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1 Introduction

The Galerkin method is one of the best known methods for finding numerical
solutions to partial differential equations. Its simplicity makes it perfect for
many applications. The Galerkin approach consists of finding a functional
basis for the solution space of the equation, then projecting the solution on the
functional basis, and minimizing the ”residual” with respect to the functional
basis.

The translates of a wavelet for all dilations form an unconditional orthonor-
mal bases of L2(R) and the translates of a scaling function for all dilations
form an unconditional orthonormal bases for Vj ⊂ L2(R), which is a great
improvement over the standard polynomial basis or a trigonometric basis for
the Galerkin Method. Variable resolution levels inherent with wavelets and
multiresolution analysis allow for localizing small time scale variations of the
solution. Furthermore, the properties of multiresolution analysis allow for fast
switching of functional bases.

1.1 Overview

The goal of this project is to formulate a Wavelet-Galerkin Method to solve a
partial differential equation numerically. The motivation for attempting this
problem is that Wavelet- Galerkin Methods provide an improvement over stan-
dard Galerkin Methods by using a compactly supported orthogonal functional
basis. Furthermore there are two ways to improve the approximation using a
wavelet basis namely by increasing the resolution level and the order of the
wavelet.
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1.2 The Galerkin Method

Consider the following Boundary Value Problem (BVP)

L[u(x, y)] = 0 on D(x, y), S(u) = 0 on ∂D (1)

where L is a differentiation operator, D(x, y) is the domain of the BVP, ∂D is
the boundary of the domain, and S(u) the boundary conditions (BC). Let us
assume that u(x, y) can be represented accurately by a set of analytic functions
{gi(x, y)}N

i=1. Then we can approximate the solution of the BVP as

u(x, y) ≈ ua(x, y) = u0(x, y) +
N∑

i=1

aigi(x, y)

where u0 is chosen so as to satisfy the initial conditions. In order for ua(x, y)
to be a good approximation, it must satisfy the differential equation. Thus if
we apply (1) to ua we get

L[
∑

i

aigi(x, y)] + L[u0(x, y)] = R(a1, ..., aN , x, y).

Since ua is not an exact solution of the BVP, R will never be exactly zero, how-
ever we can minimize it with respect to a set of ”weight functions.” Galerkin
Methods are a subclass of the so called Weighted Residual Methods, however,
we shall not discuss that, and just use the simplest variant of Galerkin Method
which is equivalent in our case to the Ritz-Raleigh Method. The Ritz-Raleigh
Method minimizes the residual with respect to the set of approximating func-
tions by requiring

〈R(a1, ..., aN , x, y), gi(x, y)〉L2 = 0, i = 1, 2, ..., N.

Hence since the summation is finite and differentiation is linear,

〈R(a1, ..., aN , x, y), gi(x, y)〉L2 =
N∑

j=1

aj〈L[gj], gi〉+ 〈L[ua], gi〉 = 0. (2)

In this case one must solve the following matrix equation in order to find the
coefficients {ai}N

i=1,



〈L[g1], g1〉 . . . 〈L[gN ], g1〉

...
. . .

...
〈L[g1], gN〉 . . . 〈L[gN ], gN〉







a1
...

aN


 =



〈L[ua], g1〉

...
〈L[ua], gN〉


 .
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1.3 Multiresolution Analysis

Multiresolution Analysis is a sequence of closed spaces {Vj}∞j=−∞ (they are
called approximation spaces) of special kind

1. Vj ⊂ Vj+1

2.
⋃

j∈Z Vj = L2(R)

3.
⋂

j∈Z Vj = {0}
4. if f(t) ∈ Vj ⇒ f(2t) ∈ Vj+1

5. if f(t) ∈ Vj ⇒ f(t− k) ∈ Vj

6. single scaling function ϕ defines orthonormal basis in corresponding sub-
space Vj by scaling and translations

ϕj,k(t) = 2j/2ϕ(2jt− k).

