
Technische Universität München

Fakultät für Informatik

c c c cccc ccc ccc ccc
c c cc

3rd Joint Advanced Summer School 2005

Course 3: Ubiquitous Tracking for Augmented Reality

Prof. Gudrun Klinker, Ph.D.
Martin Bauer

(Eds.)

April 2005

Contents

1 Introduction and Concepts of Ubiquitous Tracking 4
1.1 Introduction . 4
1.2 Related Concepts . 4

1.2.1 Augmented Reality . 4
1.2.2 Tracking Devices . 5
1.2.3 Ubiquitous Computing . 6

1.3 Ubiquitous Tracking . 7
1.3.1 Framework . 7
1.3.2 Spatial Relationship Graphs . 8
1.3.3 Optimizations . 11
1.3.4 Example . 13

1.4 Conclusion . 15

2 Existing Software and Systems 17
2.1 Introduction . 17
2.2 Important goals and requirements . 17
2.3 Existing Systems . 18

2.3.1 OpenTracker . 18
2.3.2 DWARF . 23
2.3.3 VRPN . 26
2.3.4 Trackd . 28

2.4 Conclusion . 30

3 Algorithms for Tracker Alignment 32
3.1 Introduction . 32

3.1.1 What is Tracker Alignment? . 32
3.1.2 What are Aligned Trackers used for? 33

3.2 How to perform Tracker Alignment . 34
3.2.1 Forward Engineering . 34
3.2.2 Manually Registering Points . 35
3.2.3 Automatic Alignment from Movements 35

3.3 Setup . 36
3.4 Solving AX=XB . 38

3.4.1 Classical Solution . 38
3.4.2 Modern Way . 40
3.4.3 Improving Accuracy . 47

3.5 Conclusion . 48
3.6 Mathematical Definitions . 48

3.6.1 Rotation Matrix . 48

2

3.6.2 Homogeneous Transformation . 49
3.6.3 Extracting Rotation Axis and Angle from Rotation Matrix 49
3.6.4 Modified Rodrigues Formula . 50
3.6.5 Skew-symmetric Matrix [~a]x . 51
3.6.6 Complex Numbers . 51
3.6.7 Fundamental Theorem of Algebra . 52
3.6.8 Gimbal Lock . 52
3.6.9 Quaternions . 52
3.6.10 Dual Numbers . 54
3.6.11 Application of Plücker Coordinates . 55

3.7 History of Quaternions . 56

4 Sensor Fusion: The Kalman Filter and its Extensions 58
4.1 Introduction . 58
4.2 Stochastic Basics . 59

4.2.1 Probability and Random Variables . 59
4.2.2 Mean and Variance . 60
4.2.3 Gaussian distribution . 60
4.2.4 White noise . 61

4.3 Discrete Kalman Filter (DKF) . 61
4.3.1 Process and Measurement Models . 61
4.3.2 Origins of the filter . 62
4.3.3 Discrete Kalman Filter Cycle . 63
4.3.4 Assumptions . 63
4.3.5 Optimality . 64
4.3.6 Examples . 65

4.4 Extended Kalman Filter (EKF) . 67
4.4.1 Non-Linearity . 67
4.4.2 Process and Measurement Models . 67
4.4.3 Linearization . 67
4.4.4 Extended Kalman Filter Cycle . 68
4.4.5 Example . 68

4.5 Discussion of the Kalman Filter . 69
4.6 Sensor Fusion with the Kalman Filter . 69

4.6.1 DKF and EKF . 70
4.6.2 SCAAT . 70
4.6.3 Federated Kalman Filter (FKF) . 72

4.7 Conclusion . 75

5 Adaptive transform of the color space in image compression 78

6 Decimation of color-difference components by wavelet filtering 79

7 Real-Time: The Zerberus System 80
7.1 Introduction . 80
7.2 Requirement elicitation . 80

7.2.1 Example applications . 81

3

7.2.2 Requirements summary . 82
7.2.3 Requests on a development system . 83

7.3 Zerberus system . 83
7.3.1 Background . 83
7.3.2 Development process . 84
7.3.3 Analysis of the Requirements on the Dependability 84
7.3.4 Implementation of Application Dependent Code 85
7.3.5 Code Generation . 86
7.3.6 Zerberus language . 86

7.4 Modifications of Zerberus System regarding augmented reality applications . 92
7.5 Summary . 92

8 Holography 95
8.1 History . 95
8.2 What is Holography . 96

8.2.1 How is a hologram made? . 97
8.2.2 How is a hologram viewed? . 97
8.2.3 What are the main types of holograms? 97

8.3 X-ray and g-ray Holography Improve Views of Atoms in Solids 98
8.3.1 The twin problem . 99
8.3.2 Work in progress . 100
8.3.3 Neutron holography . 101

8.4 About My Task . 101

9 Planes and Homographies for Augmented Reality 103

10 Context coding of overlapped DCT coefficients 104

11 Particle Filters 105
11.1 Introduction . 105
11.2 Non-Linear Bayesian Tracking . 106
11.3 Suboptimal Algorithms . 108
11.4 Particle Filters . 109

11.4.1 Good choise of the importance density 112
11.4.2 Resampling . 113

11.5 Tracking People with particle filters . 114
11.6 Advantages and disadvantages of particle filters 116
11.7 Conclusion and future work . 116

4

This document is a report on the results of the course ”Ubiquitous Tracking for Aug-
mented Reality” that was held during the 3rd Joint Advanced Students School (Jass05) in
St. Petersburg, 30.3.-9.4.2005.

The main outline of the course was developed by Prof. G. Klinker together with M. Bauer,
both from Technische Universität München; significant contribution came also from the rus-
sian side from Prof. Boris Kudryashov, State Univ. of Aerospace Instrumentation St. Peters-
burg and Prof. Ivan V. Andronov, St. Petersburg State University. As a guest we were also
lucky to have Prof. Alexander Pastor, St. Petersburg State University with us for one day.

We would like to thank all of our students: Troels Frimor, Georgi Nachev, Basti Grem-
bowietz, Katharina Pentenrieder, Kirill Yourkov, Alexander Chuikov, Christian Buckl, Alexey
Minin, Irina Bobkova, Denis Bessonov, and Gordana Stojceska for their participation and the
fruitful discussions before, during and after the course. Special thanks to Alexey and Irina
for showing us around in SPb helping us to decypher the menus and to order food and beer.

Thanks also to the Directors of the 3rd Joint Advanced Students School, Prof. Dr. Yu. Matiya-
sevich and Prof. Dr. E. W. Mayr together with Dr. V. Ganzha for organizing the course, and
the sponsoring companies and institutions, the Bavarian Ministry of Economics, Siemens AG
and Infineon, for providing the necessary funding.

Garching, May 2005
Martin Bauer, Prof. Gudrun Klinker

5

1 Introduction and Concepts of Ubiquitous
Tracking

Troels Frimor, Technische Universität München

In providing the possibility for wide area Augmented Reality applications, combining sen-
sor information into complicated tracking setups becomes more and more an issue. With
Ubiquitous Tracking a formal framework is introduced which addressees the problems with
describing these setups. The framework defines three different kinds of spatial relationship
graphs to create an abstract view of the relations between objects and sensors. This gives
such a general and flexible way to describe spatial relations that it can be used for all kinds
of setups also from existing applications.

1.1 Introduction

First some related topics will shortly be explained to give a better understanding of what
Ubiquitous Tracking is and why we need a framework to describe our tracking setups. Then
the formalism behind Ubiquitous Tracking will be described with accompanying examples to
show how it is used. These introductions are meant to give a common basis for discussions
of tracking for Augmented Reality and it associated ptroblems.

1.2 Related Concepts

To better grasp some of the aspects of Ubiquitous Tracking some of the related concepts will
be introduced shortly here with special focus on what the connection to our topic is.

1.2.1 Augmented Reality

Augmented reality (AR) is an emerging technology in which the real and virtual world are
combined so that the user will be able to sense the real world with additional virtual infor-
mation superimposed. This can be done in many ways but is classically done via a head-
mounted-display. Several different definitions of AR exist, where the most commonly used is
defined by Azuma with the following characteristics:

• Combines real and virtual

• Interactive in real time

• Registered in 3D

6

This definition is created so that simple applications like the overlapping of virtual and real
in movies, does not fall under the AR category, since they are not interactive in real time.

The usability of AR is broadened out on many fields like medical, maintenance, production
and games. An example of the latter is the SHEEP1 game, which is designed to explore some
aspects of AR, like user interfaces.

Figure 1.1: SHEEP [1]

In the game several virtual sheep run around in an
virtual landscape which is projected onto an table. An-
other sheep, a real physical model, has infrared mark-
ers attached to it, thus allowing the system to track it
and register it with the virtual environment. The spa-
tial relationships with the other virtual sheep can then
be determined, and the virtual sheeps will try to follow
the model as it is moved around on the table. Laptops
and PDAs can be used in connection with the game as
hand-held see-though displays. On fig.2.8 this setup can
be seen where the laptops are tracked with infrared mark-
ers.

Figure 1.2: MEDARPA [?]

One of the biggest fields of research regarding AR is in
the medical world. On fig. 1.2 an example application,
Medarpa (MEDical Augmented Reality for PAtients[?]),
can be seen which deals with assistance for medical surgery
and especially keyhole surgery. This is based on the idea
of making the surgeon able to see through and inside the
patient so he would only need to make small holes on the
outside to enter the instruments, thus minimizing harm on
other than the actual area that need surgery.
The system seen, uses a mounted see-through screen which
is registered with both patient and instruments, thus the
surgeon will even be able to see the instruments inside of
the patient.

Both of the above mentioned examples are based on small local areas with just a few
tracking mechanisms. If wanting to create a full scale AR application, like an augmented
hospital, tracking the patient and even the instruments around the entire hospital would be
necessary, also in the hallways, elevators and so on. Throughout the hospital many different
tracking mechanisms would be used though, and combining them all would become a very
big task. With the framework described later in this paper, subparts of the system could be
defined and reused in different locations and even in other hospitals.

