Ubiquitous and Context Aware Computing: Overview and Systems

Simon Bichler

Outline

- Definition and Motivation for
 - Ubiquitous computing
 - Context aware computing
- Sample Systems

• Discussion

2nd Joint Advanced Summer School 2004

Ubiquitous computing

- In an ubiquitous computing environment:
 - Computers will be everywhere around us
 - We will not be aware that we are using a computer
 - Computers will have moved into the background
- In contrast to microprocessor-driven household appliances today
 - All the computers will be networked together
 - They will be aware of their environment and adapt to it

2nd Joint Advanced Summer School 2004

Ubiquitous Computing (2)

- An example for an ubiquitous information technique: Writing
 - Is found almost everywhere around us:
 - Books, magazines but also
 - Street signs, billboards, even candy paper
 - In ubiquitous computing, computers will be just as immersed in our daily lifes

2nd Joint Advanced Summer School 2004

Ubiquitous Computing (3)

- Example of a technology becoming ubiquitous: Electric motor
 - At the beginning of the 20th century a factory would have one motor, driving several machines
 - With the advent of cheap electric motors, every machine could have its own motor
 - Today there are usually several motors working in one machine, e.g. a modern car

2nd Joint Advanced Summer School 2004

Paradigms for Computing Systems

- Mainframe: Many users per computer
- Personal Computer: One user per computer
- Ubiquitous Computing: Many computers per user

We are currently moving from personal computing to more ubiquitous computing

But all three paradigms will probably coexist

Human Attention

- The limiting factors of computing today are (in most cases)
 - Not processor speed anymore
 - Nor memory size, but

Human Attention

• The computer has to find out somehow, what the user wants it to do

Context awareness

- When two human beings communicate, a lot of context is implicitly available from the situation
- When communicating with a computer, the context of the situation is usually lost
- Explicit vs. Implicit communication

Goal:

The computer does, what the user wants

2nd Joint Advanced Summer School 2004

Context awareness in mobile and ubiquitous computing

• Context awareness is especially important for mobile and ubiquitous computing:

- The situation may change dynamically
 => rich context available
- The user might be preoccupied e.g. by walking or driving a car
 => explicit user input may be sparse
 => the use of implicit input is necessary

2nd Joint Advanced Summer School 2004

Why context is difficult to use

- Context is acquired from non-traditional devices
- Context must be abstracted to make sense
- Context may be acquired from multiple distributed and heterogenous sources
- Context is dynamic

2nd Joint Advanced Summer School 2004

Ubiquitous computing systems

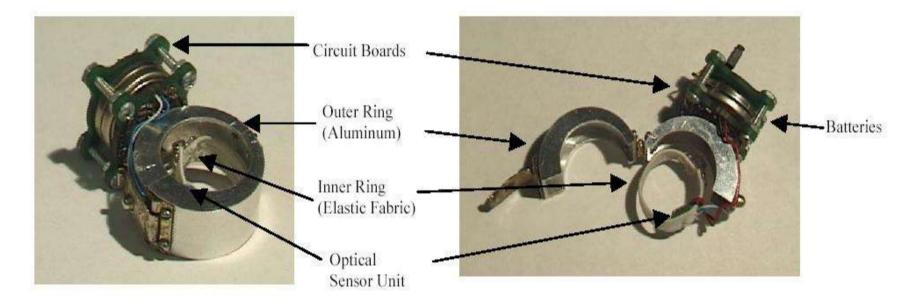
• Todays ubiquitous computing systems are mostly not usable for any real world problems yet

• But they provide building blocks for useful applications in the future

• The selection of the following sample systems is arbitrary and by no means complete

