edges on the way from the root to
that vertex. Then the moment we are moving along the suffix link, the depth of
v, exceeds the depth of s(v) by no more then 1. The reason is that the prefixes
of the shorter string (α) will occur in the string more often, so there will be more
bifurcations along the way corresponding to α. And in the case no bifurcations
are added comparing to the way corresponding to xα, d(xα) − d(α) = 1. So,
getting along the suffix link, we will not get much nearer to the root. Later this
will help us to estimate how many times we could descend, and then the overall
processing time.

Not check, but search

Still, there are unnecessary steps. The end of the next suffix to prolong surely
exists in the tree (in the subtree from s(v), as we cleared up), so we are not to
check its existence, but only to find its end. We do not have to compare every
symbol on en edge, once having chosen it. If it is shorter then the not spelled
out remainder of the suffix, we can skip over it to the next vertex; if it is longer
split it at the needed point. Doing this way, we spend for descending each edge
constant time. All we need for this style of work is to know the number of

14 CHAPTER 1. DATA STRUCTURES FOR PATTERN MATCHING

symbols on the edge (which is a detail of implementation) and to be able to
extract a symbol in s by its number in constant time. Along with the notice on
the vertex depths correlation, this yields in the following

Theorem 1.1. In the improved algorithm, each phase takes O(n) time.

Proof. Summing up, what steps we perform during one extension? Get up to
the nearest inner vertex no more than one edge; go along the suffix link; descend
some vertices; apply one of the rules of suffix extension; maybe add a new suffix
link. All these actions, except descending, take constant time.
We need to estimate how many times we descend during one phase. Let s pay
our attention to the current vertex depth changes. Raising, we decrease it by no
more than 1; the same with walking along the suffix link; and while descending,
we increase current depth that s why overall depth increment over the phase in
not more than 3 ∗ n.

Corollary 1.1. The current version of Ukkonen s algorithm terminates in

O(n2).

Question. We spent so much effort, and got nothing in comparison with the
naive algorithm?

The last touches

Improving an algorithm, one can encounter the following problem: if the output
is large, the algorithm cannot be very fast, for working time is no less then output
size. This is the case: if we don’t change the format of representation the tree,
we will not get further optimization, because in general case the overall length
of labels on the edges doesn’t have to be linear.

Example 1.2. Suffix tree for the string ’abcd...xyz’ consists of 26 branches,
with marks having 26, 25, ... 1 letters on them. So, the overall length of marks
is 26 ∗ 27/2. Although for arbitrary long strings there will not exist such an
example, because the size of the alphabet is considered constant, this example
gives notion on how much redundancy can the marks contain.

Example 1.3. Tree for (a)n(b)n(a)n−1bn−1...a2b2ab.

We will modify algorithm in a few touches, taking the following observations:

1sttouch If we replace the labels with indexes (the beginning and the end of the
substring in s), we’ll have two numbers, corresponding to each edge, and
as the number of edges is less then 2∗m−1, linear space is spent. This also
simplifies maintaining the length of the edge (the detail, which we need),
making it more consequent. After mentioning that, we can immediately
forget that we have not symbols, but numbers, because working with them
is the same.

2ndtouch If xαβ appeared in the tree, then definitely αβ appeared also. Then when
we are to apply the third rule, we can complete with the phase. So a
phase is a consequency of extensions, which use the first (prolonging a
mark) and the second (branching off) rules.

1.3. SUFFIX ARRAYS 15

3rdtouch A leaf cannot become an inner vertex, because the three ’rules’ algorithm
uses do not transform leaves anyhow.

During the phase, we add the same symbol to edge marks. In terms of
indices, we increment by one ending indices, setting them to i on the phase
i.

We will split or do nothing only with the suffixes, not processed in the
previous phase (those, to which we applied the do nothing rule).

If in the previous phase we ended in extension j, in the beginning of phase
we already know that all we have to do with the first j suffixes is to
increment by one their last end. That s why it s efficient to write on such
edges the mark of infinity, in the phase i implying infinity is i, and to
replace them only after the tree is built. This means, that we build the
tree ’in one path’, moving only ’forward’.

The last observation yealds the

Theorem 1.2. Ukkonen s algorithm terminates in O(n).

Difficulties

We saw that suffix trees can make string processing much simpler. At the same
time, this is a complicated structure, which is sometimes difficult to implement.
The reasons are

1. No “locality” – bad for paging

2. Dependency on the length of the alphabet (Σ): the ’constant’ for choosing
the right branch gets bigger with grouth of |Σ|.

3. Number of “children” ranges for different vertices – no general ways of
representation: the vertices near the root have many children (almost
|Σ|), and for them arrays provide good representation; the vertices near
leaves have almost no children, arrays would be too rarefied, and for these
vertices linked lists are preferred; and for ’middle’ vertices balanced trees
and hashing are better (linked lists would increase time for search, in case
|Σ| is large).

Due to these reasons, in a number of applications a simpler, although a bit less
convenient for algorithms, structure is preferred.

1.3 Suffix arrays

1.3.1 The very first algorithm

Definition 1.4. Suffix array for a string s is an array, containing the suffixes
of s in lexicographic order.