1.2.2 Tracking Devices

Many different ways of tracking are possible and the development of tracking devices keeps
on adding new possibilities. A typical tracking mechanism for AR applications uses a couple

1Shared Environment Entertainment Pasture.

7

of infrared cameras and small infrared-reflective balls attached to the objects of interest. This
setup has several drawbacks2 though and most often other methods have to be considered.

Of many different tracking devices, the following are the most widely used:

- Cameras attached to the object of interest (Inside-out) or observing the
object (Outside-in)

- Gyroscopes attached to the object to measure changes in orientation

- Accelerometers attached to measure changes in linear acceleration

- Devices measuring magnetic fields where a central unit produces a strong magnetic field
and smaller devices on the objects of interest then measure this field.

In general the tracking methods are classified according to their different characteristics,
which also tells something about their advantages and limitations. The characteristics include:

- Physical medium the sensors use. Is the devices mechanically connected, using inertia,
using light, ...

- Measured values of the sensors, this can be 2D pixel value, time of flight (sound), angle
between joints, ...

- Accuracy of the sensors. Can the noise be descibed easily (Gaussian?).

- Update rate: of new measurements.

To really take advantages of the tracking devices they have to be combined into hybrid
systems. That is: combining the different sensors to take advantage of their different proper-
ties and/or measurements for more precise results. Another issue is how well the individual
tracking mechanisms fit in different environments. For example whether it is possible to make
it sterile in clinical environments or use magnetism where there are magnetic materials in the
background.
Hybrid systems quickly become necessary when more than a simple desktop AR application
is needed but for wide area systems they can be very difficult to describe, maintain and re-
produce. The Ubiquitous Tracking framework described later deals with these issues, having
hybrid systems as a natural part of the system description.

1.2.3 Ubiquitous Computing

The world of computing can be divided into three generations where the first generation was
the mainframe computing, then the personal computing and now the ubiquitous computing
era is emerging.

Ubiquitous Computing is the intention that computers should be integrated into our ev-
eryday lives in an invisible manor, so we do not notice that we constantly use them. Mark
Weiser, the father of Ubiquitous Computing, has described this as:

2Drawbacks include the requirement of line-of-sight and that small balls have to be attached to all tracked
objects.

8

Inspired by the social scientists, philosophers, and anthropologists at PARC, we
have been trying to take a radical look at what computing and networking ought to
be like. We believe that people live through their practices and tacit knowledge so
that the most powerful things are those that are effectively invisible in use. This is a
challenge that affects all of computer science. Our preliminary approach: Activate
the world. Provide hundreds of wireless computing devices per person per office, of
all scales (from 1” displays to wall sized). This has required new work in operating
systems, user interfaces, networks, wireless, displays, and many other areas. We
call our work “ubiquitous computing”. This is different from PDA’s, dynabooks,
or information at your fingertips. It is invisible, everywhere computing that does
not live on a personal device of any sort, but is in the woodwork everywhere.3

This idea of computing “everywhere at anytime” when transfered to tracking leads to the
ideas behind Ubiquitous Tracking.

That we are heading towards a world where Ubiquitous Computing is everywhere can be
seen on the type of computers and computing devices sold. Where the personal computers
are falling in sales, smaller and/or more integrated computing devices such as PDAs, mobile
phones, intelligent whiteboards and other wireless enabled devices are becoming more used.
This leads to more Mobile Computing and the Ubiquitous Computing era following in the
aftermath.

1.3 Ubiquitous Tracking

As mentioned earlier, when building large scale AR applications the complexity of the tracking
setup can quickly become overwhelming. This is caused by the limitations and the diversity
in attributes of the different tracking mechanisms. Especially the limitations of coverage area
means that many sensors have to be connected and form a large network of sensor data which
might even have to be extensible or otherwise changing dynamically.

Under the assumption that we have all of these tracking devices everywhere, we need a
way of communicating our ideas, describing our sensor setups and the spatial relationships
between objects. The Ubiquitous Tracking framework introduces a formal way of modeling
such large networks. This is done in such a broad way that it even allows existing setups to
be described. If looking at arhitecture layers, Ubiquitous Tracking will provide a new layer
below the application layer, so appalications can be build independently of the sensors and
use the Ubiquitous Tracking framework directly.

1.3.1 Framework

The framework is based on spatial relationship graphs which provides the systems view of the
real world. For this, three different kinds of relationship graphs will be introduced.
The spatial relations are assumed to be represented via a 4 × 4 homogeneous matrix, like it
is common in computer graphics. This is not a requirement for the framework but it makes
it easier to visualize what is going on during the presentation of the framework. We also do
not have to go into details of how the individual sensors work or what they measure. This
knowledge is of cause assumed to be available for the system, but it is unnecessary here.

3Mark Weiser, 1988, http://www.ubiq.com/weiser/.

9

The goal is to provide query mechanism, which provides an optimal estimate of the spatial
relationship between two abitrary objects at any point in time, and where optimal is defined
by the application via an error function.

1.3.2 Spatial Relationship Graphs

The spatial relationship graphs used in the framework of Ubiquitous Tracking all have the
nodes representing sensors and tracked objects, where spatial relationships then are repre-
sented as the directed edges in the graph.

Each edge has a function that describes the relationship by returning the 4×4 homogeneous
matrix representing the spatial relationship associated with the edge. Thus if one wants to
find the the relation R4×4

A→C between two nodes A and C separated by node B, one just has
to multiply the matrices returned from the associated function R4×4

A→C = R4×4
A→B ×R4×4

B→C .

Three different graphs are used in the description of a setup.

Real: A spatial relationship graph representing how an omniscient viewer would see all the
objects of interest, i.e. this graph is fully connected and symmetric with the precise
relations at all times.
An example setup with 3 objects could then look like:

ONMLHIJKA

wAA ��

wAB

{{

wAC

��
ONMLHIJKB

wBB

;;

wBA

;;

wBC
-- ONMLHIJKC

wCC

cc

wCA

[[

wCB

mm

The weight functions w are then defined for all points in time Dt, and we can define a
binary relation Ω = N ×N which maps pairs of objects to their weight functions:

W : (Ω = N ×N) → w, where w : Dt → R4×4

This graph is of cause impossible to obtain but it is what we would like to try to
approximate, so we could query at any point in time for any relation.

Measured: A graph with all measurements as edges in the graph. This is the graph that
is directly available to the system but it has major flaws compared to W - the real
relationships. First and foremost are the relationships only defined at discrete points in
time, i.e. every time a sensor makes a measurement, secondly is it corrupted by noise,
and thirdly are only some relationships known at all.
We now associate an attribute set A with each weight to allow the system to compare
different paths in the graph. Different attributes will be discussed later.

10

Same setup as before could as a measured graph look like:

ONMLHIJKA

pAB

yyssssssssssssss
pAC

%%KKKKKKKKKKKKKK

ONMLHIJKB
pBC // ONMLHIJKC

With the measured relationship graphs a new binary relation Φ is then defined on the
objects:

P : (Φ ⊆ N ×N) → p, where p : Dt → R4×4 ×A

and p only is defined at discrete points in time but also returns the attributes A for the
measurement.

pXY (t) =

(H1, A1) if t = t1
(H2, A2) if t = t2

...
(Hn, An) if t = tn
undefined otherwise

Inferred: This is a super graph of the measured relationship graph with added relations from
the information the system has inferred, i.e. has calculated from the measurements or
from external information. For the inferred relationships a binary relation Ψ is defined:

Q : (Ψ ⊆ N ×N) → q, where q : Dt → R4×4 ×A

which should try to approximate the real relations Ω. q is then a set of relations between
two objects since different kinds of relations are available.

As earlier mentioned are the relations in the measurement graph only available at dis-
crete points in time. As an example this can be avoided by inferring a relation that
interpolates the time of the sensor measurements. For two objects X and Y where
measurements have been made at {t1 . . . tn}, an interpolation could look like

qi
XY (t) =

(H1, A1) if t1≤ t≤ t1 + t2−t1
2

(H2, A2) if t1 + t2−t1
2 < t≤ t2

...
(Hn, An) if tn−1 + tn−tn−1

2 < t≤ tn
undefined otherwise

which would be added as an edge between the two nodes X and Y . This could also be
an extrapolation qe

XY which would be defined at all times, even times smaller than t1
and larger than tn. If we continue the example from before, the inferred graph would

11

then look like (with the measurements marked as qm
XY):

ONMLHIJKA

qm
AC

��
qi
AC

''

qm
AB

ww

qi
AB

��
ONMLHIJKB

qm
BC

++

qi
BC

33 ONMLHIJKC

Many different attributes can be used with the relations, for example:

- The latency (s) of measurements, i.e. the time from the actual measurement to it is
available.

- The update frequency (Hz) of how often new measurements are available.

- The confidence value ([0;1]) which is the probability of it being the correct feature that
is detected.

- The pose accuracy can be a very important for some applications.

- The time to live (s) is the time a relationship is likely to be valid.

- The cost of sensors can be very useful in a application simulation before anything
is actually setup. It can be used to judge which sensors, with the lowest costs, are
necessary in different parts of the applications coverage area.

Optimal paths

An application can query for a path in the inferred spatial relationship graph. To get a path
that matches certain criteria, an error function is introduced:

e : A→ R

which takes the attributes A from the associated function qXY and returns a weight for this
relation. For each different error function this effectively adds a weight to each edge in the
graph, and in an implementation the different shortest path algorithms, such as Dijkstra’s,
can be used to find the optimal paths.

In some cases the definition has to be extended since not all attributes can be evaluated
individually and the entire path has to be considered instead. In these cases one can define
the error function as:

e : A∗ → R

Now the normal shortest path algorithms can not be used though and the evaluation of paths
has to follow the pattern:

Algorithm Given two nodes X and Y , an error function e and query time t. The way to find
the optimal path is as follows:

12

1. Find all paths from X to Y that are defined at t

2. Evaluate e on collected attributes A∗ for every path

3. Calculate the spatial relationship between X and Y by multiplying all matrices
along the path r

If the inferred relationship is a new relation then it is added to the spatial relationships Q,
so the graph is populated with all the used spatial relationships and they do not have to be
calculated twice.

