Complexity-Theoretic Cryptography

Stefan Neukamm
stefan.neukamm@mytum.de

Joint Advanced Student School '05

S.Neukamm () JASS '05 1/48

e Introduction
@ The Informal Definition of One-Way Function.

e Complexity Theory - Basic Definitions
@ Time Complexity
@ An Intermezzo: One-Way Function - Definition |
@ Probabilistic Time Complexity

e One-Way Function
@ Definition
@ Candidates for One-Way Functions
@ Collection of One-Way Functions
@ Collection of Trapdoor Functions

e Hard-Core Predicate
@ Motivation - Bit-Security of EXP
@ Definition
@ A generic Hard-Core Predicate

e Epilog

S.Neukamm () JASS '05 2/48

Cryptography
Complexity Theoretical Approach

Information Theoretic Approach

plaintext m —— encryption —ciphertext c

adversary:
e Is there plaintext information left in
the ciphertext?

e I have wunlimited computational 4
power!

i ETETE TR R TE TR T -

S.Neukamm () JASS '05 3/48

Cryptography
Complexity Theoretical Approach

Complexity Theoretic Approach

plaintext m —— encryption —ciphertext c
adversary:
e Can I efficiently extract plaintext in-
formation?

e [only have limited computational &
ressources!

i ETETE TR R TE TR T -

S.Neukamm () JASS '05 3/48

One-Way Function
Informal Definition.

easy

hard

S.Neukamm () JASS '05 4/48

One-Way Function
Informal Definition.

JASS '05 4]48

One-Way Function
Informal Definition.

JASS '05 4]48

One-Way Function
Informal Definition.

easy

hard

Definition
A function f is called one-way, if f is easy to compute but hard to invert.

S.Neukamm () JASS '05 4/48

One-Way Function

Road Map to Formalize the Definition.

@ Find proper definitions of easy and hard.

S.Neukamm () JASS '05 5/48

One-Way Function

Road Map to Formalize the Definition.

@ Find proper definitions of easy and hard.
@ Use computational complexity theory:

S.Neukamm () JASS '05 5/48

One-Way Function

Road Map to Formalize the Definition.

@ Find proper definitions of easy and hard.
@ Use computational complexity theory:
o Classify problems according to their computational difficulty.

S.Neukamm () JASS '05 5/48

One-Way Function

Road Map to Formalize the Definition.

@ Find proper definitions of easy and hard.
@ Use computational complexity theory:

o Classify problems according to their computational difficulty.
e Classify problems according to needed resources (like time, storage
space,...).

S.Neukamm () JASS '05 5/48

One-Way Function

Road Map to Formalize the Definition.

@ Find proper definitions of easy and hard.
@ Use computational complexity theory:

o Classify problems according to their computational difficulty.

e Classify problems according to needed resources (like time, storage
space,...).

@ Our focus: time complexity

S.Neukamm () JASS '05 5/48

One-Way Function

Road Map to Formalize the Definition.

@ Find proper definitions of easy and hard.
@ Use computational complexity theory:
o Classify problems according to their computational difficulty.
e Classify problems according to needed resources (like time, storage
space,...).
@ Our focus: time complexity
e Computational models: Turing machine, boolean circuits,...

S.Neukamm () JASS '05 5/48

One-Way Function

Road Map to Formalize the Definition.

@ Find proper definitions of easy and hard.
@ Use computational complexity theory:

o Classify problems according to their computational difficulty.

e Classify problems according to needed resources (like time, storage
space,...).

@ Our focus: time complexity

e Computational models: Turing machine, boolean circuits,...

@ Basic definitions of complexity theory.

S.Neukamm () JASS '05 5/48

Complexity Theory - Basic Definitions

Algorithm; Running Time.

Algorithm

Input

T =[1]1][0]J0J1[0}—

A

Output

(L[1[0]0]=A(z)

S.Neukamm ()

JASS '05

6/48

Complexity Theory - Basic Definitions

Algorithm; Running Time.

Algorithm
Input Output

x=[1[1]oJoJ1]o}[— A (L[1[0]0]=A(z)

\ || |
"length’ or ’size’ of x

S.Neukamm () JASS '05 6/48

Complexity Theory - Basic Definitions

Algorithm; Running Time.

Algorithm
Input Output

x=[1[1]oJoJ1]o}[— A (L[1[0]0]=A(z)

\ || |
"length’ or ’size’ of x

start halt
i i »TIME
[steps]

running time (z, A)

S.Neukamm () JASS '05 6/48

Complexity Theory - Basic Definitions

Algorithm; Running Time.