Active Badges

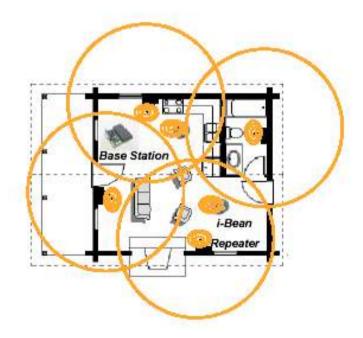
- Active badges were developed between 1989 and 1992
- Badges send out infrared signals
- A network of detectors inside a building locates the badges
- When all employees carry an active badge, it is possible to locate their positions
- Phone calls can be routed to the closest phone


Active Badges (2)

- A signal is sent only every 15 seconds
 - Less power consumption
 - Less chance of interfering with other badges in the same room
 - People move slowly enough for the system to still be accurate
- When placed in a dark surrounding, the badge is switched off
 No power switch needed
- Privacy concerns

2nd Joint Advanced Summer School 2004

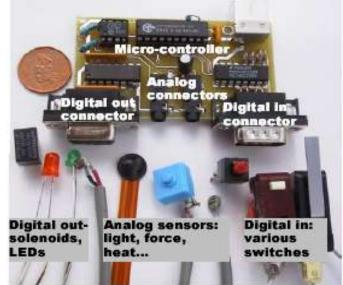
i-Bean


- Wireless sensor device
- Attached to a persons ring finger
- Measures arterial blood volume waveforms and blood pressure
- Can be used for long-term monitoring of vital signs

i-Bean (2)

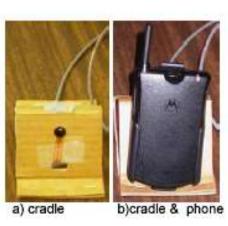
- To allow for low power consumption a repeater network is used
- The data from one or several i-Beans is dynamically routed using the shortest path available

• The form of a finger ring makes it more comfortable to wear the sensor for extended periods of time



Phidgets

- Phidgets try to build a physical analogy to graphical user interface widgets:
- Easy to use building blocks to create physical user interfaces:
 - Sensors and actors are attached to a computer via USB
 - API can be used from standard programming languages



Phidgets (2)

- Special requirements for Physical Widgets:
 - Connection manager
 - Identification
 - Simulation mode
- Some interfaces built with Phidgets:

Project Aura

- Hardware and software for ubiquitous computing is available
- The challenge is the integration of the existing technologies
- Basic principles:
 - Proactivity: Anticipate requests instead of only reacting
 - Self-tuning: Dynamically adapt performance to demand

2nd Joint Advanced Summer School 2004

Project Aura (2)

- Techniques implemented in project Aura:
 - Cyber foraging: Use staging servers to reduce the impact of end-to-end internet latency for mobile devices
 - Wireless bandwidth advisor: Estimate future available bandwidth
 - WaveLAN-based people locator: Use the signal strength and the location of access points to find the position of people

2nd Joint Advanced Summer School 2004

Portable Help Desk

- Portable Helpdesk is an application of project Aura
- The user can locate people and equipment close to him
- Two interfaces:
 - Graphical interface on a laptop computer
 - Audio interface using voice recognition

DyPERS: Dynamic Personal Enhanced Reality System

- Wearable system using augmented reality
- A head mounted camera and microphone can be used to record video sequences
- Theses sequences can then be associated to an object
- When a grapics workstation connected through wireless transceivers detects an object, it replays the associated video sequence

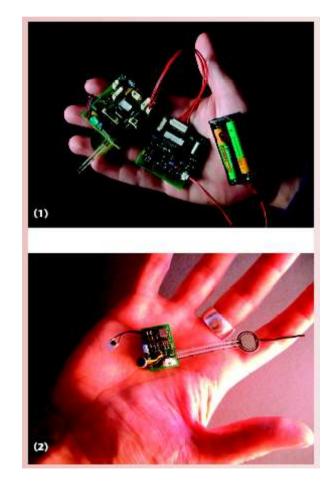
2nd Joint Advanced Summer School 2004

DyPERS: Dynamic Personal Enhanced Reality System (2)