1.3.3 Optimizations

So far we have described the straight forward formalism used to describe tracking setups with
the essential being the set attribution Q, the inferred relations qf

XY and the error function e:

Q : (Ψ ⊆ N ×N) → q, where q : Dt → R4×4 ×A

df
XY = f((H1, A1), (H2, A2), . . . , t)

e : A∗ → R

These would be straight forward to implement and integrate into existing systems, but to
improve performance one should consider to implement the data flows graphs and super nodes
mentioned next.

Data flow Graphs

Each time an optimal path is found it should be saved, so the path does not have to be
recalculated and so it straight away can take part of other more complex paths.

With data flow graphs this is done by creating a new graph where the edges from the new
path in the spatial relationship graph are nodes. For a new inferred relation the new graph
would then have the shape of a tree where data flows from the leaves to the root, the root
being the inferred relation.

We can use the example from earlier by adding a latency to the attributes and then query
for the path from A to C with the lowest latency as shown in fig. 1.3 where qf

AC is added to
the spatial relationship graph as the path from A to C with the lowest latency. With this

ONMLHIJKA

qm
AC×[10ms]

��

qi
AC×[10ms]

''

qf
AC×[7ms]

��

qm
AB×[2ms]

ww

qi
AB×[2ms]

��
ONMLHIJKB

qm
BC×[5ms] ++

qi
BC×[5ms]

33 ONMLHIJKC

(a) Spatial relationship graph

qm
AB

// qi
AB

// qf
AC

qm
BC

// qi
BC

<<zzz

(b) Data flow graph

Figure 1.3: Example of a data flow graph

13

data flow graph saved, every time the application queries for the path, it is found right away
and the spatial relationship AC is just recalculated with the data at given time t.

The advantages of using a data flow graph is dependent on how often structural changes in
the relationship graph occur since such changes would mean that the data flow graph had to
be recomputed. Furthermore must it be recomputed if an attribute of one of the components
changes, since the error function, used to calculate the path, is dependent on the attributes.

Super Nodes

Another way to optimize the graph searches for optimal path is to group nodes that have
some special relation to each other. This can be done if some nodes are statically linked with
each other, or if two clusters of nodes are so far apart (compared to internal distance), that
if the relation between one node A in cluster S1 with another node B in cluster S2 is queried
then the relation between A and S2 is enough.

Figure 1.4: Super nodes courtesy of http://ar.in.tum.de/

Fig. 1.4 shows an example of how super nodes are created. In the first sub-picture is the
entire spatial relationship graph shown and in the second it is then reduced where the static
linked nodes are combined to S1 and S2. In the sub-picture is the IS-Sender F and the fiducial
E also linked together to S3, since the fiducial is not moving compared to the IS-Sender. If
moving even further away one can also combine the soft links which combines the loosely
connected nodes like the right person holding the fiducial K and combined to S4. Finally if

14

moved far enough away like in another building, then would the internal relations most likely
not matter, and they could all be grouped into one node S5.

1.3.4 Example

This section is based on an example of use of the framework, to show how an tracking setup
could be described, and to shown a bit of the flexibility of the framework.

Imagine wanting to relate an accelerometer A in a car O1 with an GPS measurement of
the cars position to have an more frequent update of the position (50Hz whereas GPS can
provide 1Hz) compared to another stationary object O2.

What we then query about is: O1 spatial relation to O2 at time T +∆t via a Kalman filter.
Note that this is a small time step in the future.

O1 is the moving car, O2 is a stationary
object. Both have a GPS object G1 and G2

respectively and the car also contains an ac-
celerometer A. Note that the accelerometer
only measures relatively to its own former
position.

WVUTPQRSSsat

qm
SG1

��

qm
SG2

��
ONMLHIJKA

qm
AA

��

qs
AO1

((

WVUTPQRSG1

qs
G1O1
��

WVUTPQRSG2

qs
G2O2
��

WVUTPQRSO1
WVUTPQRSO2

WVUTPQRSSsat

qm
SG1

��

qm
SG2

��qe
SG1

uu
qe
SG2

))ONMLHIJKA

qm
AA
qe
AA
��

qs
AO1

@@
@@

 @
@@@

WVUTPQRSG1

qs
G1O1
��

WVUTPQRSG2

qs
G2O2
��

WVUTPQRSO1
WVUTPQRSO2

First of all, an extrapolation is added at
each measurement to get results at any re-
quested time (the measurements qm are only
defined at the discrete points in time where
a measurement is done.)
This gives us the new edges qe running next
to all measurements.

15

Then is the GPS combined with the ac-
celerometer to get an higher update rate
of the cars position. By every update from
the GPS, would the position of the ac-
celerometer be reset and drift in the ac-
celerometer is avoided.
The new edge qc is then still a spatial re-
lationship between the origin of the GPS
and the moving car.

WVUTPQRSSsat

qm
SG1

��

qm
SG2

��qe
SG1

uu
qe
SG2

))
qc
SO1

��

ONMLHIJKA

qm
AA
qe
AA
��

qs
AO1

@@
@@

 @
@@@

WVUTPQRSG1

qs
G1O1
��

WVUTPQRSG2

qs
G2O2
��

WVUTPQRSO1
WVUTPQRSO2

qm
AA

// qe
AA

// qs
AO1

// qc
SO1

qm
SG1

// qe
SG1

// qs
G1O1

::uuuu

WVUTPQRSSsat

qm
SG1

��

qm
SG2

��
qe
SG1

yy
qe
SG2

))
qc
SO1

��

qK
SO1

}}

ONMLHIJKA

qm
AA
qe
AA
��

qs
AO1

@@
@@

 @
@@@

WVUTPQRSG1

qs
G1O1
��

WVUTPQRSG2

qs
G2O2
��

WVUTPQRSO1
WVUTPQRSO2

qm
AA

// qe
AA

// qs
AO1

// qc
SO1

// qK
SO1

qm
SG1

// qe
SG1

// qs
G1O1

::vvvv

The edge qc can then be used in a
Kalman filter to make small predictions
about where the car is going to be.
This new edge is also a spatial relation-
ship between the origin the GPS use and
the car.

A relationship edge qSO2 is also added to
give a direct relationship between the origin
of the GPS and the stationary object O2.

WVUTPQRSSsat

qm
SG1

��

qm
SG2

��
qe
SG1

yy
qe
SG2

))
qc
SO1

��

qSO2

��

qK
SO1

}}

ONMLHIJKA

qm
AA
qe
AA
��

qs
AO1

@@
@@

 @
@@@

WVUTPQRSG1

qs
G1O1
��

WVUTPQRSG2

qs
G2O2
��

WVUTPQRSO1
WVUTPQRSO2

16

WVUTPQRSG1

qs
G1O1

00
00

00
00

��0
00

00
00

0

WVUTPQRSSsat

qm
SG1tt

qm
SG2

��

qe
SG1

mm

qe
SG2

))
qc
SO1

��

qK
SO1

��

qSO2

��

WVUTPQRSG2

qs
G2O2
��

ONMLHIJKA

qm
AA
qe
AA
��

qs
AO1 // WVUTPQRSO1 qK

O1O2
//

qKinv

O1S

KK

WVUTPQRSO2

qK
SO1

// qKinv
SO1

// qK
SO1

qm
SG2

// qe
SG2

// qG2O2

;;wwww

The Kalman filter edge is then in-
verted qKinv

SO1
and finally a direct relation-

ship between O1 and O2 can be made.
Like all other relations, once the new
path is build, it does not have to be re-
computed as long as no major changes
in the graph occurs, and thus the appli-
cation has freed resources to other com-
putations, like faster sensor updates.

1.4 Conclusion

This paper first introduced some related concepts of Ubiquitous Tracking which helped explain
why we need it to describe our tracking setups. Following that, a more formal introduction
was made but with several examples to illustrate the frameworks use.
The framework itself is based on spatial relationship graphs, with objects as nodes and at-
tributes plus a representation of the spatial relationship associated with each edge. It is meant
to create a seperation between AR applications and the sensors, and defines a mathemetical
framework to describe complex tracker setups.

17

Bibliography

[1] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer,G. Klinker, B. Bruegge,
Herding Sheep: Live System Development for Distributed Augmented Reality, (2004).

[2] R. Azuma, A Survey of Augmented Reality, pp. 355-385, Presence: Teleoperators and
Virtual Environments, vol. 6, no. 4, (1997).

[3] G. Klinker, T. Reicher, B. Bruegge, Distributed User Tracking Concepts for
Augmented Reality Applications.

[4] J. Rolland, L. Davis, Y. Baillot, Fundamentals of Wearable Computers and
Augmented Reality, Lawrence Erlbaum Associates, 2001, ch. A survey of tracking
technology for virtual environments.

[5] G. K. M. Wagner, An Architecture for Distributed Spatial Configuration of Context
Aware Applications.

[6] U. Hansmann, L. Merk, M. S. Nicklous, T. Stober, Pervasive Computing - The
Mobile World, Springer Professional Computing, Springer-Verlag Berlin Heidelberg New
York, IBM, Germany, second ed., 2003.

[7] M. Wagner, A. MacWilliams, M. Bauer, G. Klinker, J. Newman,
T. Pintaric, and D. Schmalstieg, Fundamentals of Ubiquitous Tracking, in Second
International Conference on Pervasive Computing, Hot Spots section, Vienna, Austria,
2004.

[8] M. Weiser, Ubiquitous Computing. http://www.ubiq.com/weiser/.