For example, the set of spaces

Vj = {f ∈ L2(R);∀k ∈ Z : f |[2jk,2j(k+1)] = const}

is called Haar’s multiresolution analysis. Now if we call Pj - orthogonal pro-
jector on Vj we will get

lim
j→−∞

Pjf = f for every f ∈ L2(R)

A method to construct the basis of this kind one can find in book [1]

1.4 Multiresolution Analysis and the Galerkin Method

Having a Multiresolution Analysis, Vn, n ∈ Z with scaling function ϕ(x), one
can use ϕn,k(x) as the basis functions for the Galerkin Method. We know that
the set {ϕn,k(t) = 2n/2ϕ(2nt− k)∀n, k ∈ Z} forms an orthonormal basis of Vn,
thus at each approximation level n, one can take the orthogonal projection of
u onto Vn in the following manner

u(x, y) ≈ Γnu(x, y) =
∑

k

an,k(y)ϕn,k(x), an,k(y) = 〈u(x, y), ϕn,k(x)〉

and this will provide an accurate approximation to u. Furthermore, for some
J , VJ will ”capture” all details of the original function. It is important to note
that k is finite, since it would not make much sense to attempt to solve an
infinite system of equations. Typically we would want to choose k ∈ {0, ..., 2n−
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1} in order to get a good sampling of the domain. Also the an,k, as it is given
by the above projection, can only be used as initial fit for y = 0, since we shall
re-calculate them through the Galerkin Method for a better fit to the BVP.
Now if we apply this multiresolution analysis to (1) and force the condition in
(2) we achieve the following,

〈L[Γnu(x, y)] + L[u0(x, y)], ϕn,k〉 = 0 (3)

However this is clearly an 1D approximation which would be quite useless to
solve a 2D problem. A trick that can be used to make the approximation in
(3) a plausible solution to a problem such as (1) is to let the coefficients an,k

vary with y. Hence we can sample the y domain and for each yi we can solve
the system resulting from (3), since it would be reduced to a 1D problem for
a fixed y.

Thus, we arrive at the following matrix equation:

BA = R (4)

where Bi,j = 〈L[ϕn,i], ϕn,j〉, Ai = an,i(y), R = −〈L[u0], ϕn,j〉.
Solving (4) for each y, we can find the coefficients an,k(y) and thus a solution

to (1). Furthermore, multiresolution analysis allows easy conversion between
different levels n, through the scaling relation,

ϕj−1,l = 2−1/2
∑

k∈Z

pkϕj,k. (5)

Consequently by solving the Galerkin system for a certain n, with a multires-
olution analysis’s scaling function’s dilates and translates as the functional
basis, we have solved the Galerkin system for all m < n as well. The solution
to the system of matrix equations in (4) can be simplified even further by
applying a quadrature rule for easy evaluation of the inner products in R. It
can be for example

〈f(x), ϕn,k(x)〉 ≈ mf(k/2n), m =
∫ ∞

−∞
ϕ(x)dx

Quadrature rules exist for the fast calculation of products between scaling
functions and their derivatives, but they are not as elementary and require
rather involved methods, gives a good exposition on the matter.

A few notes are in order before concluding this section. First, the above
method is a very rough approximation to a problem like (1), since in order to
generate a very easy to solve matrix out of it we fix y, and linearize the an,k,
by doing so we do not take into account the action of the differential operator
L on them. Thus for a PDE such as uyy = 0 the above described method is
rendered useless. However it’s speed and simplicity, make it at least feasible
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approach. Second, the MRA-Galerkin Method as it is does not account for the
BCs of the BVP. It is impossible to force BCs on the spaces Vj , thus the BCs
cannot be applied. However, as we shall see in the next section, it is possible to
construct similar spaces to those in an MRA in order to automatically satisfy
the BC.

2 Solving differential equation

As shown in the previous section, applying properties of multiresolution anal-
ysis to the Galerkin Method offers a few improvements over traditional trial
functions. However, it restricts our solutions to elements of Vn. In solving
partial differential equations arising from physical phenomena solutions will
belong to the class of finite energy surfaces, or L2(R2). Thus it would be more
beneficial to have a scheme that will solve the PDE in L2(R2) rather than in
Vn ⊂ L2(R). This is where the wavelets role is, since they can form orthogonal
bases of L2(Rk).

Let us see how a hierarchy of wavelet solutions to partial differential equa-
tions may be developed using scaling function bases. In order to demonstrate
the wavelet technique, we consider the one dimensional second order differen-
tial equation

uxx + αu = f

where u = u(x), f = f(x) and α = const. This equation is the one dimensional
counterpart of Helmholtz’s equation. To compare results let us choose an easy
to calculate method of finite differences.

2.1 Finite difference solution of the periodic problem

Consider the problem
uxx + αu = f (6)

where u and f are periodic functions in x. Let d be the period. Then

u(0) = u(d)

f(0) = f(d)

Suppose now that we have an n point discretization of the interval [0, d], so
that

ui = u(i∆x)

fi = f(i∆x)

where
i = 0, 1, 2 ... n− 1
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and
∆x = d/n.

