
Version of this article was published in www.linuxsummit.org

New Initiative in Programming
Foundation for Open Project Documentation

Anatoly Shalyto

shalyto@mail.ifmo.ru

Saint-Petersburg State University of Information Technologies, Mechanics and Optics,

Computer Technologies Department, http://is.ifmo.ru

The aim of Foundation is to prove the necessity to create the software project documentation. This

documentation is not only to contain the description of the desired final software product, but also the

circumstantially spread over process of its development. In many cases (at least for the educational

purposes) project documentation must be open. To support the Foundation web-site http://is.ifmo.ru

was created. In section “Projects” there are a lot of significant examples of documented software

projects.

Simplicity needs projection and

good taste.

L. Torvalds

It is a mistake to think that

programmers wares are programs.

Programmers have to produce

trustworthy solutions and present it in

the form of cogent arguments. Programs

source code is just the accompanying

material to which these arguments are to

be applied to.

E. Dijkstra

In engineering practice, “project”

assumes the development of project

documentation

Not long ago one of the authors watched how one notable programmer (participant of two

ACM International Collegiate Programming Contest world finals) was wasting 15 minutes to

understand a short program (6 lines of code). He knew that the program presented an iterative

2

solution of classical problem “Hanoi towers”. After that we found in the Internet another solution,

with rather good description of the algorithm .

Open Source Codes and Programs Understandability
In fact open source software does not ensure program understandability. The Leading

analyst of BASF Corporation, professor of Fairleigb Dickinson University (NJ), N. Bezrukov, the

author of the site www.softpanorama.org, believes [1]: “The central question of practical

programming is the question of source code understanding.

It is always good to have original code, but the problem is that in most cases it is not

enough. Understanding of any non-trivial program requires additional documentation. This need

grows exponentially with the size of the source code. Code analysis for recollection of initial

project solutions and program understanding are two important branches of programming

technology. For instance, make a try to understand structure of the compiler if you have no

definition of formal language, which it compiles.

Everybody, who has participated in large-scale software reengineering projects, remembers

the sense of helplessness, which occurs when you see the heap of badly documented (but, may be,

very good written) source code. Availability of the source codes does not help when there is no

access to key developers and ideas. If program is written, for example, in C programming language

(relatively low-level one) and its documentation leaves much to be desired then all project solutions

dissolve in the coding details. In such situations the value of high-level documentation like

specifications, interfaces definitions and architecture description may raise the value of source

code!

Lack of fit of original codes for program understanding results in appearing of methods,

which unite code and documentation. One of the most famous attempts of such solutions was

undertaken by D. Knuth in his book “Literate Programming” [2]. Probably, the most well-known

prohibited book in the history of computer science was “Commentary on Unix: With Source Code”

[3], which contains high-level explanation of source codes of Unix operating system even with

description of used algorithms. This book has been copied and distributed illegally for more then

twenty years form the moment of publication in 1977!

If you have not participated in project from its early stages then its complexity and size

hides source codes from you. Understanding of “ancient” code is, probably, one of the most

difficult sorts of programmers work if there is no documentation or initial developers.”

And one more opinion: “Does any worthy freeware program, whose [source codes]

appearance does not arouse disgust, exist? Therefore there are rather few good freeware, in spite of

its great amount” [4].

3

The possible result of this tendency was described by great Russian mathematician,

L. S. Pontriagin: “Only well-done work brings pleasure! If it is done roughly, it causes aversion and

bit by bit cultivates in the person immoral attitude to the labour” [5].

Why Are not Programs Projected?
So, working without source code is bad, but with source code it is not good also. There is

lack of project documentation, which has to be made detailed, fine and accurate. Software source

code is to be included in the project documentation as the component.

We can remember only three examples, which are produced commonly with no projection:

children, works of art and, unfortunately, software.

It is also important that usage of documentation does not depend on the amount of

production. Even the single dress in the home framework is sewed using patterns! Bridges, roads,

skyscrapers are building according to documentation, but the software does not.

The situation, which is widely known in software developing, can be described by

Weinberg’s Second law: “If builders built buildings the way programmers wrote programs, then the

first woodpecker that came along would destroy civilization” [6].

Why there are a lot of documents, which are let out with devices and hardware? That

documentation is quickly understandable and designed for specialists with average level of

qualification. Such situation allows to rework and change device or hardware (with the

documentation) easily even after the lapse of many years. For programs such sort of documentation

usually is absent.

We see the cause of such state in the following. First of all, devices and hardware are

manufactured for usage by exterior consumers. So the lack of documentation will force developer

to spend rest of the life in the “factory”, but, we hope, he does not plan it. In software developing

the situation is different. In most cases, the consumer of the source code (not of the final product,

but only the code) is a developer (the same organization). The common opinion is that there are no

reasons to create good quality documentation inside the organization.