18

2 Existing Software and Systems

Georgi Nachev, Technische Universität München

In this work some existing systems for Ubiquitous Tracking are presented: OpenTracker,
which implements a static dataflow model for streams of sensors readings; DWARF - a frame-
work for component-based peer-to-peer systems; VRPN - a static network-transparent ab-
straction between applications and pre-defined trackers and Trackd - a commercial system
from VRCO Inc., which abstracts the tracking from the other applications and offers a com-
mon API.

2.1 Introduction

Augmented Reality applications are highly dependent on accurate and precise tracking data.
Since current tracking technologies do not always provide such information everywhere in real-
time, application developers have to combine several trackers to minimize negative properties
of one tracker by another. The result are sensor networks. They can be used to inform
applications about the current position and orientation of objects.

Currently the most AR applications use their own customized solution of this problem.
Typically, these solutions are hardly reusable in other systems. Because there are no stan-
dard interfaces between these technologies, the development of large-scale sensor networks
is inhibited. In this paper, I will look at some existing architectures and systems, which
configure ubiquitous tracking environments that are composed of several sensor networks.

Some current systems have a modular architecture that allows to apply different types of
tracking devices easily and simultaneously. This is tipically the approach in commercial VR
systems, which offer support for many popular tracking systems and input devices, but limit
in this way their extensibility and configuration options.

Research systems are usually limited to their particular research domain and are not for
commercial use, but they could offer features that are not provided by other systems.

Needed are tools that allow a high degree of customization, but also easy to use and to
extend. They must allow mixing and matching of different features, as well as simple creating
and maintainance of possibly complex tracker configurations.

2.2 Important goals and requirements

There are many important goals and requirements, which have to be satisfied by the middleware-
systems:

19

• Device abstraction - to provide a fixed interface to the application for different devices
and tracking systems, and to offer simple services for relaying the data over the network
between several hosts.

• Support for distributed simulation (simultaneous users, or to better exploit available
hardware). Decoupled simulation is used in almost any VR software. It can be imple-
mented either by multithreading or symmetric multiprocessing on the host, or by set of
hosts working as a cluster.

• Describe and configure complex dependencies and interactions between devices and
subsystems.

• Model AR applications as distributed systems which are formed spontaneously by mo-
bile and stationary components.

• The system has the possibility of runtime reconfiguration and recalibration.

• Ease of use - no additional code is required to adapt the system to the needs and
requirements of the user.

• No single point of failure - in case of failure of the infrastructure parts of the overall
sensor network can still be used.

Nowadays there is no available system, that provides all these features together, but the
developers have recognized the importance of these requirements and partly implemented
them into the applications described below.

2.3 Existing Systems

In this section the systems are presented in detail: OpenTracker - research system, part of the
Studierstube project [5] DWARF - AR-framework based on distributed services with dynamic
setup [1]; VRPN[9] and trackdVRPN[7] - comercially used systems for Virtual Reality.

2.3.1 OpenTracker

OpenTracker is architecture that provides a framework for the different tasks involved in
tracking input devices and processing multi-modal input data in virtual environments and
augmented reality applications [4]. It eases the development and maintenance of hardware
setups in a more flexible manner, what is achieved by using an object-oriented design based
on XML, taking full advantage of this technology by allowing to use standard XML tools for
development, configuration and documentation. The OpenTracker engine is based on a data
flow concept for multi-modal events. Transparent network access allows easy development of
decoupled simulation models. Finally, the application developer’s interface features both a
time-based and an event-based model, that can be used simultaneously, to serve a large range
of applications.

OpenTracker has the following important characteristics:

• An object-oriented approach to an extensive set of sensor access, filtering, fusion, and
state transformation operations.

20

• Behavior specification by constructing graphs of tracking objects from user defined
tracker configuration files.

• Distributed and decoupled simulation by network transfer of event at any point in the
graph structure.

OpenTracker encourages exploratory construction of complex tracking setups, what can be
useful for end users, who want to fully exploit their hardware without any custom program-
ming, as well as for developers, who can easily build test environments. The modular approach
gives instant access to wide range of tracking related functionality for any application.

Typically in the most VR and AR applications tracking data passes through a series of
steps - it is generated by tracking hardware, read by device drivers, transformed to fit the
requirements of the application and sent over the network to other hosts. Different setups
and applications may require different subsets and combinations of the steps described, but
the individual steps are common among a wide range of applications.

The main concept behind OpenTracker is to break up the whole data manipulation into
these individual steps and build a data flow network of the transformations. Each transfor-
mation is represented by a node in a data flow graph. They are connected by directed edges
to describe the direction of flow. The origin of the edge is the child node and the endpoint is
the parent node. A port is a distinguished connection point for an edge. Each node has one
or more input ports and a single output port. The output port of one node is connected to
any of the input ports of another node - see Figure 2.1.

Figure 2.1: Data flow concept in OpenTracker

After receiving a new data event via one of its inputs the node computes a new update
for itself and sends the new data event out via its output port. Because computations have
typically more than one parameter, multiple input ports are needed. An input port can also
be connected to several output ports. This enables the connection of several children nodes
to the same input port of a node, but the parent node only distinguishes the input ports, not
the actual children. On the other side, an output port can also be connected to many input
ports of different nodes. However the child node cannot selectively send events to one parent,
but only equally to all.

21

T
estSource

C
onsoleSink

E
ventT

ransform
B

utton

T
estSourceD

efault
P

osition
M

erge

C
onsoleSource

InterT
raxSource

C
onsoleSink

C
onsoleSink

M
erge

C
onsoleSource

D
efault

P
osition

T
estSource

N
etw

orkSink

R
ef

C
onsoleSink

N
etw

orkSink

T
estSource

R
ef

Figure 2.2: Examples of data flow graphs, built with OpenTracker

22

Another important concept is, that different edge types are distinguished. They are typed
by typing the ports of the nodes they connect. Only two ports of the same type can be
connected and this type is equal to the type of the edge. There are three edge types: event,
event queue and time dependent. Event type is implemented by event passing; by the event
queue is possible to query the number of stored events and retrieve them by index, and
the time dependent interface can be queried by specifying a point in time, for which the
appropriate data is returned.

OpenTracker also differentiates between three types of nodes - source nodes, which receive
their data from external sources; filter nodes, that are intermediate nodes and modify the
values received from other nodes; and sink nodes, which propagate their data to external
ouputs (see Figure 2.2). Most source nodes encapsulate a device driver, that directly accesses
a particular tracking device. Others emulate a tracker via the keyboard, access network data
or simply respond with constant values. The filter nodes receive data from one or more child
nodes and compute their own state based on the collected data. The computation may be
geometric transformation of the children’s values, prediction in order to compensate measuring
lag, merge of different parts of data values, conversion of one data type into another, etc. The
sink nodes are similar to source nodes but distribute data rather than receive it. They include
output to network multicast groups, debugging output to a user interface or threadsafe shared
memory.

Because the intent of OpenTracker is to provide an auxiliary library that is to be integrated
into VR and AR applications, the software is kept very lightweight and customizable. The
library is implemented in C++ and is build around a small set of core classes, a parser that
builds the runtime structure from a configuration file and the main loop driving the event
model. Any other functionality is implemented by a set of module classes that can be easily
extended or modified. There is no fixed interface to the integrating application in order to
maximize flexibility. Application programmers have to use one of the supplied nodes, or
supply their own module implementing sink nodes as interfaces to their application.

Figure 2.3: Distributed tracking data over the network

One of the important goals of the OpenTracker software is to share tracker data over the net-
work. There are several reasons why it is desirable to do this. Network support makes it easy
to span multiple operating systems, in particular if a specific tracking device or service is only

23

available at one particular host. To achieve some degree of load balancing multi-processing
based on inexpensive PCs becomes possible with little configuration effort. And last but not
least, using tracker data at multiple hosts, distributed virtual environments(Figure 2.3) are
achieved.

Figure 2.4: Example configuration file and the resulting graph.

OpenTracker allows multiple senders and receivers of tracker data to communicate asyn-
chronously through the network using IP multicasting. Because each of the senders and
receivers can operate independently, this approach implements effectively decoupled simula-
tion. It is even possible for a single host to operate as a sender and receiver at the same
time.

The data flow graph in OpenTracker is defined from user by tracker configuration files.
These configuration files are written in markup language defined in XML, that consists of
elements, annotated by name-value pairs called attributes and structural model of the possible
ways these elements may be nested - Figure 2.4.

OpenTracker maps elements to nodes and attributes to members of these nodes. Then
XML parser builds a tree of elements representing the given configuration file, and so for
each element a new node can be created. The corresponding members are set according to
the parsed string values of the attributes. The parent - child relationship of the data flow is
directly mapped onto the parent - child relationship of the XML elements.

An example made by Studierstube Augmented Reality Project(Figure 2.5), where Open-
Tracker is integrated, represents an experimental pen-and-pad interface, where a vision track-
ing approach(ARToolkit) for the pad and a magnetic tracker(Ascension Flock of Birds) for

24

Figure 2.5: Experimental pen-and-pad, where vision and magnetic tracking data are combined

the pen are combined. Two separate servers for video and magnetic tracking send their mea-
surement over the network to a rendering host, where the combined data is picked up by an
OpenTracker component.

2.3.2 DWARF

DWARF stands for Distributed Wearable Augmented Reality Framework and represents a
framework for component-based peer-to-peer systems. Here AR applications are modelled as
distributed systems which are formed spontaneously by mobile and stationary components
[2]. Such a system can reconfigure itself at runtime by exchanging components and changing
component configurations. It represents a network of collaborating distributed services, which
expose their requirements, called Needs, and their offers, so called Abilities - Figure 2.6. In
fact there is no central management-component, but a service manager on each network node.
They control their local services, maintain descriptions of them and set up connections over
the network to other services. The service description is written in XML and contains its
Abilities, Needs and communication protocols, called connectors.

Both the Abbilities and the Needs have a set of attributes describing the quality of service
parameters of the service, that are offered respectively expected. Thus, it is possible for the
service manager to select abilities, that can provide a sufficient quality of service to satisfy a
given need, or to ensure at runtime, that the desired quality of service is still provided.