- Possible uses of DyPERS:
 - A conversation could be recorded and associated with a business card
 - A TO-DO list could be stored on the users watch or other personal items
 - A story teller can associate the story to a picture book
 - A teacher could associate object with their words in a foreign language
 - Assembly instructions could be associated with the unassembled parts
 - A person with poor vision coul listen to audio descriptions of the things he is looking at

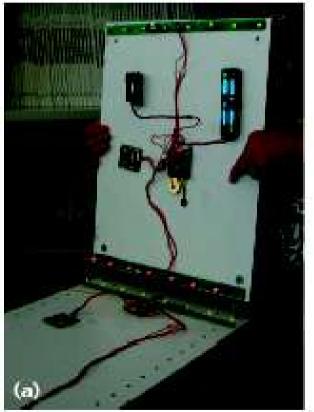
2nd Joint Advanced Summer School 2004

Smart-Its


- Hardware platform to aid the development of ubiquitous computing environments
- Modular approach:
 - Core-board with wireless transceiver
 - Standard sensor board for light, sound, pressure, acceleration and temperature
 - Specialized sensor boards, e.g.: gas sensor, load sensor, video camera, etc.
- Powered by batteries, depending on application they last between a few days and one year

2nd Joint Advanced Summer School 2004

Smart-Its (2)


• Each Smart-It can access the sensors of the Smart-Its around it

- There are different methods to request sensor data:
 - Single value
 - Condition triggered
 - Continous subscription
 - Constant stream

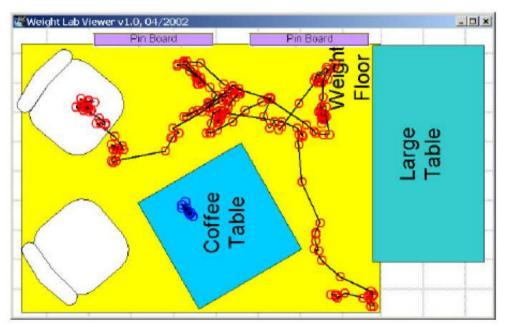
Proactive Furniture Assembly

- A piece of flatpack furniture has been augmented with Smart-Its:
 - Accelerometers to determine the orientation of the different boards
 - Force sensors to observe screw tightening
 - IR sensors to detect the co-location of boards
 - LEDs to guide the user
- The users action are observed and instructions for further assembly are given

Proactive Furniture Assembly (2)

- Instructions are immediatly immersed into the furniture:
 - Blinking LEDs guide the user to the pieces to start with
 - Green or Red light patterns show correct alignment ds
 - Individual LEDs shows where screws have to be tightened
 - Synchronous flashing LEDs indicate that the task has been finished
- The system supports learning by doing:
 - Explorability
 - Predicatbility
 - Intrinsic guidance

2nd Joint Advanced Summer School 2004


Load Sensing Furniture

- Furniture, e.g. tables or chairs can be equipped with load sensors
- Objects put down on a table can be detected, the weight can be measured
- By comparing the different loads in each corner also the position of an object on a table top can be detected
- This can even be used as a pointing device to control a mouse cursor

Load Sensing Furniture (2)

- When a whole office floor is put on load cells, the location and interaction of people in the room can be measured
- Sample application: "Don't leave your things behind"
- Warns the user if he leaves the room with less weight than he had when entering the room

A-Life System

- Smart-Its with oxygen sensors and oximeters are attached to a person at risk of being buried by an avalanche (e.g. skiers, snowboarders)
- Rescuers can use a handheld device to find the victims, but also to find out about their conditions:
 - Vital signs
 - Possible air pockets
- That way the rescue of several victims can be prioritized by urgency

Points to start a discussion

• Ethical concerns - how far should we let a computer go in making decisions for us?

• Privacy concerns - how to make sure privacy is honored in ubiquitous computing systems?

• Any *really* useful applications you can think of?

2nd Joint Advanced Summer School 2004