
Chapter 3

Approximate string
indexing: comments to
slideshow
Alexander Vahitov

Using simple mathematical arguments the matching probabilities in
the suffix tree are bound and by a clever division of the search pattern
sub-linear time is achieved.

The report is based on the article of G. Navarro and R. Baeza-Yates ’A
Hybrid Indexing Method For Approximate String Matching’

3.1 Introduction

First Section 3.2 is about the task of the algorithm with some simple examples. Next
Section 3.3 will tell you some basic ideas and algortihms used in the main resulting
algorithm of the report, which is presented in Section 3.4. Then comes Section 3.5
where you will find some ideas to prove the average-case complexity of the algorithm
(full complexity analysis can be found in the issue of G. Navarro and R. Baeza-Yates).
The last part of my report is Section 3.6 with conclusions and future directions of
scientific work in this field.

3.2 Our Task

We have a long text T and a short pattern (P). Our task is to find substrings from T
which match our pattern approximately. Approximate matching means that we can
accept some errors during the searching process (you can imagine that these are trans-
portation errors). These errors are differences between the pattern and the founded
text piece (ocuurence). We define 3 kinds of differences between strings: insertion,
replacement and deletion.

If we have a pattern abc and a text adbc, then there are some obvious examples of
differences between this strings :
adc = a+ d+ b+ c - insertion

abd = a+ b+ c→ d - replacement
ab = a+ b+ c→ ∅ - deletion

31

32 CHAPTER 3. APPROXIMATE STRING INDEXING

We call the minimum number of such changes needed to transform one string to
another as edit distance (abbreviated ed) between the strings. For example, all the
mentioned above strings have the edit distance equal to 1 (because we needed for
transformation only 1 change).
If S can be transformed to S′ with x changes, then S′ can be transformed to S also
with x changes (we remove deletions with insertions, and vice versa).
The resulting algorithm, which will be presented later, has to solve the approximate
searching problem. There are some different approaches to this problem, and at first
I will tell you some of them. The first variant is to build a suffix trie for the text and
search in O(n) time for the occurences. We can descend by the branches of the trie
till the level where we can understand that this branch does not contain an occurence.
If we use suffix array structure, we will free much memory (tis problem arises because
suffix trees have very big memory requirements). This method of search is called
Depth-First Search. We can generate a set of viable prefixes (possible prefixes for the
pattern occurence) and search for them in our trie.
The second way is to build an on-line filtering algorithm. It can use some sort of index
(for example, many algorithms are based on storing text q-grams - pieces of the text
with length equal to some number q).But it is obvious that the number of errors in
such algorithms is strongly bounded, nd it can be incompatible with many practical
situations.
There is another outstanding algorithm by Myers based on the mixture of the two
approaches. It uses q-grams. It divides a pattern in such pieces that their length is
less than q− k (where k is error-level, error number divided by pattern length). Then
it generates for each text piece all the strings that can appear from the pattern when
some errors are done. All this strings are searched then in the q-gram set, and the
last step is merging founded piece occurences and searching for the occurence of the
whole pattern.
Our algorithm at first will divide our pattern into some pieces. Then it will use
approximate search to find the occurences of this pieces in the text, and then verify
whether the occurence of some pattern piece can be continued to the occurence of the
whole pattern.

3.3 Basic Ideas and Algoritms

3.3.1 Lemma: dividing the pattern

Dividing the pattern is useful for our algorithm. If we have two strings A and B,their
edit distance ed ≤ k and we divide A intoj substrings, then at least one of the sub-
strings appears in B with at most bk/jc errors. This is obvious because we have to
change A k times to transform it to j. Each change is applied to one of the substrings.
The average number of changes per substring is k

j
. So it is easy to see that there is at

least one of Ai that has less than or equal to k
j

changes.

Example:
ed(′he likes′,′ they like′) = 3 = k;
A1 =′ he ′, A2 =′ likes′ ⇒ j = 2;

ed(′he ′,′ they ′) = 2; ed(′likes′,′ like′) = 1 = b k
j
c.

3.3.2 Computing edit distance

Computing edit distance is also useful for approximate string matching. There is a
classical dynamic programming algorithm solving this problem. We have 2 strings: x
and y with characters xi and yj . Let’s consider Cij as edit distance between x1..xi

