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Abstract

Several encryption algorithms have been discussed in the course of this seminar. This
paper will introduce two alternative approaches. A change in the concept of provable secu-
rity leads to a cipher which is shown to be ”perfect with high probability”. Assuming that
the memory capabilities of a potential adversary are limited a strongly-randomized cipher is
devised which uses a publicly-accessible string of random bits. In this cipher the secret key is
short but the plaintext can be very long.
The second approach is based on quantum physics. Heisenberg’s uncertainty principle guar-
antees the security of quantum cryptography. The first experiment which demonstrated the
practicability of the only known encryption unbreakable by law of nature was conducted in
1989. The physical and technical fundamentals are introduced as well as the Quantum Key
Exchange (QKE) protocol. We will demonstrate the effects of attempted eavesdropping and
its detection. Finally the rapid development of the last 15 years and the currently available
implementations will be presented.
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1 Introduction

Excluding approaches that are based on a generally unrealistic assumption about the enemy’s
knowledge and resources there are two types of crypto algorithms. Algorithms from the first
group are based on the intractability of certain mathematical problems (e.g. factoring). These
algorithms rely on the unproven assumption that certain problems are not efficiently solve-
able. Examples are the algorithms by ElGamal [ElG85] and the RSA Algorithm [RSA78]. The
second group contains algorithms which may be provably secure but are impractical in most
applications. The most prominent member of the second group is the one-time pad [Ver26].
In this paper we give a short introduction into two alternative approaches introduced by Bras-
sard and Maurer respectively. First we have a look at quantum cryptography. We explain its
physical and technical basics and the protocol used. The current state of research and devel-
opment will be shown as well as the future applications. Second we consider the randomized
cipher proposed by Maurer in [Mau92] which – under novel assumptions on the limitations of
an attacker – provides provable security.
In the last decade quantum cryptography has seen a rapid developement and has now reached
working status. The first commercial realizations1 have been shiped only 14 years after the
first working prototype was presented in [BenBra89]. It is not possible to address the techni-
cal problems that had to be solved within a few pages but the theoretical aspects of the only
known encryption unbreakable by law of nature will be discussed throughly.
Maurer’s randomized cipher has not been implemented for commercial use yet. This is not due
to the computational complexity or possible security threads, which are promising, but due to
the lack of a widely accessible source of randomness. Provided that there was such a source –
which is already technically realizable – the randomized cipher is secure under the assumption
that the enemy’s memory but not necessarily his computational abilities are limited.

2 Physical and Technical Fundamentals

2.1 Heisenberg’s Uncertainty Principle

In 1927 the German physicist Werner Heisenberg published his groundbraeking [Hei27]. This
paper became one of the cornerstones of modern quantum physics and the author was awarded
a Nobel Prize in 1932. Heisenberg proposed that given a quantum system it is impossible to
measure a certain variable without perturbing the system and thus loosing information about
the state of the quantum system before the measurement. On application of Heisenberg’s
Uncertainty Principle is the follwing inequality

∆px∆x ≥ h

2π

where ∆px is the uncertainty about the impulse and ∆x is the uncertainty about the place
of a given particle, h ≈ 6.6261 · 10−31Js is the PLANCK-constant2. It describes the highest
possible accuracy one can obtain measuring the place and impulse of a particle simultaneously.
While the above application is widely known there are a number of pairs of cunjugate vari-
ables that suffice this law of nature. For the purposes of quantum cryptography Heisenberg’s
Uncertainty Principle guarantees that one cannot observe the polarization plain of a photon
without disturbing it: The mere choice of polarizer orientations leaves the observed photon
with uncertainty about the polarization plain.

1Since Nov. ’03 the US-company MagiQ Technologies offers a quantum cryptography system called Navajo
Security Gateway. For 50.000$ customers get two sender/receiver units and 15 km of fibre.