Algorithm
Input Output

x=[1[1]oJoJ1]of[— A (L[1[0]0]=A(z)

\ || |
"length’ or ’size’ of x

start halt
i i »TIME
steps
- running time (z,4) ——— [steps]
worst case running time (n) > running time (z, A) Vo |z <n

S.Neukamm () JASS '05

6/48

Complexity Theory - Basic Definitions

Polynomial Time Algorithm

Algorithm
Input Output
r=[J1Jofo[t[o—PT A (L 1[0]0]=A(x)

f

n l

worst case running time (n) < poly(n) Vn

S.Neukamm () JASS '05 7148

Complexity Theory - Basic Definitions

Polynomial Time Algorithm

Algorithm
Input Output
rx=[J1]0Jo[1]o}—PT A (L[1][0]0]=A(x)

f

\ n |

worst case running time (n) < poly(n) Vn

Otherwise: Exponential time algorithm

S.Neukamm () JASS '05 7148

Complexity Theory - Basic Definitions

Polynomial Time vs. Exponential Time.

growing of poly., sub-exp., exp. functions

f(x) n? n® | exp(v/ninn) 2n
X
10 107 10° 1.2-10° 103
50 || 25-10% 1.2-10° 108 10%°
100 104 106 2.10° 10%°

Notes
@ polynomial time algorithm < efficient
@ exponential time algorithm < inefficient

| A

S.Neukamm () JASS '05 81/48

Complexity Theory - Basic Definitions

Complexity Classes

decision problem L

S.Neukamm () JASS '05 9/48

Complexity Theory - Basic Definitions

Complexity Classes

decision problem L

L \ A —sAx) =1

S.Neukamm () JASS '05 9/48

Complexity Theory - Basic Definitions

Complexity Classes

decision problem L

S

S.Neukamm () JASS '05 9/48

Complexity Theory - Basic Definitions

Complexity Classes

decision problem L

L } A Al =)

S.Neukamm () JASS '05 9/48

Complexity Theory - Basic Definitions

Complexity Classes

decision problem L

polynomial time=

L } A Al =)

LeP

S.Neukamm () JASS '05 9/48

Complexity Theory - Basic Definitions

Complexity Classes

decision problem L T Ta——

x\ v
L A —»A(I) =1

polynomial time=

LeNP

S.Neukamm () JASS '05 9/48

Complexity Theory - Basic Definitions

Complexity Class.

@ PRIMESEP

@ 3-Coloring-Problem: It is widely assumed that
3CoL := {G : G is 3-colorable finite Graph} ¢ P

But VG € 3CoL exists a PT C that makes G 3-colored = 3CoL € NP.

S.Neukamm () JASS '05 10/48

Complexity Theory - Intermezzo

One-Way Function - Definition I.

Definition (temporary)

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ f is easy to compute
@ f is hard to invert.

S.Neukamm () JASS '05 11/48

Complexity Theory - Intermezzo

One-Way Function - Definition I.

Definition (temporary)

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ f is easy to compute
@ f is hard to invert.

S.Neukamm () JASS '05 11/48

Complexity Theory - Intermezzo

One-Way Function - Definition I.

Definition (temporary)

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ JPT A: A(x) =f(x) vx € {0,1}*
@ f is hard to invert.

S.Neukamm () JASS '05 11/48

Complexity Theory - Intermezzo

One-Way Function - Definition I.

Definition (temporary)

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ IPT A: A(x) = f(x) vYx € {0,1}*
@ f is hard to invert.

S.Neukamm () JASS '05 11/48

Complexity Theory - Intermezzo

One-Way Function - Definition I.

Definition (temporary)

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

e PTA: A(x)=f(x) W¥xe{0,1}*
o IPT A" A/(f(x)) = x' with f(x') =f(x) Vx € {0,1}"

S.Neukamm ()

JASS '05

11/48

Complexity Theory - Intermezzo

One-Way Function - Definition I.

Definition (temporary)

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ PTA:A(x) =f(x) Vxe{0,1}*

@ APT A’ A'(f(x)) = x” with f(x') = f(x) vx € {0,1}"

| \

Example (FACTORING)

Let fmue(P, Q) == pa, p,q primes.
Assumption: FACTORING¢ P = fy iS one-way (according to the above

definition)

S.Neukamm () JASS '05 11/48

Complexity Theory - Intermezzo

One-Way Function - Definition | (to be improved?)

Observation of fyut

S.Neukamm () JASS '05 12/48

Complexity Theory - Intermezzo

One-Way Function - Definition | (to be improved?)

Observation of fyut

@ forp,q € PRIMES : |p| = |g| huge, inverting fmut(p, q) is indeed hard

S.Neukamm () JASS '05 12/48

Complexity Theory - Intermezzo

One-Way Function - Definition | (to be improved?)

Observation of fyut

@ forp,q € PRIMES : |p| = |g| huge, inverting fmut(p, q) is indeed hard

@ But for half of the integers, finding an inverse of n := fu(p, q) is very
easy:

S.Neukamm () JASS '05 12/48

Complexity Theory - Intermezzo

One-Way Function - Definition | (to be improved?)

Observation of fyut

@ forp,q € PRIMES : |p| = |g| huge, inverting fmut(p, q) is indeed hard

@ But for half of the integers, finding an inverse of n := fu(p, q) is very
easy:
four(n/2,2) € £-1(n)

mult
= Definition has to be improved.

S.Neukamm () JASS '05 12/48

Complexity Theory - Intermezzo

One-Way Function - Definition | (to be improved?)