Secondly, devices and hardware are “hard”, and software is “soft”. This means that it is

much easier to make changes in the software, than in the hardware, but it does not mean that there

is no need in the documentation of program. In fact the majority of programmers pathologically

would not read and, even more, write documentation [7].

Experiments show that there are few young programmers, who are able to write program

documentation. Regardless of the fact that in their universities they have passed examinations on

large courses of mathematics. It did not give them ability to expound logically. For example, the

same object can be named “lamp”, “Lamp”, “bulb” or “Bulb” in the different parts of

4

documentation. The fantasy is unlimited! Developing environment helps to avoid such errors while

programming, but when writing documentation there is no rescue.

Program developing has become similar to show-business with its pursuit of profits.

Nobody is interested in projects future (especially, the far future). The main categories are

“profitable–unprofitable” instead of “good–bad”. But in most cases the good technology is also the

profitable one.

Unwillingness to write documentation may be caused by the fact that the more closed

(undocumented) the project is, the more indispensable the author is!

Such work style, unfortunately, extended to software developing for especially crucial

systems.

Programs are written, but not projected! While projecting, any techniques, which are more

complicated than CRC-card [8] or usage diagram [9], are considered to be too intricate and are not

used. The programmer can always refuse to use any technology, substantiating it for his chief

saying that he could not do it in time” [10].

As a result, even users do not think erroneous program behavior is something extraordinary

[11].

At present there exists general opinion in the society, that big houses should be projected

and be well-documented, but for the software this is not needed. That’s why we can ask a question:

why in the projects like “Digital House” it’s components are projected and documented with

different level of quality?

In conclusion of this section let us note that present situation didn’t exist at the beginning of

the era, when programmers used “big”, ancient machines, first computers. At that time programs

were projected and written very thoroughly, because next attempt of its execution may be

performed only in a day. So technical progress has resulted in less responsible developing.

Advantages of Project Documentation
Having well-done project documentation, software developer cannot “control” managers.

After programmers dismissal, his place can be borrowed by anyone even with lower level of

qualification (and salary), instead of person with higher qualification (as now).

Is it possible to teach how to project and implement programs by books? We think that it is.

But now, unfortunately only with separate books: about projecting [11] and about implementing

[12]. Unfortunately, there are almost no books, which cover both stages of software developing.

Absence of such literature could be filled up by open projects, software with open project

documentation, which allows experiencing advantages and disadvantages of made systems. It is

5

similar to new kind of patterns [13]. Project documentation makes the refactoring [14] of the

software easier.

Such is to contain, in particular, formal specification of programs logic, because “things,

which have no formal specification, could not be verified and so could not be erroneous” [15]. “If

there is no specification then there are no errors” [16].

Moreover, project documentation is supposed to hold “protocols (histories of computations),

which help to understand programs functionality; so theorists of programming are forming the

opinion that set of protocols is characterizing program much better than the source code” [17].

Without project documentation, one of the main advantages of object-oriented programming

– code reusing, may result in troubles [18].

And the main point. Project documentation is necessary, because we know from the

algorithms theory (Rice’s theorem) that in common case it is impossible to prove truth of any non-

trivial properties of computing function algorithmically, having only programs source code. “Non-

trivial property” means that there are programs, which possess this property and which do not.

According to Turing, program understanding (opposite to its execution) requires “astuteness

and inventiveness”. But source code analysis could not be automated and human analysis requires

huge amount of time. So it is impossible to make any conclusions about programs properties!

Mathematicians found solution of similar problem in the antiquity. We mean writing proofs

with the help of human language (documenting proofs). This method differs Greek mathematical

school from the Egyptian school. In the Egyptian school, solutions of, for example, geometrical

tasks were presented as a figure with “explanatory” legend: “Look!” It is similar to understand the

program only with the help of its source code.

To allow others to understand what the program does and how it does it, there is a need to

give a detailed description for the person with average level of qualification. This description has to

cover programs developing and its static and dynamic properties. It actually represents project

documentation and proves that the program computes necessary function (corresponds to

requirements specification).

So, obviously, it is possible to assert that “project documentation” does not mean “operating

documentation” (user’s manual, software development kit or something of this kind)

Basing on the explanation above, it is obvious that software project documentation is

indispensable. For different projects it can be secret, partly open or open. But, at least, for the

purposes of education, project documentation has to be open.

6

Variety of requirements for the project documentation
The following picture shows the documentation requirements for different kinds of projects.

Requirements for the project documentation

Let’s comment on the picture. Documentation for critical objects control software can be

divided in two parts – basic, which should be created according to the standarts and extra,

developed for the needs of customer. Other commercial projects are usually documented at

customer’s request.