2Max Planck, German physicist, discovered the constant in the context of radiant heat in 1894. He was awarded
a Nobel Prize in 1918.
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2.2 Polarization of Light

Photons are transverse electromagnetic waves. This means that the electric and the magnetic
fields are perpendicular to the direction in which they propagate. Moreover, the electric
and magnetic fields are perpendicular to each other. Thus, in the usual three dimensional
coordinate system with mutually perpendicular x−, y− and z−axes, if a photon is propagating
in the positive z-direction, the electric and magnetic fields will oscillate in the x− z plane and
the y − z plane, respectively.
The photon property we are interested in is called polarization and refers to the bias of the
electric field in the electromagnetic field of the photon. Linear polarization means that as the
photon propagates the electric field stays in the same plane. In circularly polarized light the
electric field rotates at a certain frequency as the photon propagates. Quantum cryptography
can be implemented with linearly polarized light, circularly polarized light, or a combination
of the two. However, we restrict our discussions to implementations using linearly polarized
light only as this is a little simpler to explain.
In order to encode a bit in the direction of polarization of a photon, it is necessary to place a
photon in a particular polarization state. This amounts to creating a photon whose electric
field is oscillating in a desired plane. One way to do this is simply to pass the photn through
a polarizer whose polarization axis is set at the desired angle3.
According to quantum theory, one of two things can happen to a single photon passing through
a polarizer: either it will emerge with its electric field oscillating in the desired plane or else
it will not emerge at all. In the latter case, the photon is absorbed by the polarizer and its
energy reemitted later in the form of heat.
If the axis of the polarizer makes an angle of θ with the plane of the electric field of the
photon fed into the polarizer, there is a probability of cos2 θ that the photon will emerge with
its polarization set at the desired angle and a probability of 1−cos2 θ that it will be absorbed.

P (E|θ) = cos2 θ (1)

We now define two different sets of polarizer orientations. We call a polarizer ”rectilinear” if
its axis makes an angle of either 0◦ or 90◦ to some reference line and ”diagonal” if its axis
makes an angle of 45◦ or 135◦ respectively. We use photons polarized at angles of 0◦ and
45◦ to encode the binary value 0 and those polarized at angles of 90◦ and 135◦ to encode the
binary value 1.
According to this agreement we use a sequence of bits to control the orientation of the polarizer
and convert the sequence of bits into a sequence of polarized photons. These may then be fed
into some communication channel, such as an optical fiber.
In order to recover the bits encoded in the polarization orientation of a stream of photons,
it is necessary for the recipient to measure the polarizations. This can easily be done by a
combination of a set of polarizers and a photo detector. By choosing either the rectilinear
or the diagonal polarizer the photo detector behind the polarizer determines weather the
photon’s electric field was in the plane of the polarizer orientation (a photon is detected) or
the photon’s electric field was orthogonal to the polarizer orientation (no photon is detected).
Using the output of the photo detector the sequence of polarized photons is converted back
to a sequence of bits. For the rest of this introduction we assume that the conversion as well
as the transmission are error free.

3For a relyable source of polarized photons sophisticated technology is needed. Building a quantum cryptography
system the generation is in fact a major problem.
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3 The Quantum Key Exchange Protocol

3.1 Quantum Cryptography in the Absence of Eavesdropping

In this chapter we want to concentrate on the mathematical properties of the quantum key
exchange protocol. Thus we neglect the technical problems an assume that we are able to
generate single photons with the desired polarization orientation and that the transmission
and detection are error free. Our goal is to establish a secure connection between two parties
named Alice and Bob which is capable of transfering an unlimited amount of information
while restricting the probability of a successful attack by an eavesdropper to any given upper
bound. We assume that Alice and Bob both have access to perfect local randomizers.
The quantum key exchange consists of the following five steps:

1. Generating a random Bit-Sequence and random Polarizer Orientations

2. Measuring the Photons using random Polarizer Orientations

3. Comparing the used Polarizer Orientations and a Subset of Bits

4. Retrieving the common Secret Key

Generating a random Bit-Sequence and random Polarizer Orientations

In the initial step Alice generates a random bit-sequence of length n and a random sequence
of polarizer orientations (i.e. rectilinear or diagonal) with the same length n. n depends on
two variables: the desired length k of the secret key Alice and Bob want to exchange and the
highest tolerable probability ε an eavesdropper may remain undetected. The exact formula
for n will be discussed in Section 3.2. Alice denotes both random sequences. She uses the
polarizer orientations to encode the corresponding bits into photons and sends them to Bob.