This concept leads to several advantages:

• Platform independence and heterogeneity: The hosts, where DWARF services were
deployed may use different operating systems. As well there is a flexibility in the choice
of the programming language for building a particular service. Usually this choice is
made according to the third-party library needed to build the service.

• Modularity and Distribution: All hardware details are abstracted by services, which
become highly reusable and flexible.

25

Figure 2.6: Services are connected by Needs and Abilities

• Easily integration of third-party hard- and software: There are several components
available from other research groups, which can be reused. They can have special
requirements like a fixed runtime environment, but using appropriate wrappers around
these components, ease of use can be achieved.

• Remote Monitoring: For monitoring and debugging purposes a so called DWARF In-
teractive Visualization Environment is developed. This tool represents a graphical view
of the network of interconnected services that dynamically changes if the system con-
figuration changes, see Figure 2.7. Developers can trace arbitary event streams in the
system.

Figure 2.7: Interactive Visualization Environment

The DWARF Services are grouped in subsystems, which are responsible for specific tasks.
Some important ones are:

26

• The Presentation Subsystem provides an Viewer - 3D-OpenGL-Renderer where mod-
els can be loaded and registered with Needs for position data. It supports various
file formats such as OpenInventor(.iv), VRML1 and VRML2(.wrl), and three different
render modes for mono- and stereovision. The Viewer is based on the OpenInventor
implementation Coin by Systems in Motion.

• In the Tracking Subsistem any tracking hardware is encapsulated in appropriate services.
For example there is a service, that provides tracking data from the ART Dtrack system.
Furthermore this subsystem provides a calibration service for tuning purposes.

• The Application Subsystem is the place where the application developer can put its
own services.

• In the Input Subsystem all services concerned with user interaction and input devices
have to be implemented.

An example project made by Augmented Reality Research Group using DWARF is SHEEP(Figure
2.8) - The Shared Environment Entertainment Pasture. In this demo a multiplayer sheep-
herding game is used to explore the possibilities of multimodal, multiuser interaction with
wearable computing in an intelligent environment.

Figure 2.8: SHEEP-demo

The game is centered around a table with a beamerprojected pastoral landscape. Play-
ers can use different intuitive interaction technologies (beamer, screen, HMD, touchscreen,
speech, gestures) offered by the mobile and stationary computers. Building on the DWARF
framework, the system uses peer-to-peer, dynamically cooperating services to integrate dif-
ferent mobile devices (including spectators laptops) into the game.

Ubiquitous Tracking in DWARF

In order to dynamically adapt tracking middleware systems to changes in sensor infrastucture,
an approach is proposed, in which diverse and widespread heterogeneous tracking sensors are
automatically discovered [3]. Ubiquitous Tracking or Ubitrack obtains an optimal estima-
tion of arbitrary geometric relationships and their accuracy at any time, in response to an

27

application’s query of environmental state for a given definition of optimality. The spatial
information is modelled by a Spatial-Relationship (SR) graph. The nodes of this graph are all
identifiable objects in the (real or virtual) world, the edges represent the spatial information
of two node objects.

When the relationship of one object to another is searched, all edges from one to the other
are traversed and all information on these paths is evaluated. This framework introduces
an abstraction layer between the Sensor and the Application Layer - Ubitrack Layer. It
aggregates tracking data, inferres knowledge of spatial relationships, and builds runtime data
flow graphs from the abstract spatial relationship graph. Then a query API incorporating
the desired spatial relationship and the specification of the evaluation function is provided to
applications.

In order that Ubitrack can be integrated into DWARF, an Ubitrack Middleware Agent(UMA)
is introduced, which is started on each host. It is connected to the local ServiceManager and
receives in this manner information about all local objects and the measurements between
them. All possible paths between arbitrary local objects can be computed and stored together
with the corresponding set of attributes. After this step, all local objects are grouped in a
supernode and the paths are cached. If a new object appears in the tracking range of a local
tracker, it is stored as an anonymous object until it can be identified. Attempting to iden-
tify this object the local UMA tries to connect to other UMAs which are in close range and
requests information about their local objects in order to find similarities. If the anonymous
object can be identified, a communication channel to its UMA is set up. The new object is
now stored in both UMAs. If the object leaves the local tracking range, it is deleted from the
local UMA as well as the communication channel.

2.3.3 VRPN

The Virtual Reality Peripheral Network(VRPN) provides a device independent and network-
transparent interface between applications and several physical devices and systems (e.g.
Tracking) used in a VR-system [6]. It offers moreover:

• Multiple simultaneous connections to devices

• Automatic reconnection to failed remote servers

• Time stamps for all messages

• Clock synchronization between client and server on different machines

• Storage and replay of interactive sessions

Usually in the laboratories multiple graphics display stations require access to several VR-
peripherals. To run interface cables from each device to each host is often inconvenient.
Different devices, which perform the same function, may have different interfaces. Some
of them require special connections or work only on certain operating system. VRPN is
developed to address all these issues, using local device servers, which communicate with
graphics engines through the network.

Talking about VRPN, we have to define first the canonical device types, which specify a
consistent interface and semantics. Particular device is of one or more canonical device types
and implements its or their interface(s). Some device types are: Tracker, Button, Analog,

28

Dial, Force Device. Then we have to map the capabilities of this device onto its interface.
VRPN uses the following features to do this:

• Factoring devices based on their functions: When a device implements more than one
function, the VRPN driver will export interfaces for multiple device types. Thus, no
client-side code change is required to move an application to different sets of I/O devices.

• Mapping devices to connections: Although there are exported multiple interfaces for a
single device, they all are internally mapped to the same network connection to maintain
communication efficiency.

• Enabling devices to export multiple interfaces: The same physical device may act as
different device types at different times. Both interfaces are exported under different
names. A special case is the layered device - a higher-lever behavior is built on top of
an existing device. Application code can afterwards attach to either or both devices -
Figure 2.9.

Figure 2.9: Example layered device.

Each device driver in VRPN may have a server- and client-side, which communicates over
a connection object. No dependence on particular port on the server and on the client is
required for this object. Although it is complicated, it runs only at connection startup: Each
server opens a well-known UDP-Port for connection requests from clients. A client opens
any available TCP port and sends a UDP request to the server asking it to connect to that
TCP port. The client waits for response from server and returns control to the application
if it is not received. Once the reliable TCP chanel is established, it is used to establish
a separate unreliable UDP chanel between the hosts, also for version checking and clock
synchronization. In case of dropped connection, a message is sent to any interested objects
indicating the drop. A client will attempt to re-establish the link using the same algorithm.
This enables the application to be robust and very useful in cases of long start up times. Even
though VRPN is designed to separate client and server over network connections, it is also
possible to run in separate process on the same machine, or within the same process.

29

The possibility of VRPN to store and replay a session is realized by a log file mechanism,
by which all messages passed over a connection are saved. This can be used e.g. to record
user motion during human-factors studies. The logging is done at either the client side or the
server side. Then an application can connects to a stored file and reads from its devices, or
replays the original session at its normal rate without any extra code.

One of the most important question using VRPN is, if the performance of the system
is comparable with this of a locally-connected device using device-specific driver. Against
the time costs VRPN measures well. For some configurations the time to read a message
using a remote VRPN server can be significantly less than that of a locally-connected device.
The timing information and latency-reducing optimizations are responsible for this. Network
latency tests between SGI and Linux box within a switched Ethernet showed average one-way
times of 3,3ms for application-level VRPN messages. This includes all overheads from the
operating systems network layers. Slightly lower times was measured from Linux client to a
Windows 98 server, and an average of 1,7ms between SGI client and Windows 98 server.

2.3.4 Trackd

Trackd is a comercial device software from VRCO Inc. for VR applications in the immersive
display industry. It is a small deamon application that takes information from a variety
of tracking and input devices and makes that information available for other applications
to use. The software is used by all VRCO products and many applications form leading
software companies and is available with most commercially installed systems. Its networking
capabilities and support for a variety of operating systems allow different graphics machines
to share information from tracking and input devices [8].

Applications using the Trackd do not need to know what type of hardware device is be-
ing used, because the applications receive data from trackers and input devices through a
generic Application Programmers Interface, called the trackdAPI. This generic interface al-
lows applications to support a range of hardware without having to modify source code, or
write specific hardware drivers. It also allows immersive display owners to change, replace or
upgrade components without having to replace their software, or losing functionality.

The Trackd package is a combination of two applications - Trackd Server and Trackd
Daemon, and various modules, which are compiled as shared object libraries to support
various devices. Each device has its own module.

Trackd Server opens up a connection and ”talks to” tracker or controller devices. It sends
the devices’ data through the network or serial port to a Trackd Daemon, or to another
Trackd Server. Trackd Daemon collects data from any connected devices via the serial port,
or reads data coming across a connector from the Trackd Server. It is also responsible for
storing device data in shared memory. Once in shared memory, the data can be accessed by
applications using the trackdAPI. To handle device data, the Trackd Daemon and Trackd
Server requires configuration files. Each tracker or input controller must be configured in one
of these files.

Both, the Trackd Daemon and Trackd Server can be configured to connect to any of the
supported trackers or controllers. But only the Trackd Daemon is able to write the data into
shared memory for use by the user-application. The Trackd Server is only necessary when an
input device (tracker or controller) can not be directly connected to the system running the
user-application software.

Trackd uses two terms to describe objects that do the actual work within Trackd Deamon

30

and Trackd Server - device and connector. A device is an object that communicates with
a physical input device. Otherwise a connector represents an object that is responsible for
transferring, shipping and storing data. There are three types of connectors in Trackd -
shared memory, serial cable and network(UDP). Connectors and devices are defined in the
configuration files. Each connector and device has a unique set of variables that can be
configured for it. These variables describe how and where a connector is to transfer data, and
how and where a device is to acquire data.