The finite difference approximation to uxx is then

(uxx)i =
1

∆x
(
ui+1 − ui

∆x
− ui − ui−1

∆x
) =

ui+1 − 2ui + ui−1

(∆x)2

and so the discrete form of equation (6) is

ui+1 + (−2 + α∆x)ui + ui−1 = fi(∆x)2; i = 0, 1, 2, ..n− 1

or
ui+1 + rui + ui−1 = fi(∆x)2; i = 0, 1, 2, ..n− 1

where
r = −2 + α∆x.

Noting that u−1 = un−1 and u0 = un this system of equations can be written
in matrix form as




r 1 0 0 . . . 0 1
1 r 1 0 . . . 0 0
0 1 r 1 . . . 0 0
0 0 1 r . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . r 1
1 0 0 0 . . . 1 r







u0

u1

u2

u4
...

un−2

un−1




=




f0

f1

f2

f3
...

fn−2

fn−1




or
CU = F.

Now C is a circulant matrix, so that premultiplication of the vector U by the
matrix C is the same as convolving U with the vector K, where K is the first
column of C. K is referred to as the convolution kernel. Thus

K ∗ U = F.

This form of the equations is easily solved using the Fast Fourier Transform
(FFT), since a convolution in physical space of two vectors is equivalent to
a component by component multiplication in frequency space of the discrete
Fourier transforms of the vectors. Here, and in Section 2.2 (next section), we
use the FFT to solve the equations instead of Gaussian elimination because it
results in a significant reduction in computational storage and time. Solution
using the FFT takes O(n log2 n) operations in contrast to the O(b2n) oper-
ations required for a banded Gaussian elimination solution. Taking discrete
Fourier transforms of both sides, therefore, we have

K̂.Û = F̂
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where the . denotes component by component multiplication. Then the solu-
tion is obtained by taking the inverse Fourier transform of

Û = F̂ /K̂

where / denotes component by component division. In the particular case
where α = 0, the rows of the matrix C sum to zero. As a consequence of the
singularity of C, we have

(K̂)0 = 0

i.e. the first element of the vector K̂ is zero, which leads to an undefined value
for (Û)0. To circumvent this problem, we initially consider solutions U whose
mean over the period is zero. This means that (Û)0 = 0, so that we can set
(K̂)0 to be an arbitrary nonzero value to avoid division by zero, and then set
(Û)0 = 0. Where Dirichlet boundary conditions require U to have a nonzero
mean, the mean may be calculated from the boundary conditions.

2.2 Wavelet-Galerkin solution of the periodic problem

The wavelet-Galerkin method entails representing the solution u and the right
hand side f as expansions of scaling functions at a particular scale m. For the
purposes of the current work, it will suffice to say that the scaling function ϕ
is defined by a dilation equation of the form

ϕ(x) =
∞∑

k=−∞
hkϕ(2x− k)

and that the values of the scaling function may be calculated using this re-
cursion. Compactly supported scaling functions, such as those belonging to
the Daubechies family of wavelets, have a finite number of nonzero filter coef-
ficients ak. We denote the number of nonzero filter coefficients by N .

The wavelet-Galerkin solution of the periodic problem is slightly more com-
plicated than the finite difference solution, since the solution procedure consists
of solving a set of simultaneous equations in wavelet space and not in physical
space. This means that we have to transform the right hand side function into
wavelet space, solve the set of simultaneous equations to get the solution in
wavelet space, and then transform the solution from wavelet space back into
physical space. We consider the same problem as before

uxx + αu = f

The wavelet-Galerkin approximation to the solution u(x) at scale m is

u(x) ≈ ∑

k

c̃k2
m/2ϕ(2mx− k) (7)
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c̃k are the wavelet coefficients of u , i.e. they define the solution in wavelet
space. The transformation from wavelet space to physical space (or vice versa)
can be easily accomplished using the FFT if the wavelet expansion is expressed
as a convolution of two vectors. To do this we make the substitution

y = 2mx

Then we may write

U(y) = u(x) =
∑

k

ckϕ(y − k) ck = 2m/2c̃k. (8)

Now u(x) is periodic in x with period d, so that U(y) is periodic in y with
period 2md. Assuming that d ∈ Z, so that n = 2md ∈ Z then ck is also
periodic with period 2md.

We may now discretize U(y), letting y take only integer values. This gives
us values of u(x) at all the dyadic points x = 2−my i.e. the discretization of
u(x) depends on the scale we have chosen (or vice versa). Thus

Ui = U(i∆y) = U(yi) i = 0, 1, 2, .., n− 1.

Equation (8) may then be written as

ui =
∑

k

ckϕi−k =
∑

k

ci−kϕk

where ϕk = ϕ(k). In matrix form this becomes




U0

U1

U2

. . .