Measuring the Photons using random Polarizer Orientations

Bob also generates a random sequence of polarizer orientations. He uses the sequence to
measure the incoming photons and doing so he decodes the message into binary values. Bob
denotes the polarizer orientations he used and the binary values he measured.

Comparing the used Polarizer Orientations and a Subset of Bits

In the next step Alice uses a public insecure channel to tell Bob which polarizer orientations
she used for encoding. Bob compares the orientations with his own. He marks those polarizer
orientations/bits Alice used the same polarizer orientations and randomly chooses l of those
bits where l depends on the tolerable probability of undetected eavesdropping (→ Section 3.2).
Also using the public, insecure channel he tells Alice to send him the l bits he chose. On
receipt of those bits he compares the bits Alice sent with his own observation. Obviously, if
the connection is secure all l bits have to match.

Retrieving the common Secret Key

Provided that the connection is secure Alice and Bob take the remaining bits they used the
same polarizer orientations on as their common secret key. This key is randomly distributed
and thus can be used as a one-time pad. Alice and Bob can use their common secret key to
encrypt messages they exchange over a public, insecure connection.
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3.2 Quantum Cryptography in the Presence of Eavesdropping

In this section we will demonstrate what effect eavesdropping has on the communication
between Alice and Bob and how likely they are to detect eavesdropping. We suppose the
eavesdropper (Eve) has access to the stream of polarized photons and to the public insecure
channel but no information about the random sequences of polarizer orientations and bits
Alice and Bob use. Thus a possible (and in fact the only possible) attack consists of the
following steps:

1. Intercepting the Photons and Measuring the Photons with a (random) Sequence of Po-
larizer Orientations

2. Sending the intercepted Message on to Bob in an Effort to cover Eavesdropping

Intercepting the Photons and Measuring the Photons with a (random) Se-
quence of Polarizer Orientations

Eve has no information about the random sequence of polarizer orientations Alice used to
encode her bits. Thus Eve has probability of 1

2 to chose the right polarizer orientation for a
single bit no matter which strategy she uses. We assume Eve uses a random sequence just
like Bob would have done. She denotes the orientations and the decoded message. Note that
Heisenberg’s Uncertainty Principle prevents Eve from obtaining exact information about the
polarization of the photons. Further note that in those cases Eve used the wrong polarizer
orientation she measured a random value since the angle between her polarizer and the plane
of the magnetic field of the measured photon was θ = 45◦ and therefore the probability for
both binary values is 1

2 (Equation 1).

Sending the intercepted Message on to Bob to cover Eavesdropping

In an effort to cover her tracks Eve has to pass a message on to Bob. As she has no information
about the sequence of polarizer orientations Alice used her best strategy is to encode the
message she intercepted using her own sequence of polarizer orientations. Doing this she will
use another polarizer orientation than Alice did (e.g. rectilinear instead of diagonal) with
probability of 1

2 for every single bit.

Detecting Eve

Now we will focus on the detection of eavesdropping. There are three potential ways to ma-
nipulate the communication between Alice and Bob. The changes that occur by intercepting
the photons, the transfer of the polarizer orientations and the transfer of the encoded bits.
While Eve has control over her changing the latter two she necessarily changes the intercepted
photons randomly.
We assume Alice and Bob agreed on l bits to check for possible eavesdropping. Thus in step 3
of the quantum key exchange Bob will request l binary values from Alice over the public chan-
nel. Bob supposes he and Alice used the same polarizer orientations for the corresponding l
photons. If Eve (involuntarily) changed the polarizer orientation on a certain bit by measuring
it or by manipulating the communication over the public channel Bob used another polarizer
orientation then Alice to measure this bit. As a consequence Bob will decode the wrong value
with probability of 1

2 (Equation 1). If Bob does so he imideately detects eavesdropping since
the only possible reason for different values is Eve’s interference. Eve uses the wrong polar-
izer orientation with probability of 1

2 and in this case Bob detects a value different from the
expected value Alice sent with probability of 1