The idea to alphabetically order the suffixes belongs to Udi Manber and Gene
Myers (1993, “Suffix Arrays: a New Method For On-Line String Searches”).
They proposed an algorithm of direct constructing the array (i.e. construction,
not based on firstly built suffix tree) in O(n∗logn) time. This algorithm not only

16 CHAPTER 1. DATA STRUCTURES FOR PATTERN MATCHING

builds the array, but on the way gathers some additional information (useful for
algorithms). In their article, Manber and Myers also presented an algorithm of
search, using this information, for a pattern P in O(|P |+ logn) time.
The clear advantage of suffix arrays in comparison with suffix trees is that
they are much less complicated structure. So, they were preferred in several
fields even though there were no known linear time algorithms for direct suffix
array construction. Such algorithms (in amount of three, simultaniously and
independently!) appeared in 2003, and we will touch upon one of them.

Note. Search time on suffix arrays (O(|P | + logn)) seems to be great loss in
comparison with O(|P |) for suffix trees. But in practice, these values (O(|P |)
and O(logn)) are usually comparable, and search time does not decrease dra-
matically.

As we mentioned, suffix array can be built (in linear time) from a corresponding
suffix tree. This approach has obvious disadvantages. Here is an idea of an
algorithm, based on different approach.

Algorithm. As with the trees, we build the array inductively, greatly using it’s
structure. Initially, we have an array with unordered suffixes. Beginning with
sorting the suffixes by the first symbol (which is linear in the string’s length -
radix sort), every phase we twice the number the suffixes are sorted on.
After the phase H, the suffixes are organized into buckets, holding suffixes with
the same H first symbols.

If A(i) is the suffix in the first bucket, A(i-H) should be first in its 2H-bucket.
We can move it to the beginning of its 2H-bucket, and mark this fact. For every
bucket, we need to know the number of suffixes in this bucket that have already
beer moved and placed in 2H-order. The algorithm basically scans the suffixes
as they appear in the H-order and for each A(i) it moves A(i-H) (if it exists) to
the next available place in its bucket.
The number of phases is logarithmical, so the overall running time is O(n∗logn).
The implementation is quite interesting, see [MM93].

1.3.2 Skew algorithm

In 2003, independently and in parallel, three different direct linear time suffix
array construction algorithms were introduced (by Kim; by Ko and Aluru; and
the one we are to consider - ’Skew’ algorithm by Juha Karkkainen and Peter
Sanders.)
Before getting to the idea of the skew algorithm, we need to refer to some
background, and thus to give another glance at the history of suffix trees devel-
opment. Together with the line of algorithms of Weigner, McCreight, Ukkonen,
in which the suffix tree is built inductively, with use in some way of the tight re-
lations between suffixes which, provided with insight into these relations, make
it possible to organize induction very efficiently - together with this line, there
existed another line, introduced by Martin Farach. Farach’s suffix tree con-
struction was based on quite different idea: construct separate trees for suffixes

1.3. SUFFIX ARRAYS 17

starting at odd positions (recursively) and for the remaining suffixes (using the
results of the first step). Merge the two suffix trees into one. Merging, being
a difficult procedure, relies on structural properties of suffix trees that are not
available in suffix arrays. (Worth mentioning that Farach’s approach has an
important advantage of not being dependent on the alphabet size.) Kim (the
author of another linear algorithm) managed to perform similar merging with
suffix arrays, but the procedure is still very complicated.
The skew algorithm has a similar structure:

1. Construct the suffix array of the suffixes starting at positions imod3 6= 0.
This is done by reduction to the suffix array construction of a string of
two thirds the length, which is solved recursively.

2. Construct the suffix array of the remaining suffixes using the result of the
first step

3. Merge the two suffix arrays into one.

The use of two thirds instead of half of the suffixes in the first step makes the last
step indeed easy: a simple comparison-based merging is sufficient. For example,
to compare suffixes strating at i and j with imod3 = 0 and jmod3 = 1, we
first compare the initial characters, and if they are the same, we compare the
suffixes starting at i+ 1 and j + 1 whose relative order is already known from
the first step (the situation here is quite similar to the situation in the algorithm
in previous section, see picture).
The figure 3 gives an example of algorithm. In [KS03], together with useful
ideas and theoretical observations, there is a (short and easy understandable)
implementation in C++.

Theorem 1.3. The skew algorithm can be implemented to run in time O(n).

Proof. The second step is easy, due to the idea, same with the one for step 3.
Again: the suffixes Si with imod3 = 0 are sorted by sorting the pairs (s[i), Si+1),
where s is the initial string. So, it’s not difficult to see that the second and the
third steps require linear time, and the execution time obeys the reccurence
T (n) = O(n) + T (2n/3), T (n) = O(1) for n < 3. This reccurence has the
solution T (n) = O(n).

Note. In the previous section, we mentioned that generally suffix array should
be built together with collecting some additional information (an array of longest
common prefixes of suffixes that are adjacent in the suffix array), which makes
it much more valuable for algorithms. Referring to [KS03] for details, we will
just mention that this information can be gathered in the course of the skew

algorithm as well.

18 CHAPTER 1. DATA STRUCTURES FOR PATTERN MATCHING

Figure 1.3: Skew algorithm, applied to string ’mississippi’.