Furthermore, connectors have two ”flavours”, one for tracker data and one for controller
data. A given connector can receive or transmit data for either a tracker or a controller, but
not both. So if a Trackd Daemon were configured for two devices, one a tracker and the
other a controller, two shared memory output connectors would also have to be defined. One
connector to output tracker data to shared memory, and one to output controller data to
shared memory.

Within a Trackd Daemon and a Trackd Server data is transferred from device objects to
outgoing connector objects automatically. There is nothing required in the configuration file
to inform the Trackd Daemon or Trackd Server to transfer the data that is read in by a device
object to an output connector object. If an output connector is defined, any device data of
the same type (controller or tracker) will automatically be passed to the connector. Likewise
input connectors automatically pass their data to output connectors of the same data type.

The Trackd Server can ship data to the Trackd Daemon using one of two connector types:
over a network using UDP or over a serial cable using RS232 ports. The Trackd Daemon can
receive data from a Trackd Server in the same way, but it has one more connector: the shared
memory connector. It is the mechanism used by the Trackd Daemon to write data to shared
memory for use of the VR application.

The device object describes a physical piece of hardware, and the Trackd software knows
the protocol for talking with that hardware device. Each devices that the Trackd supports
has its own shared object library written for it. There are many device types, one for each
tracker and controller that the Trackd package supports.

Figure 2.10: Controller attached to remote PC and tracker attached to VR display system.

The most interesting Trackd scenario is when one of the devices is plugged into the local
machine, and another is plugged into an auxiliary machine with Trackd Deamon running on

31

the local machine, see Figure 2.10.
Connecting devices directly to the VR display system may eliminate a negligible amount

of lag in the transfer of data across the network. But this is usually a judgment call by the
user, which may depend on the limited number of available serial ports on a given system, as
well as cabling requirements for connecting the device.

2.4 Conclusion

Sensor networks minimize negative properties of one tracker by another. Therefore middleware-
systems are developed, which generate ubiquitous tracking environments, consisting of these
networks. They have modular architecture, define standard interfaces, allow to easily and
simultaneously apply different types of tracking devices. Moreover they are easy to use and
to extend, yet allow high degree of customization. Some Similar systems have shown in this
work. Neither of them satisfy all requirements listed in chapter 2, because all have a different
main focus.

32

Bibliography

[1] Augmented Reality Research Group, 2005.

[2] B. Bruegge and G. Klinker, DWARF - Distributed Wearable Augmented Reality
Framework, November 2004.

[3] J. Newman, M. Wagner, M. Bauer, A. MacWilliams, T. Pintaric, D. Beyer,
D. Pustka, F. Strasser, D. Schmalstieg, and G. Klinker, Ubiquitous Tracking
for Augmented Reality, in International Symposium on Mixed and Augmented Reality
(ISMAR) 2004, Arlington, VA, USA, 2004.

[4] G. Reitmayr and D. Schmalstieg, An Open Software Architecture for Virtual Reality
Interaction, in Proceedings of ACM Symposium on Virtual Reality Software and
Technology (VRST 2001), Banff, Canada, 2001.

[5] Studierstube Augmented Reality Project, 2005.

[6] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and A. T.
Helser, VRPN: A Device-Independent, Network-Transparent VR Peripheral System, in
Proceedings of ACM Symposium on Virtual Reality Software and Technology (VRST
2001), Banff, Canada, 2001.

[7] Trackd Overwiew, 2005.

[8] Trackd User’s Guide, 2005.

[9] Virtual Reality Peripheral Network, 2005.

33

3 Algorithms for Tracker Alignment

Basti Grembowietz, Technische Universität München

Given two sensors rigidly connected to each other, tracker alignment is used to determine
the transformation between those two. Once correctly calibrated, the measurements made by
the sensors can be related each other. A short scenario: A camera can be tracked by attaching
a fiducal to it that is tracked by another device; knowledge of the pose of the camera can be
used together with the images obtained by the camera to generate three dimensional models
of the scene perceived.

This paper presents techniques for obtaining the transformation between two coordinate
systems obtained from trackers, starting from the classical way from Tsai, a nonlinear two
stepped algorithm, and ending at a linear one stepped algorithm from Daniilidis which makes
use of dual quaternions.

3.1 Introduction

This section provides an overview about tracker alignment defining what it is, how it can be
achieved and how it is related to hand-eye calibration. After that, some applications will be
shown.

3.1.1 What is Tracker Alignment?

Tracker alignment is needed when more than one tracking system are combined, i.e. trackers
of different tracking systems rigidly connected (see figure 3.1), or if more than one fixed
receiver for the same tracking system is used.

Figure 3.1: alignment of two sensors

34

It is equivalent to hand-eye calibration which in robotics is used to align a camera (“eye”)
fixed on a robot gripper (“hand”) to the gripper.

Sample applications of what can be done with calibrated trackers will be shown in the next
section.

3.1.2 What are Aligned Trackers used for?

As pointed out before, the main advantage of using several different trackers is the combination
of their strengths and the compensation of their weaknesses. Furthermore the same methods
used for tracker alignment can be used to align a camera mounted on a robot with the robot
itself.

The next sections will first explain the general advantage of combining trackers, after that
a few examples will be shown that combine a camera and a robot arm.

Combining Different Sensors

Two or more rigidly connected sensors that use different tracking methods can be combined
using tracker alignment – in figure 3.1, there is an electro-magnetic sensor (Aurora1) used
as well as optical tracking in the infrared spectrum (ARTrack2). The A.R.T tracking has an
update rate of 60 Hz while Aurora only provides 45 Hz at max. On the other side, A.R.T
depends on the line-of-view, Aurora does not. When both are combined a robust hybrid
tracker with high tracking rate emerges that still works if the line-of-sight is not given.

When optical tracking is used with inertial tracking the much higher update rate of the
gyroscopes can be used to obtain pose information if the tracker moves really fast. The
greatest weakness of the gyroscopes, their drift, can be eliminated using the feedback of the
optical tracking.

Combining several trackers is the key to high accuracy tracking and robustness because it
allows adding the trackers’ individual strengths and minimizing their weaknesses.

Robotics Aided Model Generation

Figure 3.2 shows a man semi-automatically digitizing the shape of a car. A laser scanner
mounted on top of a mechanical linkage is moved around the car, and because the pose of
the tip of the robot arm (“hand”) can be related to the pose of the laser scanner (“eye”), the
three dimensional values obtained by the laser scanner moving along can be used to generate
a model of the car.

This scenario can be extended to fully automatically 3D model generation when this arm is
exchanged against an robot arm that uses motors in order to move itself. This new scenario
can be used to inspect the object which should be modeled from every angle, thus taking care
of problems of occlusion, depth focus, resolution, field of view etc.

Loden-Frey, a tailor in Munich, Germany, uses an automatic 3d scanner (see figure 3.3)
to minimize the time the customer needs to stay there for taking measurements needed for
custom-made clothes.

1see http://www.ndigital.com/aurora.php
2see http://www.ar-tracking.com/

35

Figure 3.2: semi-automatic scanning of model

Figure 3.3: full-automatic scanning of human body

Automated Part Acquisition or Assembly

Guided by cameras, robotic arms can be used to grasp and assemble parts. The video camera
provides live feedback for the gripper so that the moves of the gripper can be adjusted
depending on the images.

When correctly calibrated, a robot arm can also be used for high precision welding –
correcting possible interferences of the assembly line (see figure 3.4).

3.2 How to perform Tracker Alignment

The last section explained what tracker alignment is and what can be done once sensors are
properly aligned. This section presents different ways how tracker alignment can be achieved.

3.2.1 Forward Engineering

When a new hybrid tracking device is designed the engineer can modify the design in such a
way that the tracking devices of with the hybrid tracker consists can be mounted physically

36

Figure 3.4: welding using robot arms

only in one way – if this is assured, the trackers are aligned a priori; the engineer can easily
use his CAD-tool to measure the transformation between the two trackers.

Although this is the ideal solution since no calibration by the user is needed at all, the
number of precalibrated hybrid trackers available is extremely low. Another disadvantage is
that the hybrid tracker is static, not allowing any modifications.

3.2.2 Manually Registering Points

Another way to align trackers is shown in figure 3.5. There is an A.R.T system (marked green)
and a camera (marked blue) which have to be aligned, i.e. the unknown transformation X
tracker-to-camera is to be computed.

In the approach described here, the user is asked to use the A.R.T pointer (marked orange)
to point on several well-defined spots in a fixed order on a fiducal. Transformation X can be
computed since AC and AP are measured from the A.R.T system, the geometries of both the
fiducal and the A.R.T pointer are known and as the point correspondences provided by the
user can be related to the camera pose C measured by the camera itself.

An advantage of this approach is that trackers can be build dynamically in contrast to
the previous method. A disadvantage is that the calibration takes much time and heavily
depends on how accurate the user pointed at the predefined spots on the fiducal.

3.2.3 Automatic Alignment from Movements

In contrast to the previous method that asks the user to specify point correspondences, the
following method yields the more accurate results because it just asks the user3 to move the
trackers until enough samples are evaluated.

3In case a robot arm is used, the movements can be predefined wisely. See 3.4.3 for details.

37

Figure 3.5: tracker alignment by manual registration

How this exactly works is subject of the rest of this paper.

3.3 Setup

In the next section two techniques for automatic tracker alignment will be shown and com-
pared to each other; both approaches use the setup illustrated in this section.

Figure 3.6: measurements taken

Figure 3.6 is a schematic depiction of the setup we use for tracker alignment4.

4Note that this setup is not specific for A.R.T tracking and regular optical tracking, the sensors can be
exchanged arbitrarily.

38

We use a fiducal for measuring pose information with the camera5 – these measurements
are called Ci, their coordinate frame origins at the focal point of the camera. The A.R.T
system measures the transformations Ai which are in a different coordinate frame than Ci.