2 . Thus the probability to detect a difference is
1
4 for every single bit. As a difference only occure in the presence of eavesdropping Alice and
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Bob have the following probability to detect Eve (D):

P (D) =
(

1− 1
4

)l

=
(

3
4

)l

(2)

Now we can estimate the necessary number of bits n to generate a secret key with length k
while limiting the probability of undetected eavesdropping to a given ε. Let l be the smallest
integer satisfying

(
3
4

)l ≤ ε ⇒ l =
⌊

log ε
log 3/4

⌋
. Thus we need l + k bits measured with the same

polarizer orientation. The overall number of bits necessary is approximately:

n ≈ 2 · (l + k) = 2 ·
(⌊

log ε

log 3/4

⌋
+ k

)
(3)

By repeating steps 1-5 consecutively Alice and Bob can exchange a common secret key with
any desired length n.
Note that there is no strategy for Eve to avoid perturbing the checkbits since these are selected
randomly for every session. Furthermore it is use for Eve to manipulate the message containing
the initial bits from Alice. Obviously the probability for detecting her remains the same if she
changes the values or positions of the checkbits.
Concluding one can say that the probability of undetected eavesdropping can easily be limited
to any reasonable bound with little overhead. The fraction of bits used for the private key
converges to 1

2 for n →∞.

3.3 Practical Relevance of Quantum Cryptography

In [PPS04] Paterson, Piper and Schack point out that quantum cryptography is strongly
vulnerable to man-in-the-middle attacks. Without additional authentication an attacker who
has access to the physical connection (i.e. the fiber) can easily intercept the communication
without leaving any clues about his presence.
Possible authentication-methods can be divided into two groups: those which provide uncon-
ditional security and those which do not. RSA and symmetric key algorithms belong to the
second group. Although a combination of QKE and an authentication using complexity cryp-
tography does not provide unconditional security it may still offer some security advantages
over traditional (i.e. non QKE-based) approaches. In any successful attack on such a system
the public key authentication mechansim would have to be broken before or during the execu-
tion of the QKE protocol. This is in contrast to a system using only classical information and
traditional key-establishment techniques, where the messages exchanged in order to establish
a key can be stored by the adversary and analyzed at some point in the future, possibly using
more advanced cryptanalytic techniques than available at the time of key establishment. The
only encryption algorithm that provides unconditional security is the one-time pad. Thus a
system belonging to the first group requires a pre-established common secret key. As many
key bits as there are message bits must be established by the QKE protocol. This may be
a problem in some practical applications, as the key bit rats of current QKE systems are
relatively small. In a traditional one-time pad system (not making use of QKE), the pre-
established key must be at least as long as the data to be communicated. A QKE system has
an advantage here in that the pre-established key can be relatively short, as it is used only to
authenticate an initial run of the QKE protocol, with part of the keying material exchanged
in that run being used to authenticate subsequent runs. However, QKE loses much of its
appeal in these settings, as the overall system security is no longer guaranteed by the laws
of quantum physics alone. To obtain an overall communication system with unconditional
security, an unconditionally secure key exchange sub-system is required. A pre-established
secret key is required to obtain such a sub-system. For practical purposes the advantages of
QKE over conventional encryption has to compared to the additional technical effort.
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However the technical realization of QKE systems has seen rapid progress: After 15 years
quantum cryptography is slowly emerging from research laboratories. In 1989 Bennett and
Brassard constructed the first working prototype [BenBra89]. They started a rapid develope-
ment. While the first prototype worked over a distance of 30 centimeters and with negligigble
transfer-rates todays systems can transfer data over 150 kilometers and reach transfer-rates
up to 1 Mbit/s. Although there is no large-scale use of quantum cryptography at the moment
a number of aspiring projects have made the technology commercially available.
Although there definitely is a vast field of possible application in the highest security sector (a
few examples in the financial and military sector are already working) quantum cryptography
will not replace currently wide spread encryption technology in the near future. Many tech-
nological problems remain to be solved. Especially bandwidth and range are limiting factors.
Nevertheless quantum cryptography will be the solution of choice for highest security in the
future. Should the quantum computer be realized someday perhaps the only choice.