3.3. BASIC IDEAS AND ALGORITMS 33

and y1..yj . Let’s fill the matrix of Cij with such algorithm: Ci,0 = i because you
need i insertions to the empty string to change it to x1..xi. And also C0,j = j by
the same cause. Cij = Ci−1,j−1 if xi = yj . Another case is when xi 6= yj . You
need one deletion of the character yj from the string y1...yj to make it matching
x1...xi with Ci,j−1 errors. Also you may delete xi to make Cij equal to Ci−1,j+1.
And you can replace xi with yj to make Cij equal to Ci−1,j−1. So if xi 6= yj then
ed(x1..xi, y1..yj) = 1 +min{Ci−1,j ;Ci,j−1;Ci−1,j−1}.
An example shows how does the algorithm work with ′survey′ and ′surgery′ strings.
The cases when xi = yj are marked with green, and other cases - with red. There are
arrows from the minimal matrix element (left, upper or diagonal) which summed with
1 gives us Cij to make it matching x1..xi with Ci,j−1 errors.

x = x1x2 . . . xm; y = y1y2 . . . yn;xp, yq ∈ Σ
Cij = ed(x1 . . . xi, y1 . . . yj);

(C) is a matrix filled with Cij

C0,j = j;Ci,0 = i;

Ci,j =

Ci−1,j−1 xi = yj

1 + min{Ci−1,j , Ci−1,j−1, Ci, j − 1} else;

Now let’s consider y as the text and x as the pattern. Let’s construct the algorithm
to search the substrings from the text, approximately matching the pattern. The
only different between this algorithm and previous one is that we initialize C0,j with
0 instead of j because the pattern matching process can start from every text position.

These are fullfilled matrices by the algorithm that simply computed the edit distance
and the algorithm that searched the pattern in the text.

34 CHAPTER 3. APPROXIMATE STRING INDEXING

3.3.3 NFA construction

Here is presented Nondeterministic Finite Automaton. We will use it to search for
approximate matches of pattern P in the text T . The initial state of the automaton
corresponds to 0 errors in matching process and to the first character of the pattern.
The automaton will go by pattern and text characters simultaneously. When it reaches
the last pattern character, it means that we have found an occurence. It is presented
lower in the picture as a table. In columns pattern characters are written, and each
row is used to represent errors in matching. We search for pattern occurence accepting
some errors, and transition between rows means accepting one error.
There are 4 kinds of transitions between states (we make changes with pattern and
the text is remaining the same):

• if current text and pattern characters are the same;

• if current pattern character is replaced with the text one;

• if current text character is inserted to the pattern;

• if current pattern character is deleted.

Look at the illustration of the automaton which searches the text for approximate
matching the pattern ’survey’ with at most 2 errors. The rows correspond to the
errors which are already made, and the columns correspond to the characters of the
pattern already reached by the automaton.
The transitions are:

• horizontal, if current text and pattern characters are the same;

• solid diagonal, if current pattern character is replaced with the text one;

• vertical, if current text character is inserted to the pattern;

• dashed diagonal, if current pattern character is deleted.

The automaton finish states are the right ones.

3.4. MAIN ALGORITHM 35

NFA structure

How NFA searches ’surga’ in ’surgery’

3.3.4 Depth-First Search technique

And the last is the algorithm of the depth-first search. Here we define the Uk(P)
which is a set of the strings, matching to P with at most k errors. It is possible to
search this string in the text, but the complexity of this search is quite large. We can
use a suffix tree and search in it the strings from U t

k(P). These are the neighborhood
elements which are not prefixes of other neighborhood elements.

3.4 Main algorithm

Our algorithm, searching in the suffix tree, has to start from the root, consider some
string x incrementally,determine when ed(x,P) ≤ k and determine when adding of
any character makes the ed greater than k.

In the picture you can see how the algorithm works with the input of the suffixes
from the suffix tree. It fills the matrix like in the example above and analyzes it’s ele-
ments.The algorithm increments x and updates the last column in O(m) time. When
the element in the last row (last column element) is ≤ k, the match is detected. Oth-
erwise, if all the values in the column are ≥ k, the match cannot be detected.

This is the illustration of the algorithm working in the suffix tree with 2 suffixes,
matching the pattern ′surgery′. It is shown the column of a matrix for the suffix
′surga′.

The cost of the suffix tree search is exponential in m and k, so it’s better to perform j
searches of patterns of length [m

j
] and k

j
errors (remember the lemma about dividing!).

That’s why we divide patterns. So, we divide our pattern into j pieces and search them
using the above algorithm. Then, for each match found ending at text position i we
check the text area [i −m − k..i + m + k]. But the larger j, the more text positions

36 CHAPTER 3. APPROXIMATE STRING INDEXING

need to be verified, and the optimal j will be found soon.

Now we have to adapt our NFA for searching in the suffix tree. At first, we’ll search for
matching from the beginning ot the suffix, so we don’t need initial self-loop. Second,
we don’t need initial insertions to the pattern - because if te suffix matches with such
insertions, we will find the suffix matching without these insertions. So, we remove the
down-left triangle of the automaton, under diagonal. And at last, we can start match
with k + 1 first characters of the pattern (because we removed initial insertions, only
initial deletions remain, initial replacement is the same as initial deletion).