Mathematically speaking we obtain the homogeneous6 transformation 4 × 4 matrices Ai

from the A.R.T sensor and Ci from 3d pose estimation of the camera:

Ai =
[
RAi

~tAi

~0T 1

]
Ci =

[
RCi

~tCi

~0T 1

]

where Rx is a 3× 3 rotation matrix7, ~tx is a 3× 1 translational vector and ~0 = (0, 0, 0)T .

Figure 3.7: transformations computed

Next we select8 movement pairs out of the measurements and compute the relative move-
ments Aij and Cij for both sensors as shown in figure 3.7.

The interstationary transformations Aij and Cij are computed as follows:

Aij =
[
RAij

~tAij

~0T 1

]
= AjA

−1
i

Cij =
[
RCij

~tCij

~0T 1

]
= C−1

j Ci

We can use the transformations Aij and Cij to compute the transformation X (shown in
figure 3.8) that aligns both trackers:

X =
[
RX ~tX
~0T 1

]
5for camera calibration see [5]
6for details see 3.6.2
7see 3.6.1 for details
8for good criterions how movement pairs should be selected see 3.4.3

39

Figure 3.8: AX = XB visualized

Mathematically stated, we search a solution to the following equation:

AijX = XCij

This problem is known under the name AX = XB. We rename Aij to A and Cij to B and
obtain the fundamental equation:

AX = XB (3.1)

3.4 Solving AX=XB

This section will present several methods for solving the hand-eye calibration problem. At
first, we will present the classical way presented by Tsai [4] which solves for rotation first and
translation second. Then a simultaneous approach by Daniilidis [1] for solving for translation
and rotation at the same time using dual quaternions will be shown.

3.4.1 Classical Solution

In 1989, Tsai and Lenz [4] used two phases to obtain transformation X. For this split the
fundamental equation AX = XB what will be shown in the next section, after that the two
phases will be presented.

In the first phase the rotation of X is calculated using Rodrigues representations for the ro-
tation matrix9; in the second phase the translation of X is computed and thus X is completely
defined.

9for Rodrigues formula see 3.6.4

40

Splitting AX = XB

The fundamental equation for tracker alignment

AX = XB

is written in matrix form[
RA ~tA
~OT 1

] [
RX ~tX
~OT 1

]
=
[
RX ~tX
~OT 1

] [
RB ~tB
~OT 1

]

which is decomposed into two linear equations:

RARX = RXRB (3.2)

RA~tX + ~tA = RX~tB + ~tX (3.3)

Note that the rotational part RX is separated from the translational part ~ts in (3.2); Tsai
and Lenz use this to compute RX first, after that ~tx can be evaluated from (3.3).

Phase 1 - Computing RX

This phase consists of two steps in order to compute RX respectively its Rodrigues represen-
tation ~rx.

Tsai and Lenz use a modified version of Rodrigues formula to a rotation around the unit
vector ~n with angle θ

~r = 2 sin
θ

2
~n

How a rotation matrix R can be obtained from ~r is shown in 3.6.4, the other way round in
3.6.3. In the first phase, ~rx will be computed instead of RX directly. To be more precise,
~r′x = λ~rx is computed first, second ~rx. ~r′x is defined as

~r′x =
1

2 cos
(

θRX
2

)~rx =
1√

4− |~rx|2
~rx

Step 1: Compute ~r′x For all selected transformations (Aij , Cij) a system of linear equations
is established

(~rAij + ~rCij)× ~r′x = ~rCij − ~rAij (3.4)

with rotation ~r′x as unknown; using a skew-symmetric matrix10 instead of the cross-
product

10see 3.6.5 for [a]x

41

[~rAij + ~rCij]x~r′x = ~rCij − ~rAij (3.5)

this can be solved uniquely by linear least squares. As the skew-symmetric matrix is
always singular, at least two pairs of transformations have to be used.

The proof that (3.5) respectively (3.4) are correct is not shown here due to its length,
it can be looked up in [4].

Step 2: Compute ~rx From ~r′x we easily obtain ~rx using the following computation:

~rx =
2~r′x√

1 + |~r′x|

As mentioned before, the rotation ~rx in Rodrigues representatino can be converted easily
to matrix rotation RX – take a look at 3.6.4 for details.

Phase 2 - Computing ~tx

Once RX is known, we can easily obtain the translation ~tx from the following equation derived
from (3.3):

(RAij − I)~tx = RX~tCij − ~tAij

Again, we use at least two pairs of transformations and solve the resulting system of linear
equations by using linear least squares.

3.4.2 Modern Way

In 1998, Daniilidis [1] proposed an approach solving both translation and rotation at the
same time, thus having much better error characteristics than Tsai and Lenz’s approach. For
this “modern” way solving AX = XB he used dual quaternions which are shortly introduced
here11, starting with complex numbers.

Complex Numbers

Quaternions are a non-commutative extension of complex numbers. As our particular interest
is rotation in R3 using quaternions, rotation in R2 using complex numbers will be described
here. For a more general introduction to complex numbers see 3.6.6.

A complex number c = c1 + c2i = (c1, c2)T can also be represented as follows:

c = |c|(cos θ + sin θi) = |c|(cos θ, sin θ)T (3.6)

where θ is the angle between the complex number interpreted as vector in the complex plane
C and the axis of real numbers (see figure 3.9). θ is also called the argument of a complex
number.

42

Figure 3.9: rotation in R2 using complex numbers

Now to the promised rotation in 2d: When multiplying two general complex numbers a and
b, their absolute values |a| and |b| are multiplied and their arguments θa and θb are added.
This means a multiplication geometrically is a rotation and a scaling. When multiplying with
a unit complex number (i.e. having an absolute value |c| = 1) a rotation only is performed.

An example is given in figure 3.9, where a marked green is a vector in R2 with an angle to
the x/real-axis of θa = 20. b marked blue is a unit complex number with θb = 32 generated
using (3.6). The resulting red vector ab is calculated treating a as complex number and
multiplying with b. The size of a is preserved because |b| = 1, the arguments are added so
that θab = θa + θb = 52 – a rotation using complex numbers was done.

Quaternions

Quaternions [2] are, as already said, an extension of the complex numbers – in contrast to
the complex numbers that algebraicly form a field, the quaternions are non-commutative and
hence form a division algebra.

Sir William Rowan Hamilton discovered the quaterions on 1834-10-16 when walking over
Brougham Bridge in Dublin, Ireland (see 3.7). A quaternion consists similar to complex
numbers of a real and an imaginary part – the imaginary part is now a vector instead of
a single scalar. A short introduction to quaternions in general is in 3.6.9, here we focus on
rotation only.

For every rotation about an normalized axis ~n with an angle θ a corresponding unit quater-
nion q can be constructed the following way:

q =
(

cos θ
2

sin θ
2~n

)
A vector ~x ∈ R3 can be rotated by a quaternion q, resulting in ~y ∈ R3 using(

0
~y

)
= q

(
0
~x

)
q̄

11for longer introduction take a look at [1] and his references about this topic

43

Superiority of Quaternion in Rotation

In the following, some advantages of quaternions as representations of rotations in comparison
to an rotation matrix and Euler angles are described.

size A quaternion only stores 4 values, an orthogonal matrix stores 9.

complexity It is much easier to obtain the rotational angle θ and the axis ~r from a quaternion
or construct a quaternion from given θ and ~r than in the rotation matrix of Euler angles
representation. Also combining rotations, i.e. multiplying rotation representations,
takes less steps when using quaternions instead of rotation matrices.

interpolation When “smooth” rotations are needed e.g. in computer games, this can be much
more easily applied with interpolation between quaternions than the other representa-
tions. This is called Spherical Linear Interpolation, or SLERP for short.

gimbal lock A gimbal is a device to measure the rotation of an object in 3d using Euler
angles. A gimbal lock is when two of the three gimbals cooincide, for details see 3.6.8.
This does not occur using quaternions.

robustness If an rotation matrix is, due to numerical instablilties, “off a little”, it is not
ortogonal anymore, therefore not a representation of a rotation anymore. A quaternion
that is “off a little” still represents a valid rotation, furthermore it can be easily re-
normalized by dividing by its norm. With rotation matrices this is much more complex.

Dual Numbers

The second ingredient to dual quaternions are dual numbers. They were invented by Clifford
in 1873 [1], an introduction can be found in 3.6.10.

Dual numbers can be used (in dual vectors) to representate lines in R3 known as Plücker
coordinates12:

Figure 3.10: Representation of a line in R3 with moment ~P and direction ~U

12Information about Plücker coordinates is obtained from a nice article by Lionel Brits available at
http://www.flipcode.com/articles/pluecker part01.shtml; Plücker coordinates are a specialization of Grass-
mann coordinates.

44

Given a vector ~p representing a point in R3 and a vector ~u representating the direction of a
line in R3 (see figure 3.10), i.e. a directed line, the Plücker coordinate corresponding to that
line is defined as L = (~p, ~u × ~p)T = (~u,~v)T where ~u is called line direction and ~v = ~u × ~p is
called the line moment.

Plücker coordinates can also be generated from two arbitrary points ~p and ~q on the line:

L =
(
~p− ~q
~p× ~q

)
=

 p1 − q1
p2 − q2
p3 − q3

 ,

 p2q3 − p3q2
p3q1 − p1q3
p1q2 − p2q1

T

Some applications achieved with Plücker coordinates are noted in 3.6.11.

Dual Quaternions

Dual quaterions are defined very similar to quaternions – the only difference is that instead
of real numbers, dual numbers are used.

We write a dual quaternion q̌ = (š, ~̌q)T where š is a dual number and ~̌q = (q̌1, q̌2, q̌3)T is a
dual vector.

Dual quaternions can also be written as q̌ = q+q′ε = (q, q′)T where q and q′ are quaternions.
Daniilidis [1] showed that like quaterions can perform rotations with the expression xrot =

qxq̄, dual quaternions can perform general motions of lines with the expression črot = q̌č¯̌q. In
the following section, this will be discussed briefly.