4 The Bounded Storage Model

Almost all modern ciphers are based on the intractability of certain mathematical problems.
Two prominent examples are the algorithm by ElGamal [ElG85] and the RSA algorithm
[RSA78]. Both are considered secure since no adversary is able to break them – with recent
technology that is. But will those algorithms still be secure in 40 years? What happens
if computing power increases dramatically or some non-standard computation models (e.g.
quantum computers) will be implemented or a computational4 task turns out to be easier
then expected. The adversary could simply store transcripts and decode them decades later5.
In [Mau92] an encryption algorithm was proposed that is secure under the realistic assumption
that an attacker’s memory capacity and not necessarily his computational capacity are limited.
This algorithm is a special randomized cipher using a public source of randomness to generate
an amount of date which exceeds the adversary’s capabilities.

4.1 Description of the Randomized Cipher

For this section random variables are denoted with capital letters, whereas the corresponding
small letters denote specific values that can be taken on by theses random variables. Un-
derlined capital letters or superscripted capital letters denote random vectors; a superscript
indicates the number of components. The model of the discussed strongly-randomized cipher
is as follows. The communicating parties share a short randomly-selected secret key. The
randomizer R is a binary random string of length L, which is publicly accessible. The cryp-
togram is a deterministic function of the plaintext, the secret key and the randomizer. The
goal of the design of a randomized cipher is to devise an encryption transformation such that
the cryptogram depends on only a few randomizer bits whose positions in turn depend on
the secret key in such a manner that without the secret key it is impossible to obtain any
information about the plaintext without examining a very large number of randomizer bits.
The cipher is a binary additive stream cipher in which the plaintext X = [X1, . . . , XN ], the
cryptogram Y = [Y1, . . . , YN ] and the keystream W = [W1, . . . ,WN ] are binary sequences of
length N . The cryptogram Y is obtained by adding X and W bitwise modulo 2:

Yn = Xn ⊕Wn for 1 ≤ n ≤ N . (4)

The publicly-accessible binary random string R consists of K blocks of length T and thus has
total length L = KT bits. These blocks are denoted by R[k, 0], . . . , R[k, T − 1] for 1 ≤ k ≤ K,

4Although it seems likely there is still no prove that n = np does not hold.
5VENONA Project: From 1942 to 1946 Americans read and stored a large number of Soviet cryptograms. Some

were decrypted in the late 80s
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i.e., the randomizer can be viewed as a two-dimensional array of binary random variables.
The secret key Z = [Z1, . . . , ZK ], where Zk ∈ {0, . . . , T − 1} for 1 ≤ k ≤ K, specifies a
position within each block of R, and is chosen to be unifomly distributed over the key space
SZ = {0, . . . , T − 1}K . Thus the number of bits needed to represent the key is K log2 T .

R[1,0] R[1,1] . . . R[1,T-1]
R[2,0] R[2,1] . . . R[2,T-1]

...
...

...
R[K,0] R[K,1] . . . R[K,T-1]

Table 1: The randomizer R, viewed as a two-dimensional array.

The keystream W , which is a function of the secret key Z and the randomizer R, is the
bitwise modulo 2 sum of the K subsequences of length N within the randomizer starting at
the positions specified by the key, where each block (row) of R is considered to be extended
cyclically, i.e., the second index is reduced modulo T:

Wn =
K∑

k=1

R[k, (n− 1 + Zk)modT ] (5)

for 1 ≤ n ≤ N , where the summation is modulo 2. The sub-array of the randomizer that
determines W is denoted by RZ and is depicted in 4.1.

R[1, Z1] R[1, Z1 + 1] . . . R[1, Z1 + N − 1]
R[2, Z2] R[2, Z2 + 1] . . . R[2, Z2 + N − 1]

...
...

...
R[K, ZK ] R[K, ZK + 1] . . . R[K, ZK + N − 1]

Table 2: The sub-array RZ of the randomizer R.

The sub-array RZ of the randomizer R is selected by the secret key Z. All second indies
are to be reduced modulo T . The keystream W = [W1, . . . ,WN ] is formed by adding the K
rows of RZ bitwise modulo 2.