Observation of fyut

@ forp,q € PRIMES : |p| = |g| huge, inverting fmut(p, q) is indeed hard
@ But for half of the integers, finding an inverse of n := fu(p, q) is very
easy:
fmult(n/zv 2) € fr;ullt(n)
= Definition has to be improved.
@ Substitute: worst-case complexity = average-case complexity

S.Neukamm () JASS '05 12/48

Complexity Theory - Intermezzo

One-Way Function - Definition | (to be improved?)

Observation of fyut

@ forp,q € PRIMES : |p| = |g| huge, inverting fmut(p, q) is indeed hard
@ But for half of the integers, finding an inverse of n := fu(p, q) is very
easy:
fmult(n/zv 2) € fr;ullt(n)
= Definition has to be improved.
@ Substitute: worst-case complexity = average-case complexity
@ success probability of an inverting algorithm should be negligible

S.Neukamm () JASS '05 12/48

Complexity Theory - Intermezzo

One-Way Function - Definition | (to be improved?)

Observation of fyut

@ forp,q € PRIMES : |p| = |g| huge, inverting fmut(p, q) is indeed hard
@ But for half of the integers, finding an inverse of n := fu(p, q) is very
easy:
fmult(n/zv 2) € fr;ullt(n)
= Definition has to be improved.
@ Substitute: worst-case complexity = average-case complexity
@ success probability of an inverting algorithm should be negligible
= randomized algorithms

S.Neukamm () JASS '05 12/48

Complexity Theory - Basic Definitions

Randomized Algorithm

Input

randomized algorithm

T =[1][1]0]0]1]0]

Algorithm

([OJ1[1[1]0]0]
JO 110

\:

1[0J0JOJ1]O]1]

i

coin-flipping device

—~Az)

probabistic polynomial time, if worst case running time (n) < poly(n) Vn

S.Neukamm ()

JASS '05

13/48

Complexity Theory - Basic Definitions

Complexity Class BPP

decision problem L

x\

" A P AE) =x(@) 2 3
randomized

T mimo:

L € BPP

S.Neukamm () JASS '05 14/48

Complexity Theory - Basic Definitions

Complexity Class BPP

decision problem L

x\
g A > P (A(z) = xp(x)) > %
randomized
T mimQ:

L € BPP

@ BPP remains same with
P (A(X) = xL(X)) = 3 + gxpy-P Polynomial instead.

@ BPP <« ’efficiently’ computable.

S.Neukamm () JASS '05 14/48

3
i
e
€
L}
.
.
e
«
L}
e
U
]
€
(3
.
€
<
03
(3
.
03
.
e
«
«
.
.
.
0
.
«
e

¥
1

15/48

JASS '05

S.Neukamm ()

One-Way Function
Definition.

Definition

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ IPPT A:V¥x € {0,1}* : A(x) = f(x)
@ f is hard to invert.

S.Neukamm () JASS '05 16 /48

One-Way Function

Definition.

Definition

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ IPPT A:V¥x € {0,1}* : A(x) = f(x)
@ f is hard to invert.

S.Neukamm () JASS '05 16 /48

One-Way Function

Definition.

Definition

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ JPPT A:V¥x € {0,1}* : A(x) = f(x)
@ VPPT A’ : P (A’ successful) is negligible

S.Neukamm () JASS '05 16 /48

One-Way Function

Definition.

Definition

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ JPPTA :v¥x € {0,1}* : A(x) =f(x)
® VPPT A’: P (A’ successful)< ;7
for all polynomials p and sufficiently large integers n

S.Neukamm () JASS '05 16 /48

One-Way Function
Definition.

Definition

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ IPPT A : ¥x € {0,1}* : A(x) = f(x)

@ VPPTA':P (A’successful)<ﬁ Vp poly.,Vn > N,

S.Neukamm () JASS '05 16 /48

One-Way Function
Definition.

Definition

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ IPPT A : ¥x € {0,1}* : A(x) = f(x)

@ VPPT A’ : P (A'(f(x)) € f*l(f(x)))<ﬁ Vp poly.,Vn > N,

S.Neukamm () JASS '05 16 /48

One-Way Function
Definition.

Definition

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ IPPT A : ¥x € {0,1}* : A(x) = f(x)

@ VPPT A’ : P (A/(f(Un)) € f*l(f(Un)))<ﬁ Vp poly.,Vn > N,

S.Neukamm () JASS '05 16 /48

One-Way Function
Definition.

Definition

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ IPPT A : ¥x € {0,1}* : A(x) = f(x)

@ VPPT A’ : P (A/(f(Un),1") € f=1(F(Un))) <5y VP poly.,¥n > Ny

S.Neukamm () JASS '05 16 /48

One-Way Function
Definition.

Definition

A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ IPPT A :¥x € {0,1}* : A(x) = f(x)

© VPPT A’ : P (A'(f(Un),1") € f=1(f(Un)))<zi VP POly.,¥n > Np

@ Adversary is not unable to invert f, but has low probability to do so.

S.Neukamm () JASS '05 16 /48

One-Way Function

Definition.

Definition
A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ JPPTA :Wx € {0,1}* : A(x) = f(x)

© VPPT A’ : P (A'(f(Un),1") € f=1(f(Un)))<zi VP POly.,¥n > Np

@ Adversary is not unable to invert f, but has low probability to do so.

@ Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

S.Neukamm () JASS '05 16 /48

One-Way Function

Definition.

Definition
A function f : {0,1}* — {0,1}* is called one-way if the following two
conditions hold

@ JPPTA :Wx € {0,1}* : A(x) = f(x)

© VPPT A’ : P (A'(f(Un),1") € f=1(f(Un)))<zi VP POly.,¥n > Np

@ Adversary is not unable to invert f, but has low probability to do so.

@ Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

@ Iff is 1 — 1 then f~1(f(x)) = x.

S.Neukamm () JASS '05 16 /48

One-Way Function

Length Preserving One-way Functions.

Definition

A function f : {0,1}* — {0, 1}*is called length preserving if
vx € {0,1}" : [f(x)] = [X]

A permutation is a length-preserving function f which is 1-1.

| A

Lemma (Length-preserving)

If there exists a one-way function, then we can construct a length-preserving
one-way function f:

Vx € {0,1}* : [f(x)] = |X]
Proof by reducibility arguments.

S.Neukamm () JASS '05 171748

One-Way Function - In Search of Examples

Factoring.

FACTORING-problem

FACTORING
Instance: positive integer n
Question: Find the prime factorization n = [T, p”

@ NUMBER FIELD SIEVE (1990)
sub-exponential expected running time exp(1.9(log n)*/3(log log n)?/3)

@ Special-purpose algorithms, like POLLARD'S p — 1

S.Neukamm () JASS '05 18/48

Candidates Based on Factoring.
A One-Way Function by Rivest, Shamir, Adleman

RSAne wheren =pq, [p| = [q| primes, gcd(e, ¢(n)) = 1
input: X positive integer
output: RSApe(X) :=x°® mod n

@ RSA; ¢ assumed to be one-way

Fact (FACTORING VvS. INVERTING-RSA)

If n can be factored by a PPT= RSA, ¢ can be inverted by a PPT
INVERTING-RSA<pFACTORING

Open Problem -FACTORING VS. INVERTING-RSA
Are FACTORING and INVERTING-RSA computationally equivalent?

JASS '05 19/48

S.Neukamm ()

Candidates Based on Factoring.
The SQUARE-Function by Rabin

Rabin’s SQUARE function

SQUARE, Wwheren =pqg, p,q primes and |p| = |q|
input: X € 7,
output: SQUARE(X) := x? mod n

@ SQUARE, is not 1-1

@ But SQUARE, restricted to Q, is a permutation, if
n € {pq : p,q distinct odd primes, [p| =|q|, p=9 =3 mod 4}
Qni={x:x€Z;, Iy eZ: y? =x mod n} quadratic-residues

Fact (FACTORING VS. INVERTING-SQUARE)
FACTORING(n) and INVERTING-SQUARE, are computationally equivalent!

S.Neukamm () JASS '05 20/48

One-Way Function - In Search of Examples
DLP The Discrete Logarithm Problem

DLP - discrete logarithm problem

DLP

Instance: a finite cyclic Group G of order n
a generator o of G
anelement 8 € G

Question: Find the integer x,0 <x <n-—1:

ot =p

@ Given the prime factorization n = [], p{ the DLP in G can be reduced to
DLP’s in the groups Z;,

4

@ Best randomized algorithms in sub-exponential running time. l

S.Neukamm () JASS '05 21/48

Candidates Based on DLP.

The EXP Function

EXPp,o Where p prime and o generator of Z;
input: X € Zy
output: EXPp o(X) :=* mod p

@ EXP is one-way, assuming DLP is hard

S.Neukamm () JASS '05 22148

One-Way Function

Necessary Assumptions

Assumptions for concrete candidates:

FACTORING efficiently computable =-RSA not one-way
FACTORING efficiently computable <SQUARING not one-way
DLP efficiently computable <EXP not one-way

4

Traditional assumption. hard to break in worst case

f computable by PT = inverse under f computable by non-det. PT:
— P = N'P = One-Way Function not exist.

Intractability assumption. hard to break in average

We assume the adversary uses a PPT
— NP C BPP = One-Way Function not exist. (NP ¢ BPP = P # N'P)

S.Neukamm () JASS '05 23/48

One-Way Function

Existence of One-Way Function cannot be proved yet.

SN

@ Tradtional assumption and Intractability assumption are only necessary
but not sufficient conditions.

@ Existence of One-Way Functions not provable yet.

@ Implementation based on reasonable ’intractability assumptions’, like
FACTORING, DLP.