The first type of commercial projects must be well-documented, but it is not always so,

because there is not much experience in writing such kind of documentation and people are not

used to do it, unlike in IBM and some other companies.

Undertime and economy are often the reasons of poorly documented projects. The customer

usually requests only some manuals and operating guides.

Non commercial software, which is not educational, is documented at discretion of the

developer. In most of the cases, the developer doesn’t see the need to document the project, except

for writing comments in the source code and making understandable names for functions and

variables.

So we face joyless facts, especially in the cases, when non commercial software is used

together with the commercial software, for which the customer has cut on the development of

documentation.

7

In the described approach, the code should be based on the documentation, but not vice-

versa. Meanwhile the documentation should describe not only the product itself, but also the

creation process. It should be clear for the average user of the computer. Then average programmer

after 11 hours of work will be able to understand it. That's why the documentation should be

created to make the average user understand it. And it is desirable, that that user would sit with you.

Such process (by analogy with extreme programming) can be named "extreme documentation

writing".

Foundation for Open Project Documentation
One of the authors (Anatoly Shalyto) declared “Foundation for Open Project

Documentation” on the opening of North-Eastern European semifinal competitions of ACM

International Collegiate Programming Contest (Saint-Petersburg, November 2002). For support

and propagation of the foundation site http://is.ifmo.ru was created.

At the Computer Technologies Department of Saint-Petersburg State University of

Information Technologies, Mechanics and Optics the special pedagogical experiment began.

Students were divided into nearly 40 groups (one or two persons in each group). Each group was to

develop some project, using automata-oriented programming technology (programming with

explicit state separation) [19]. Created systems with full project-documentation are to be published

on http://is.ifmo.ru (section “Projects”). Many of them are already available.

Let us list some of finished projects or projects in developing:

• concept of visualization of algorithms for teaching of discrete mathematics and

programming;

• realization of interactive scripts for educational animation using Macromedia Flash;

• environment for teaching and testing students for arbitrary subjects (with example for

lessons of English language);

• combined usage of compiler developing theory and automata programming;

• skeleton animation;

• usage of XML for describing appearance of video player (projects home site:

http://www.crystalplayer.com);

• controlling systems for different devices (diesel generator, elevator, turnstile, coded

lock, cash dispenser, traffic lights, coffee-machine, phone and many others);

• bank security system;

• client-server architecture, using automata programming;

• graphical user interfaces, using automata programming;

• SMTP-protocol implementation;

8

• classical parallel problems: “Synchronization of the Chain of Shooters” and “Task about

Philosophers Dinner”;

• games: “Robocode” [20], “Terrarium”, “CodeRally”, “Sea Wars”, “Lines”, “Automatic

Bomber”, “One-armed Bandit” and “Bank” (“Zavalinka”)).

Important note: among hundreds of tanks for the “Robocode” game, only our tank has full

project documentation [21]. The same situation is with the “Terrarium” [22] game.

It is logically to assume that if the world is going to open source codes then there will be

time for wide usage of open project documentation. This will allow to replace reading of source

code by reading project documents.

The Tale at the End
While developing one of our projects (“Sea Wars” game), after eighth cycle correction (and

that is not a record) projects author, student of Computer Technologies Department, lost his smile

like a Cheshire cat. We were satisfied by the quality project. Program has good user interface,

works well and was accurately documented.

But open project documentation shows both, advantages and disadvantages of the program.

One notable programmer (prize-winner of competitions of ACM International Collegiate

Programming Contest) looked through source code and projects author began to rework it again.

This process (with breaks) continues more then half a year and we hope that in this project

everything will be perfect like in Chekhov’s stories: the face (user interface), the clothes

(documentation), the soul (source code) and thoughts (programs work).

Why the documentation should be opened?
The “open” project documentation means, that it, firstly, should exist and, secondly, it

should be available for futher use and possibly for futher modification.

“Foundation for open project documentation” is free, anyone can support it. But it differs

from “Free Software Foundation” and “Open Source Foundation”, because the ideas and concepts

of open project documentation can be used not only in free software, but in commercial, secret and

other projects.

Conclusion
The great amount of work to write good quality documentation does not allow to suppose

that offered foundation will find acceptance in software developing show-business. Offered

technology is “hard”, but now only “easy” and “agile” methods [23] become popular.

9

Nevertheless there are some fields of programming, where it is impossible to come without

“hard” technologies. So new people, who need and like software with good project documentation,

appear.

One of the students, after he saw project documentation, written according to our approach,

for the first time, said that it was more detailed than TV-set’s documentation. He supposed that

submarines were documented in same manner.