4.2 Resistence against possible Attacks

The model of the eavesdropper’s attack is described in the sequel. We suppose the eavesdrop-
per has access to the cryptogram Y , the randomizer R and some other a priori information
about the plaintext. We allow the eavesdropper to use an arbitrary, possibly probabilistic,
sequential strategy for selecting the positions of the randomizer bits that he examines. At
each step of the attack, the eavesdropper can make use of the entire available information,
i.e., the cryptogram Y , the side-information V , and the positions and values of the bits ob-
served so far. Let Ei = [Ai, Bi] denote the address of the i-th randomizer bit examined by
the eavesdropper, where Ai and Bi satisfy 1 ≤ Ai ≤ K and 0 ≤ Bi ≤ T − 1 for i = 1, 2, . . . .
Let further Oi = R(Ei) = R[Ai, Bi] denote the observed value of the randomizer bit at po-
sition Ei that is axamined by the eavesdropper at the i-th step of his attack. We use the
notation Em = [E1, . . . , Em] and Om = [O1, . . . , Om] for all m ≥ 1. For a particular sequence
em = [e1, . . . , em] of m bit positions, where ei = [ai, bi] with 1 ≤ ai ≤ K and 0 ≤ bi ≤ T −1 for
1 ≤ i ≤ m4, R(em) = [R(e1), . . . , R(em)] denotes the corresponding sequence of randomizer
bits. Correspondingly, we have Om = R(Em) for m ≥ 1.
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Theorem: There exists an event ε such that, for all joint probability distributions PXV

and for all (possibly probabilistic) strategies for examining bits O1, . . . , OM of R at adresses
E1, . . . , EM ,

I
(
X;Y EMOM |V, ε

)
= 0 and P (ε) ≥ 1−NδK ,

where δ = M/KT is the fraction of randomizer bits examined by the eavesdropper.
Here I(X;Y EMOM |V, ε) denotes the (mutual) information that Y ,EM and OM together give
about X, given that V is known and given that the event ε occurs. The theorem states that if
the event ε occurs, then the eavesdropper’s total observation [Y ,EM , OM ] gives no informa-
tion about the plaintext X beyond the information already provided by V .
Maurer proofs this theorem specifying a certain event ε. The proof is in fact stronger than
the theorem since it shows that if ε occurs, then the eavesdropper would have no information
about the plaintext even if he were given the secret key. For details on the proof and the event
ε regard [Mau92]. We omitte the prove since it is technical and rather lengthy.
The theorem states that it is impossible for an eavesdropper to obtain any additional knowl-
edge about the plaintext unless he stores a substantial fraction (e.g. 2/3) of the entire random-
izer. Unfortunately the prove is valid only under the unrealistic assumption that the adversary
stores the randomizer and not a cleverly chosen boolean function of it. In [DziMau02] the
stronger result was proven that the Bounded Storage Model is secure against any memory-
bounded attacker. Since the adversary has to store large parts of the randomizer to break
the cipher it is provable secure under the assumption that the communicating parties use a
randomizer which exceeds the memory capacities of every possible adversary.

Example

Assume that K = 50, T = 1020 and let the plaintext be one gigabit, i.e., N = 230 ≈ 109. The
keysize of this cipher is 50 · log2 1020 ≈ 3320 bits. The legitimate users need to examine only
50 randomizer bits per plaintext bit. An eavesdropper, however, even if he used an optimal
strategy for examining a fraction δ = 1/4 of all bits, i.e., M = KT/4 = 1.25 · 1021 bits in
total, would have a chance of obtaining any new information about the plaintext not greater
than 230 · (1/4)50 < 10−21.

4.3 Practical Relevance of the Bounded Storage Model

The last technological hurdle is the generation and distribution of large amounts of random
data. At the current state of technology the effort to generate a random bit is of the same
order as that required to examine one. Maurer points out that this task could be done by
a satelite broadcasting random sequences generated by an astronomical phenomenon6. The
Bounded Storage Model is of high theoretical interest and a number of publications conerning
it are published every year but there are no recent plans to install the hardware necessary for
the protocol.
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