S.Neukamm () JASS '05 2448

25/48

JASS '05

S.Neukamm ()

Collection Of One-Way Functions

Motivation

f:4{0,1}* = {0,1}*

S.Neukamm () JASS '05 26/48

Collection Of One-Way Functions

Motivation

f:40,1}* = {0,1}*

infinite domain

S.Neukamm () JASS '05 26/48

Collection Of One-Way Functions

Motivation

f:40,1}* = {0,1}*

infinite domain
@ Suitable for abstract discussion

S.Neukamm () JASS '05 26/48

Collection Of One-Way Functions

Motivation

f:40,1}* = {0,1}*

infinite domain
@ Suitable for abstract discussion
@ ..but not for natural candidates:

S.Neukamm () JASS '05 26/48

Collection Of One-Way Functions

Motivation

f:40,1}* = {0,1}*

infinite domain
@ Suitable for abstract discussion
@ ..but not for natural candidates:

EXP,,:{1,...,p—2} —{0,1}*

finite domain

S.Neukamm () JASS '05 26/48

Collection Of One-Way Functions

A larger View: Collection

S.Neukamm () JASS '05 27148

Collection Of One-Way Functions

A larger View: Collection

finite domain

S.Neukamm () JASS '05 27148

Collection Of One-Way Functions

A larger View: Collection

F = {fz : Dy — {07 1}*}1'6[

finite domain

S.Neukamm () JASS '05 27148

Collection Of One-Way Functions

F = {fi:D; — {0,1}*},.;

infinite set

S.Neukamm () JASS '05 27148

Collection Of One-Way Functions

F = {fi:D; — {0,1}*},.;

infinite set
@ The f; sharing a common Index Sampler S,

S.Neukamm () JASS '05 27148

Collection Of One-Way Functions

A larger View: Collection

F:= {fz : Dy — {07 1}*}z‘el

infinite set
@ The f; sharing a common Index Sampler S,
@ The f; sharing a common Domain Sampler Sp

S.Neukamm () JASS '05 27148

Collection Of One-Way Functions

F :={fi : Dj — {0,1}" }ic

Security parameter

nelN

S.Neukamm () JASS '05 28/48

Collection Of One-Way Functions

F :={fi : Dj — {0,1}" }ic

Security parameter

nelN

PPT S T Index sampler

ie1n{o,1}"

S.Neukamm () JASS '05 28/48

Collection Of One-Way Functions

F:={fi:D; — {0,1}*}iq

Security parameter

nelN

PPT S 7 Index sampler

ie IN{0,1}"

PPT S p Domain sampler

!

CIZ’EDZ‘

S.Neukamm ()

JASS 05

28 /48

Collection Of One-Way Functions

F :={fi : Dj — {0,1}" }ic

Security parameter

nelN

PPT S 7 Index sampler

l
ielIn{o,1}"
e’ N \

PPT Sp Domain sampler PPT A %fi (ZU)

T el D,&-/

S.Neukamm ()

JASS 05 28/48

Collection Of One-Way Functions

F :={fi : Dj — {0,1}" }ic

Security parameter
nc IN

PPT S T Index sampler

l
i €T {0 1}
6’ M \

PPT Sp Domain sampler PPT A—%fi (.I)
r e D; collection (Sr, Sp, A)

S.Neukamm () JASS '05 28/48

Collection Of One Way Functions

Definition.

Definition

Let | be a set of indices and D; C {0, 1}* finite Vi € I.
A collection of one-way functions is a set

F={fi:D — {0,1}"}

satisfying the following two conditions
1 There exists tree PPT S;, Sp, A, such that
S on input 1" outputs ani € {0,1}" N
Sp oninputi € | outputs an x € D;
Aoninputi € | and x € D;j it holds that A(i, x) = fi(x)

v
S.Neukamm ()

JASS 05 29/48

Collection Of One Way Functions

Definition.

Definition

Let | be a set of indices and D; C {0, 1}* finite Vi € I.
A collection of one-way functions is a set

F ={fi:D; — {0,1}*}

satisfying the following two conditions
1 There exists tree PPT S;, Sp, A, such that
S on input 1" outputs ani € {0,1}" N
Sp oninputi € | outputs an x € D;
Aoninputi € | and x € D;j it holds that A(i, x) = fi(x)

2 The probability of finding an inverse for every PPT given i and an element
in range is negligible, if we consider the distribution induced by S,, Sp.

S.Neukamm () JASS '05 29/48

Collection Of One Way Functions

Definition.

Definition

Let | be a set of indices and D; C {0, 1}* finite Vi € I.
A collection of one-way functions is a set

F={fi:D — {0,1}"}

satisfying the following two conditions
1 There exists tree PPT S;, Sp, A, such that
S on input 1" outputs ani € {0,1}" N
Sp oninputi € | outputs an x € D;
Aoninputi € | and x € D;j it holds that A(i, x) = fi(x)
2 The probability of finding an inverse for every PPT given i and an element
in range is negligible, if we consider the distribution induced by S,, Sp.
For every PPT A’, every polynomial p(-) and sufficiently large n:

P (A/(fln (Xn),In) € fl;l(fln (Xn))) = ﬁ

v
S.Neukamm ()

JASS 05 29/48

Collection Of One Way Functions

Definition.

Definition

Let | be a set of indices and D; C {0, 1}* finite Vi € I.
A collection of one-way functions is a set

F ={fi:D; — {0,1}*}

satisfying the following two conditions
1 There exists tree PPT S;, Sp, A, such that
S on input 1" outputs ani € {0,1}" N
Sp oninputi € | outputs an x € D;
Aoninputi € | and x € D;j it holds that A(i, x) = fi(x)

2 The probability of finding an inverse for every PPT given i and an element
in range is negligible, if we consider the distribution induced by S,, Sp.