. . .

. . .

. . .
Un−1




=




0 0 0 . . . ϕN−2 . . . ϕ2 ϕ1

ϕ1 0 0 . . . 0 . . . ϕ3 ϕ2

ϕ2 ϕ1 0 . . . 0 . . . ϕ4 ϕ3

. . . . . . . . . . . . . . . . . . . . . . . .
ϕN−2 ϕN−3 ϕN−4 . . . . . . . . . 0 0

0 ϕN−2 ϕN−3 . . . . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . ϕN−3 . . . ϕ1 0







c0

c1

c2

. . .

. . .

. . .

. . .
cn−1




where N is the number of nonzero filter coefficients. Thus the solution U is
related to the vector of its wavelet coefficients c by the convolution

U = Kφ ∗ c (9)

where the convolution kernel Kφ is the first column of the scaling function
matrix.

Similarly, the wavelet expansion for f(x) is

f(x) =
∑

k

g̃k2
m/2ϕ(2mx− k) k ∈ Z (10)
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so that
F (y) = f(x) =

∑

k

gkϕ(y − k) gk = 2m/2g̃k.

Here too, the wavelet coefficients gk are periodic. Thus the right hand side
vector F is related to the vector of its wavelet coefficients g by

F = Kφ ∗ g. (11)

If we now substitute the expansions of u(x) and f(x) into our original
differential equation we have

∂2

∂x2

∑

k

ckϕ(y − k) + α
∑

k

ckϕ(y − k) =
∑

k

gkϕ(y − k)

i.e.
∑

k

ck2
2mϕ′′(y − k) + α

∑

k

ckϕ(y − k) =
∑

k

gkϕ(y − k).

Taking the inner product of both sides with ϕ(y − i); j ∈ Z gives

22m
∑

k

ck

∫
ϕ′′(y − k)ϕ(y − j)dy + α

∑

k

ck

∫
ϕ(y − k)ϕ(y − j)dy =

=
∑

k

gk

∫
ϕ(y − k)ϕ(y − j)dy

and since the orthogonality of the translates of the scaling function implies
that ∫

ϕ(y − k)ϕ(y − j)dy = δkj

where δkj is the Kronecker delta, we may write

22m
∑

k

ckΩj−k + αcj = gj. (12)

In equation (12),

Ωj−k =
∫

ϕ′′(y − k)ϕ(y − j)dy

are the connection coefficients which can be obtained from the very beginning
using the equation. Remembering that ck and gk have period n, the matrix
form of equation (12) becomes

Tc = g
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where

T = 22m




ρ Ω−1 . . . Ω2−N 0 . . . 0 ΩN−2 . . . Ω1

Ω1 ρ . . . Ω3−N Ω2−N . . . 0 0 . . . Ω2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ΩN−2 ΩN−1 . . . ρ Ω−1 . . . . . . . . . . . . 0

0 ΩN−2 . . . Ω1 ρ . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . . . . . . . ρ Ω−1 . . . Ω2−N

Ω2−N 0 . . . . . . . . . . . . Ω1 ρ . . . Ω3−N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ω−1 Ω−2 . . . 0 0 . . . ΩN−2 ΩN−3 . . . ρ




ρ derives from equality
ρ = Ω0 + 2−2mα

and
ct = (c0, c1, c2, ...cn−1)

gt = (g0, g1, g2, ...gn−1).

Note that as in the finite difference method, the solution of the differential
equation has been reduced to the solution of a set of simultaneous equations.
This time too, we are left with a differential operator T which is a circulant
matrix. If we denote the convolution kernel of the matrix T by KΩ then

KΩ ∗ c = g. (13)

Taking Fourier transforms of equations (9), (11) and (13)

Û = K̂φĉ

F̂ = K̂φ.ĝ

K̂Ω.ĉ = ĝ

from which
Û = K̂φ.((F̂ /K̂φ)/K̂Ω)

or
Û = F̂ /K̂Ω.

Taking inverse Fourier transforms gives us the solution U.
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3 Incorporation of boundary conditions

Boundary conditions may be incorporated using the capacitance matrix method
([8], [7] and others). Suppose that we are required to solve the problem

uxx + αu = f in [a, b]

with the Dirichlet boundary conditions

u(a) = ua,

u(b) = ub.