This is the illustration to the changes of our NFA from the previous example.

3.4.1 Suffix Arrays

Here I can say something about using suffix arrays instead of suffix trees. Suffix arrays
have less space requirements, but the time complexity of the search in the case of
suffix array should be multiplied by log n. Suffix array replaces nodes with intervals
and traversing to the node is going to the interval. If there is a node and it’s children,
then the node interval contains children intervals. More information on suffix arrays
was in Olga Sergeeva’s report.

3.5 Complexity Analysis

Let’s analyse the algorithm to determine it’s complexity and the best variant of par-
titioning the pattern. Now we’ll find the average number of nodes at level l. If we are
working with random text, then the number of suffixes in level l is σl, and for small
l the number of suffixes longer than l is nearly n. In the probability model of n balls
thrown into σl urns we find that the average number of filled urnes is θ(min{σl, n}).
If l ≤ m′, at least l− k text characters must match the pattern, and if l > m′, at least
m′−k pattern characters must match the text. There is no difference, which exactly is
the length of the pattern prefix. So, we sum all the probabilities for different pattern
prefix lengths:

lX

m′=l−k

1

σl−k
Cl−k

l Cl−k
m′ +

l+kX

m′=l+1

1

σm′−k
Cl

m′−kCm′−k
m′

3.5. COMPLEXITY ANALYSIS 37

In the first sum the largest term is first one: 1
σl−k

Ck
l , and we can bound the whole

sum with (l − k) 1
σl−k

Ck
l . By Stirling’s approximation we have

Ck
l =

el
√

2πl

kk(l − k)l−k
√

2πk
p

2π(l − k)

!2 „

1 +O(
1

l
)

«

And the whole first sum is (l − k)γ(β)lO(1
l
), where

γ(β) =
1

σ1−xx2x(1− x)2(1−x)

Here you see that (l− k)γ(β)lO(1
l
) = O(γ(β)l). The first sum exponentially decreases

when γ(β) < 1, it means that:

σ >

„
1

β2β(1 − β)2(1−β)

« 1
1−β

=
1

β
2β

1−β (1 − β)2
>

e2

(1 − β)2
⇔ β < 1 − e√

σ
,

because e−1 < β
β

1−β if β ∈ [0, 1]. The second summation can be also bounded with
O(γ(β)l), and the probability of processing a given node at depth l is O(γ(β)l). In
practice, e should be replaced by c = 1.09 (founded experimentally) because we have
found only upper bound for the probability, but not the exact upper bound.

Using the formulas bounding the probability of matching, let’s consider that in levels

l ≤ L(k) =
k

1− c√
σ

= O(k)

all the nodes are visited, and in levels l > L(k) nodes are visited with probability

O(γ(k
l
)
l
). Remember that the average number of visited nodes at the level l (for small

l) is θ(min{n, σl}).
Now we will speak about searching of a single pattern in the text using our automaton
with depth-first search technique. We can define three cases of analysis of this search
process:

• L(k) ≥ logσn, n ≤ σL(k) - ’small n’, online search is preferable and no index
is needed (since the total work is n); It shows that the indexing technique does
not work for very small texts.

• m+ k < logσn, n > σm+k - ’large n’, the total search cost is

σL(k) +
σk(1 + β)2(m+k)

β2k
,

independent of n;

• L(k) < logσn ≤ m + k, ’intermediate n’, the search is sublinear of n in time if
error level β < 1− e√

σ
.

Now let’s add to our analysis the pattern partitioning mechanism. Remember that j
here is a number of pieces in which pattern is divided. After dividing, the mechanism
analised above is used. With pattern partitioning,

• First case conditions are:

k

1 − c√
σ

≥ jlogσn, n ≤ σL(k
j
),

complexity is O(n).

38 CHAPTER 3. APPROXIMATE STRING INDEXING

• Here m + k < jlogσn, n > σ
m+k
j , if β = k

l
< 1 − e√

σ
the complexity is

O(n
1−logσ

1
γ(1+β)). This is sublinear of n, we use j = m+k

logσn
. This j is sim-

ply the smallest of possible j’s in this case (with j less than m+k
logσn

we get into

the first case).

• Third case has it’s own j for the minimum of complexity, but it can get over
the bounds of this case, so in most cases we can simply use such j as in second
case, and we will get sublinear of n time complexity.

3.6 Conclusions

• The splitting technique balances between traversing too many nodes of the suffix
tree and verifying too many text positions

• The resulting index has sublinear retrieval time O(nλ), 0 < λ < 1 if the error
level is moderate.

• In future there can appear more exact algorithms to determine the correct num-
ber of pieces in which the pattern is divided and there are (and may appear in
future) some better algorithms for verifying after matching a piece of pattern.