For every PPT A’, every polynomial p(-) and sufficiently large n:

P (A/(fln (Xn),In) € fl;l(fln (Xn))) = ﬁ

In, X, random variable describing output distribution of S;, Sp

S.Neukamm () JASS '05 29/48

Collection Of One-Way Functions

EXP := {EXPp,a : Zp—1 — {0,1}*}

Security parameter

ng]N

PPT S T Index sampler

(p,g) |pl = n\

PPT SD Domain sampler EXPp@ 4+t mOdp

/

re{l,...p—1}

S.Neukamm () JASS '05 30/48

Collection Of Trapdoor Functions

Security parameter
n IN

PPT S I Index sampler

l
i e In{0,1}"

PPT Sp Domain sampler PPT A —»fi <.fl§'>

!

r € D; collection (S7, Sp, A)

S.Neukamm () JASS '05 31/48

Collection Of Trapdoor Functions

Security parameter
n,glN

PPT S I Index sampler

l
i e In{0,1}"

PPT S Domain sampler PPT A+ (filx),1;)
l trapdoor

r € D; collection (S7, Sp, A)

S.Neukamm () JASS '05 31/48

Collection Of Trapdoor Functions

Security parameter

n,E%Eﬁ x
|
PPT S 1 Index sampler
l PPT A
PPT Sp Domain sampler PPT A —Mi)
l ,,///////////’—__ trapdoor
x €D,

S.Neukamm () JASS '05 31/48

S.Neukamm () ASS '05 32/48

Hard-Core Predicate - Motivation

Bit-Security of EXP

How secure is EXP?

x ~EXP, (7)

[t[1]ofoft]0] (0]1]oft]1]0]

vy

S.Neukamm () JASS '05 33/48

Hard-Core Predicate - Motivation

Bit-Security of EXP

x ~EXP, ,(z)
TTTT0 0 1 0} nieasible OTTTOTI1T0]

vy

S.Neukamm () JASS '05 33/48

Hard-Core Predicate - Motivation

Bit-Security of EXP

x ~EXP, ,(z)
(TTTT0 0 1 0 nieasible OTTTOTI1T0]

efficiently

vy

S.Neukamm () JASS '05 33/48

Hard-Core Predicate - Motivation

Bit-Security of EXP

x ~EXP, ,(z)
(TTTT0 0 1 0} nieasible OTTTOTI1T0]

efficiently

as hard as inverting

vy

S.Neukamm () JASS '05 33/48

Hard-Core Predicate - Motivation

Bit-Security of EXP

2 ~EXP, ,(z)
(TTTT0 0 1 0} nieasible OTTTOTI1T0]

efficiently

as hard as inverting

@ A one-way function doesn'’t hide partial information

vy

S.Neukamm () JASS '05 33/48

Hard-Core Predicate - Motivation

Bit-Security of EXP

2 ~EXP, ,(z)
(TTTT0 0 1 0} nieasible OTTTOTI1T0]

efficiently

as hard as inverting

@ A one-way function doesn'’t hide partial information
@ But at least one Bit of information is hard to guess

vy

S.Neukamm () JASS '05 33/48

Hard-Core Predicate - Definition

Idea of hard-core predicate.

v f one-way ~f(x)

S.Neukamm () JASS '05 34/48

Hard-Core Predicate - Definition

Idea of hard-core predicate.
X
| f one-way

b(x) € {0,1}

S.Neukamm () JASS '05 34/48

Hard-Core Predicate - Definition

Idea of hard-core predicate.

S.Neukamm () JASS '05 34/48

Hard-Core Predicate - Definition

Idea of hard-core predicate.

|

b(x) € {0,1} hard-core predicate of f

S.Neukamm () JASS '05 34/48

Hard-Core Predicate

Definition.

@ afunctionf : {0,1}* — {0,1}*
@ apredicate b : {0,1}* — {0,1}

S.Neukamm () JASS '05 35/48

Hard-Core Predicate

Definition.

@ afunctionf : {0,1}* — {0,1}*
@ apredicate b: {0,1}* — {0,1}

Definition
b is a hard-core predicate of f, iff
@ JPPT A, such that Vx : A(X) = b(x)

@ Every efficient algorithm given f(x) can guess b(x)
only with success probability negligible better than %

S.Neukamm () JASS '05 35/48

Hard-Core Predicate

Definition.

@ afunctionf : {0,1}* — {0,1}*
@ apredicate b: {0,1}* — {0,1}

Definition
b is a hard-core predicate of f, iff
@ JPPT A, such that Vx : A(X) = b(x)

@ VPPT G, Vp polynomial and sufficiently large n:

P (G(f(Un)) = B(U) < 5 + 575

S.Neukamm () JASS '05 35/48

A Generic Hard-Core Predicate

A Hard-Core Predicate for 'any’ One-Way Function.

o f:{0,1}* — {0, 1}*length preserving
@ g(x,r):= (f(x),r), where |x| = |r|
@ b(X,r) =< X, >mod2:= »_;(xiri mod 2)

vy

Theorem

Let f be a length-preserving one-way function, and let g, b defined like above.
Then b is a hard-core predicate of the function g.