Again, suppose that u(x) and f(x) are periodic with period d, where 0 < a <
b < d. f can be made periodic by making it zero outside the interval [a, b].
If necessary, the function f may be extended smoothly outside [a, b] so as to
make it periodic. We already know how to solve the differential equation with
periodic boundary conditions. Let the solution to this problem be v(x). We
may get the solution u to the differential equation with Dirichlet boundary
conditions at a and b by adding in another function w(x) such that

u = v + w. (14)

Since vxx + αv = f in [a, b], we must require that

wxx + αw = 0 in [a, b].

However, at a and b, we may let wxx take such values as to make u satisfy the
given boundary conditions. Thus we need the solution to

wxx + αw = X in [0, d]

where
X = X(x) = Xaδ(x− a) + Xbδ(x− b)

Xa and Xb are constants and δ(x) is the delta function at x = 0.
Now the Green’s function G(x) of the differential equation is given by

Gxx + αG = δ(x) (15)

from which
w(x) = G ∗X = XaG(x− a) + XbG(x− b).

We may solve for the periodic Green’s function very easily using the periodic
solvers developed in sections 2.1 and 2.2. It then remains to find the values
of Xa and Xb which make u satisfy the given boundary conditions. From
equations (14) and (15)

w(a) = XaG(0) + XbG(a− b) = ua − v(a),
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w(a) = XaG(b− a) + XbG(0) = ub − v(b).

Thus Xa and Xb are given by the solution to the 2× 2 system of equations
(

G(0) G(a− b)
G(b− a) G(0)

) (
Xa

Xb

)
=

(
ua − v(a)
ub − v(b)

)
.

This completes the solution of w. The solution u to the given boundary value
problem is then obtained from equation (14).

3.1 Offsetting of boundary sources to control error

A method for improving the capacitance matrix method by offsetting boundary
sources was introduced by [7]. Placing the sources at the boundaries in the
wavelet solution method leads to a large error due to the finite support of the
delta function in wavelet space ,i.e. the number of nonzero wavelet coefficients.
In fact, the support of the delta function in wavelet space is the same as the
support of the scaling function that is used to define it, since the wavelet
coefficients of δ(x) =

∑
k gkϕ(y − k) are given by

gk = 2mϕ(−k).

We may avoid the effect of the finite support of the delta function in wavelet
space by offsetting the boundary sources. The magnitude s of the offset should
be such that the number of discretization points involved is at least equal to
the support of the scaling function. Suppose that

a1 = a− s,

b1 = b + s.

Then
X = X(x) = Xaδ(x− a1) + Xbδ(x− b1)

so that Xa and Xb are given by the solution to the system of equations
(

G(a− a1) G(a− b1)
G(b− a1) G(b− b1)

) (
Xa

Xb

)
=

(
ua − v(a)
ub − v(b)

)
. (16)

Using this offset error can be reduced considerably up to 105 times.

3.2 Comparison of results

The wavelet solutions have much better precision but take slightly slower than
the finite difference solution owing to the need to transform the samples from
physical space into wavelet space and back again. This overhead becomes less
significant as the sample size increases. More importantly, there is a negligible
variation in computation time as the support of the wavelet increases. Thus the
D12 wavelet solution compares extremely favorably with the finite difference
solution.
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4 Conclusion

The wavelet solution method for partial differential equations has obvious
practical applications in engineering, such as in the static and dynamic analysis
of structures and the solution of the heat equation. In engineering problems,
we often require a quick rough estimate of the solution at the preliminary stage,
which may later be refined as the design or investigation progresses. Wavelets
have the capability of providing a multilevel description of the solution . The
multiresolution property of wavelets, along with their localization property,
suggests that we may obtain an initial coarse description of the solution with
little computational effort and then successively refine the solution in regions of
interest with a minimum of extra effort. Preliminary research indicates that
wavelets are a strong contender to finite elements in this respect, however,
further research is still required on the subject.

The wavelet method has been shown to be a powerful numerical tool for
the fast and accurate solution of partial differential equations. The procedure
described here shows that the solution to the differential equation is related
to the equation’s right hand side by a sequence of discrete convolutions which
can be rapidly performed using the Fast Fourier Transform. Although the
FFT implies that the solution is periodic, we may incorporate non periodic
boundary conditions using the periodic Green’s function. Solutions obtained
using the Daubechies 6, 8, 10 and 12 coefficient wavelets have been compared
with the finite difference solution and the wavelet solutions have been found to
converge much faster than the finite difference solution (see also [7]). Although
the wavelet solutions require slightly more computational effort than the finite
difference solution, the gains in accuracy, particularly with the higher order
wavelets, far outweigh the increase in cost. Furthermore, wavelets have the ca-
pability of representing solutions at different levels of resolution, which makes
them particularly useful for developing hierarchical solutions to engineering
problems.
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