Even if usage of project documentation does not become popular, it is very significant from

the pedagogical point of view. Developing of well documented projects is useful for the

participants. It is also important for those, who just look through projects because of their cognitive

and aesthetic value. You know that not all visitors of the museum are artists.

Let us finish with the quotation of one opinion about our approach: “There was a lack of

Open Project Documentation. Almost all documentation for the commercial projects, unfortunately,

serves as customers property and they do not hurry to proclaim it. That is the cause of such small

amount of real projects in the Internet. There are a lot of sites with source code, but next to nothing

with the project solutions. I looked into the section “Projects” on your site (http://is.ifmo.ru) and

compared my solutions with the offered. It is a pity that I have no access to these works earlier. I

will not spend so much time for projecting and developing!” [24]

Finally, we would like to point out that the article reflects the tendency of the last years: the

software development seems to start “growing up” — transforming from the art through the

science [25, 26] to the engineering craft [27, 28].

One of the pioneers of the aircraft D. Douglas said once - "when the weight of the

documentation becomes equal to the weight of the airplane, it is ready to fly", and A. Martin

affirms, that the documentation for the famous Boeing 747 weighed more, than the plane itself. The

same idea concerns the development of the software. Without the proper documentation the

development process is out of control. Electronic formats of documentation have decreased the

weight of the documentation, but it didn't change the fact of the matter.

This research is supported by Russian Fund for Fundamental Investigations (grant _02-07-

90114, “Technology of Automata Programming Development”).

 The materials of this paper will be reported on the Linux Summit 2004

(http://www.linuxsummit.org/summit2004_program.shtml).

References
1. Bezrukov N. Reiterated Look at “Council” and “Market” // BYTE/Russia. 2000. _ 8.

2. Knuth D. Literate Programming. Stanford: Center for the Study of Language and

Information, 1992.

10

3. Lions J. Commentary on UNIX: With Source Code. Annabooks, 1977.

4. Protasov P. From Below // Computerra. 2003. _ 19.

5. Researcher of “Steering Wheel” // Informatics. 2003. _ 11.

6. Bloch A. Murphy's Law // ECO. 1983. _ 1-3.

7. Demin V. Problems of Working of Russian Developers on the West // PC Week/Russian

Edition. 2001. _ 32.

8. Badd T. Object-oriented Programming. SPb.: Piter, 1997.

9. Booch T., Rambo D., Jacobson A. UML. Users Manual. M.: DMK, 2000.

10. Fowler M. New Methods of Programming // http://www.spin.org.ua.

11. Booch G. Future Creation // Open Systems (Otkrytye sistemy). 2001. _ 12.

12. Stroustrup B. The C++ Programming Language. M.: Binomial (Binom), Addison-Wesley,

2000.

13. Gamma E., Helm R., Johnson R., Vlissidis J. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995.

14. Fowler M., Beck K., Brant J., Opdyke W., Roberts D. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 1999.

15. Zaitsev S. Description and Implementation of Computer Nets Protocols. M.: Science

(Nauka), 1989.

16. Allen E. Bug Patterns in Java. APress, 2002.

17. Ershov A. Mixed Computations // In the World of Science (V mire nauki). 1984. _ 6.

18. Telles M.A., Telles M., Hsieh U. The Science of Debugging. The Coriolis Group, 2001.

19. Shalyto A., Tukkel N. Programming with explicit state separation // World of PC (Mir PK).

2001, vol. 8, 9. http://is.ifmo.ru (section “Articles”).

20. Shalyto A., Tukkel N. Tanks and Automata // BYTE/Russia. 2003. _ 2. http://is.ifmo.ru

(section “Articles”).

21. Ozerov A. Four Tankmen and the Computer // Magic of PC (Magia PK). 2002. _ 11.

http://is.ifmo.ru (section “About Us”).

22. Markov S., Shalyto A. Controlling System for Herbivorous Animal for “Terrarium” Game.

http://is.ifmo.ru (section “Project”).

23. Cockburn A. Agile Software Development. NJ: Addison-Wesley, 2001.

24. Trofimov S. E-mail: info@caseclub.ru.

25. Knuth D. The Art of Computer Programming. MA: Addison-Wesley, 1998.

26. Kazakov M., Korneev G., Shalyto A. Using Finite Automata in Developing Logic of

Algorithm Visualizers // Telecommunication and Informatization of Education. 2003, vol.6,

http://is.ifmo.ru (section “Articles”)

11

27. Sommervill I. Software Engineering MA: Addison-Wesley, 2001.

28. Braude E.J. Software Engineering: An Object Oriented Perspective. NY: John

Wiley&Sons, 2001.

29. Fox J. Software and its Development. Englewood Cliffs. Prentice-Hall, 1982.