4

Notes

It means: it is infeasible to guess the exclusive-or of a random subset of the
bits of x, when given f(x) and the subset itself, denoted by r.

S.Neukamm () JASS '05 36/48

JASS '05 37148

r=[0f1]1[1[1]0]

JASS '05 37148

z=[1]1]0][0]1]0]

r=[0f1[1]1]1]0]

f

/()

[L[t]1]of1[1]
r=oJ1]1]1]1]oO]

)

JASS '05

37/48

T[T[0]0]1]0]

011110<W

r=[1[1]0J0]1]0] -

JASS '05 37148

b

=)
— — ||
= O |
= — ||
— — ||
— — |l
I f I N
Il 1l
| —~ =
= 8
=
S~

b(x,r) =[0]

b

z=[1]1]0][0]1]0]

r=[0f1[1]1]1]0]

)

JASS '05 37148

‘unpredictable’
by PPT

G(f(x),7)

fl@y=(1[1]1]o]1]1]
r=oJ1]1]1]1]oO]

S.Neukamm () JASS '05 37148

If we can predict b with
non-negligible probabil-
ity..

fl@y=(1[1]1]o]1]1]
r=oJ1]1]1]1]oO]

S.Neukamm () JASS '05 37148

If we can predict b with
non-negligible probabil-
ity..

...,then we can find an in-
verse of f(x) with non-
negligible probability!

z=[1]1]0][0]1]0]
f

fl@y=(1[1]1]o]1]1]
r=oJ1]1]1]1]oO]

S.Neukamm () JASS '05 37148

If we can predict b with
non-negligible probabil-
ity..

...,then we can find an in-
verse of f(z) with non-
negligible probability!

8
I
< |

~
—
8
~
HH

S.Neukamm () JASS '05 37148

A Generic Hard-Core Predicate - Proof
Sketch.

Proof sketch.

We use a 'reducibility argument’ and proof by contradiction:

1 Suppose: b is not hard-core predicate of g
Then there exists an efficient algorithm G, that can guess b with
non-negligible probability better %:

=3JPPT G, Jp polynomial:

g(n) = P(G(f(Xm Rn) = b(Xm Rn)) - % > ﬁ

2 Construct an efficient algorithm A (using G), which inverts f on input
(f(x), r) with non-negligible probability

3 Conclude:
3G = 3A = f not one-way
=-contradiction to f one-way.

S.Neukamm () JASS '05 38/48

Proof - Inverting Algorithm A

Idea | - a mental experiment

Important Observation

b(x,a) ® b(x, 3) = b(x,a ® j)
Xi = b(X,a) ®b(X,a® e)

Mental Experiment
Suppose: Guessing by G works very good for a subset S, C {0, 1}":

@ P (G correct guess) = P (G(f(x),r) = b(x,r)) > } + 5
@ for all inputs f(x) with x € Sy,

@ for all sufficiently large n € IN

Algorithm A (guessing the i™ bit of the inverse):

© Randomly selectr € {0,1}"

@ Compute z; := G(f(x),r) ® G(f(x),r &)
Success probability: P (A(f(x)) € f71(f(x)))> 3 + 72

4p(n)
— Repetition and rule by majority=- efficiently computes x;

y

S.Neukamm ()

JASS 05

39/48

Proof - Inverting Algorithm A

Idea Il - Use G and Make Own Guess

Notice: b(x,a) ® b(x,a @ &) = X; VX, i)

Idea to construct A inverting f(x) for all x € S,

@ Select a special subset S,, where G works sufficiently successful.
@ Use G to guess b(x,r & e;)

@ Make own guess p for b(x,r)

@ Both guess correct: x; = p & G(f(X),r @)

Claim | (s, where G guesses sufficiently good)

If b not hard-core, n sufficiently large, then there exists a subset S, C {0, 1}",
such that

@ ’Large enough’: |S,| > ﬂz’ﬁz”

@ 'Succesful enough’: Vx € Sy, : m(x) := P (G(X,Rn) = b(X,Rn)) > 3 + ET”)

S.Neukamm () JASS '05 40/ 48

Proof - Inverting Algorithm A

Idea Il - p; our own guess

Our guess

@ Randomly select k strings s, ..., sk € {0,1}" and k predicates
o1, ...,0¢ € {0,1} (by Laplace-Experiment)
@ for every (non empty) index-subsetJ C {1, ...,k }:

rn=EPs
jed
=b(x,1;) =b(x,Ps;) = Pb(x,s)
jed jed
=py = @o—j our guess of b(x, ;)

jed

@ Probability that p; = b(x, ry) for all subsets J € {1,...,k} is 27X

S.Neukamm () JASS '05 41/48

Proof - Inverting Algorithm A

The Algorithm

Algorithm (guesses i™ bit)

Let A be the following PPT algorithm:

@ Setk := [log,(2n - p(n)? + 1]

@ Uniformly and Independent select sy, ..., s¢ € {0,1}", 01, ...,0x € {0,1}
@ vJ C {1,...,k},J non-empty compute:

o <—®jej S
@ <—ED,-€J Oj
® 25— py ®G(f(x),r @ &)

© Output z the majority value of the z;

S.Neukamm () JASS '05 42/ 48

Proof - Inverting Algorithm A

Observing Events.

r— @jessi sj € {0,1}" randomly chosen
p3 — Dy 0j oj € {0,1} randomly chosen
z; — py & G(f(x),r; @ ej) compare: x; =b(x,r;) ®&b(x,r; &)

Events of interest

@ Event £: G guessing correct for majority of subsets J C {1, ...,k}:
E{I:G(f(x),r@e) =b(x,ry@e)} > 3(2¢-1)

@ Event F: our guess correct for all subsets:
F: p3 =b(x,r3) V3 C{1,..,k}

4

Probabilities

@ Event &:
P (£]x € Sp) > 1 (this we have to prove!)
@ Event F:
P(Flx € Sp) =P (VJ : 03 = b(x,s;)|x € Sy) = 27% (Bernoulli)

4

S.Neukamm () JASS '05 43/ 48

Proof - Inverting Algorithm A

Success Probability

z; — py ®G(f(x),1 @ &)

P(E|x € Sn) > % &: G correct for the majority of all J’s
P(F|x € Sp) = 2 F: p; correct for all J's
Sn| > 52" > iy k := [log,(2n - p(n)? + 1]

| A

Success Probability of Algorithm

P (A(f(x)) outputs i™ bit of an inverse of f(x))
=P (For majority of all J’'s: z; = X;) = P (E A F|x € Sp)
P(€)-P(F)-P(x € Sy) (Independence to be proved!)
1 ok ISn| 1

1
3¢ T T 8np(n)® + p(n) _ poly(n)

— By repeating for all bits: we can efficiently compute x.
— Contradiction to 'f is one-way’ = b is hard-core Predicate

not negligible!!!

o’

S.Neukamm () JASS '05 44/ 48

Proof

Claims to be proved

Claim I: There existst S, where G guesses sufficiently good

If b not hard-core, n sufficiently large, then there exists a subset S, C {0, 1}",
such that

@ ’'Large enough’: |S,| > @2“

@ 'Succesful enough’: ¥x € Sy, : m(x) := P (G(X, Rn) = b(X, R

Claim Il: P(Elx € Sp) > £
For every x € Sp:

P(I{J:G(f(x),r; @) =b(x,1; & &)} > 3(2* ~1))> 1~ 5ty

S.Neukamm () JASS '05 45/ 48

one-way functions are important primitives.

Formalizing and abstracting

The concept of one-way functions abstracts the central idea of many common
cryptosystems:

@ RSA
@ RABIN-SQUARE
@ ELGAMAL

As a basis
The introduced concept is a basis for more applicable theories:
@ public key cryptosystems
@ pseudorandom sequences
@ hash functions
° ..

S.Neukamm () JASS '05 46/ 48

@ Basic definitions of computational complexity theory

S.Neukamm () JASS '05 47148

@ Basic definitions of computational complexity theory
@ Formalized the definition of one-way function

S.Neukamm () JASS '05 47148

@ Basic definitions of computational complexity theory
@ Formalized the definition of one-way function
@ Discussed necessary conditions, like 'intractability assumption’

S.Neukamm () JASS '05 47148

@ Basic definitions of computational complexity theory

@ Formalized the definition of one-way function

@ Discussed necessary conditions, like 'intractability assumption’

@ Introduced the concept of one-way collections and trapdoor-collection

S.Neukamm () JASS '05 47148

Basic definitions of computational complexity theory

Formalized the definition of one-way function

Discussed necessary conditions, like 'intractability assumption’
Introduced the concept of one-way collections and trapdoor-collection
Defined the hard-core predicate

S.Neukamm () JASS '05 47148

Basic definitions of computational complexity theory

Formalized the definition of one-way function

Discussed necessary conditions, like 'intractability assumption’
Introduced the concept of one-way collections and trapdoor-collection
Defined the hard-core predicate

Proved the existence of a generic hard-core predicate

S.Neukamm () JASS '05 47/ 48

@ O.Goldreich
Foundations of cryptography
2001, available online

S.Neukamm () JASS '05 48 /48

@ O.Goldreich
Foundations of cryptography
2001, available online

@ S. Goldwasser, M. Bellare
Lecture notes on cryptography
2001, available online

S.Neukamm () JASS '05 48 /48

@ O.Goldreich
Foundations of cryptography
2001, available online

@ S. Goldwasser, M. Bellare
Lecture notes on cryptography
2001, available online

@ A. Menezes, P. van Oorschot, S. Vanstone
Handbook of Applied Cryptography
CRC Press, 1969, www.cacr.math.uwaterloo.co/hac

S.Neukamm () JASS '05 48 /48

	Introduction
	Motivation

	Complexity Theory - Basic Definitions
	Time Complexity
	An Intermezzo: One-Way Function - Definition I
	Probabilistic Time Complexity

	One-Way Function
	Definition
	Candidates for One-Way Functions
	Collection of One-Way Functions
	Collection of Trapdoor Functions

	Hard-Core Predicate
	Motivation - Bit-Security of EXP
	Definition
	A generic Hard-Core Predicate

	Epilog