Line Transformations with Unit Dual Quaternions

As we are already familiar with Plücker coordinates from section 3.4.2, we define a line
l = (~l, ~m)T . We introduce the special constraint of that the line direction ~l must be a unit
vector, i.e. |~l| = 1. Together with the constraint that ~l is perpendicular to ~m, i.e. their dot
product ~lT ~m = 0 this guarantees that an arbitrary line in space has four degrees of freedom.

Daniilidis shows in [1] that for an arbitrary line la transformed with (R,~t) into a line lb,
there exists a unit dual quaternion q̌ such that ľb = q̌ľa ¯̌q. The proof of this will be sketched,
starting from vector notation, then to quaternions and finally ending at dual quaternions.

vector A transformation (R,~t) applied to line lb = (~lb, ~mb)T resulting in la can be achieved
using the following equations:

~la = R~lb

~ma = R~mb + ~t×R~lb

Now we change to quaternion notation, implying that a vector ~x is now represented as
quaternion x = (0, ~x)T .

quaternion R is represented as a unit quaternion q as shown in 3.4.2. After converting vectors
to quaternions and using the identity (0,~t× ~q) = 1

2(qt̄+ tq) we obtain

la = qlbq̄

ma = qmbq̄ +
1
2
(qlbq̄t̄+ tqlbq̄)

45

dual quaternion Defining q′ = 1
2 tq and q̌ = q + q′ε and after rearranging the lines to Plücker

coordinates, we have

la +maε = (q + q′ε)(lb +mbε)(q̄ + q̄′ε)

After also rewriting the lines la and lb as dual quaternions, we finally get a formula
quite similar to rotation using quaternions:

ľa = q̌ľb ¯̌q

q̌ is a unit dual quaternion since |q̌| = 1.
Note: If q̌ is a solution, −q̌ is a solution as well. We enforce an unique solution by the

constraint that the non-dual scalar part has to be positive.
Summarizing the relations above, q̌ = (q, q′)T is assembled by

q from R (see 3.6.9)

q′ =
1
2
tq

Screws and Dual Quaternions

The scalar and vector part of a unit dual quaternion are related to screws. This will be
quickly shown here.

According to Chasles’ theorem [1], every rigid transformation can be represented as a
rotation about an axis not through the origin and a translation along that axis (pitch).
Furthermore, the angle of rotation θ is the same both in the rigid transformation and the
screw.

Figure 3.11: geometry of a screw

Figure 3.11 shows a typical screw; l is the rotation axis, d is the so called pitch, ∗ is the
angle of the rotation. Furthermore, the translation ~t of the original transformation is shown.

Daniilidis [1] shows that the parameters d and the rotation axis described by (~l, ~m)T defining
the screw can be obtained as follows:

46

direction ~l The direction of the rotation axis ~l of the screw is parallel to the original rotation
axis, i.e. the direction is the same.

pitch d The pitch d of the screw is the projection of the translation on the rotation axis:

d = ~tT~l

moment ~m Introducing the auxiliary point c, the moment of the rotation axis can be com-
puted:

~m = ~c×~l

=
1
2
(~t×~l +~l × (~t×~l) cot

θ

2
)

Note that the moment ~m and hence the screw axis is not defined if θ is either 0 or 180.

The next step towards tracker alignment with dual quaternions is the computation of the
unit dual quaternion q̌ representing the screw. This can be done as follows13:

q̌ =
(

cos θ
2

sin θ
2
~l

)
+
(

−d
2 sin θ

2

sin θ
2 ~m+ d

2 cos θ
2
~l

)
ε

=
(

cos
(

θ+dε
2

)
sin
(

θ+dε
2

)
(~l + ~mε)

)
=

(
cos θ̌

2

~̌l sin θ̌
2

)

where θ̌ = θ + dε and ~̌l = ~l + ~mε. This formula again looks quite similar to the equation of
pure rotation for quaterions.

Using Dual Quaternions for Tracker Alignment

The fundamental equation AX = XB written using dual quaternions is

ǎq̌ = q̌b̌

or equivalently but more similar to usual quaterion notation

ǎ = q̌b̌¯̌q (3.7)

Note that (3.7) is the most compact equation for tracker alignment because the homogeneous
transformations in (3.1) consist of 12 components each in contrast to the 8 components needed
for each dual quaternion.

According to the Screw Congruence Theorem14 the pitch and the angle of a screw remain
invariant under coordinate transformations. As this means that the scalar parts of ǎ and b̌
are equal only the vector parts are used for computing q̌:

sin
θ̌a

2

(
0
~̌a

)
= q̌

(
0

sin θ̌b
2
~̌b

)
¯̌q = sin

θ̌b

2
q̌

(
0
~̌b

)
¯̌q

13for a derivation of the conversion screw to dual quaternion see [1]
14elegantly proven with dual quaternions in [1]

47

If the angles θa and θb are neither 0 nor 360, this can be simplified to(
0
~̌a

)
= q̌

(
0
~̌b

)
¯̌q

which is just the motion of the screw axes.

Solving ǎ = q̌b̌¯̌q

As shown in the last paragraph, we do not have to compute the scalar part of the dual
quaternions. Thus we re-define ǎ = (0, ~̌a) and b̌ = (0,~̌b).

We split the fundamental equation (3.7) into a dual and a non-dual part as follows:

a = qbq̄

a′ = qbq̄′ + qb′q̄ + q′bq̄

After multiplying on the right with q and using the identity q̄q′+ q̄′q = 0, this can be written
as

aq − qb = 0
(a′q − qb′) + (aq′ − q′b) = 0

Disregarding the scalar parts, this can be written in matrix form:

S

(
q
q′

)
= 0

where S is the 6× 8 matrix(
~a−~b [~a+~b]x 03×1 03×3

~a′ − ~b′ [~a′ + ~b′]x ~a−~b [~a+~b]x

)

and ~x is the vector part of the corresponding quaternion x.
Next we construct the 6n× 8 matrix T from n motion pairs

T =

S1

S2
...
Sn

and compute the Singular Value Decomposition (SVD) T = USV T ; if T is of rank 6, i.e. not
all screw axes are mutually parallel, the two last right singular vectors ~v7 and ~v8 span the
nullspace of T , hence: (

q
q′

)
= λ1 ~v7 + λ2 ~v8

= λ1

(
~x1

~y1

)
+ λ2

(
~x2

~y2

)
(3.8)

48

where the 8× 1 vectors ~v7 and ~v8 are each split into two 4× 1 vectors (~x1, ~y1)T respectively
(~x2, ~y2)T .

Using the two constraints we have on the the quaternions

qT q = 1 and qT q′ = 0

we obtain the following two quadratic equations in λ1 and λ2:

λ2
1 ~x1

T ~x1 + 2λ1λ2 ~x1
T ~x2 + λ2

2 ~x2
T ~x2 = 1 (3.9)

λ2
1 ~x1

T ~y1 + λ1λ2(~x1
T ~y2 + ~x2

T ~y1) + λ2
2 ~x2

T ~y2 = 0 (3.10)

Because λ1 and λ2 never both vanish, we assume that ~x1
T ~y1 6= 0 so that λ2 6= 0. Furthermore

we introduce a new variable s = λ1/λ2 and rewrite (3.9) to obtain

λ2
2(s

2 ~x1
T ~x1 + 2s ~x1

T ~x2 + ~x2
T ~x2) = 1 (3.11)

which delievers us two solutions for s. For each of these solutions we compute s2 ~x1
T ~x1 +

2s ~x1
T ~x2 + ~x2

T ~x2 and choose the s that returns the largest value. Using (3.11) to obtain
λ2 and from this directly λ1 = sλ2, the resulting transformation for tracker alignment is
computed via (3.8).

The rotation R and translation ~t of the resulting dual quaternion q̌ can be easily extracted:
the non-dual part q corresponds to R, ~t can be computed as ~t = 2q′q̄.

3.4.3 Improving Accuracy

Tsai and Lenz give several recommendations in [4] to improve accuracy, most of these are
specific to hand-eye-calibration, i.e. tracker alignment using a robot and a camera. Their
applicable recommendations together with those of Schmidt et al [3] are shortly presented
here.

Selecting Movement Pairs

If movement pairs are obtained simply by their temporal order, there usually is no big dif-
ference between the movement pairs. For tracker alignment, two movements with different
rotation axes have to be used anyhow, otherwise there will be no reasonable result.

Schmidt et al [3] propose as optimality criterion for the selection of movements the absolute
value of the scalar product between the two rotation axes of the sensor that inherently yields
better accuracy:

sij,kl = |aT
ijakl| (3.12)

where aij is the rotation axis of the movement from station i to j. The sum of all sij,kl should
be minimal.

If the rotation axes of two movements would be orthonormal but the rotation itself is very
little (only a small angle used), this movement pair is ill-suited for tracker alignment as well.
Because of this, a threshold angle θ is used for preselecting movement pairs; those selected,
i.e. those with an angle α fulfilling θ ≤ α ≤ (π − θ), are examined using (3.12).

49

Eliminating Outliers

The more movement pairs used, the more accurate the result will be. So far the theory. Using
real measurements, a single outlier, i.e. a wrong measurement / result of great magnitude,
can have a devastating effect to the accuracy of the whole tracker alignment.

For solving this problem, a RANSAC approach like the following can be used.

1. Select m random samples from the movement pairs that pass preselection (see 3.4.3),
where each sample consists of 2 movements (minimum for tracker alignment).

2. Compute the RXi and ~tXi for all samples.

3. Perform another series of movements and determine the error between the copmuted
transforms and the obtained movements A and B. Apply a threshold for the error and
keep only consistent movement pairs.

4. Compute RX and ~tX using all consistent movement pairs left.

3.5 Conclusion

This paper presented an introduction for tracker alignment. Several applications were men-
tioned as well as general methods how tracker alignment can be accomplished. Two different
methods were shown in detail, a two stepped algorithm by Tsai and a more robust solution
by Daniilidis. Experiments in [1] demonstrated the superiority of the method using dual
quaternions, resulting in lower errors both in rotation and translation.

3.6 Mathematical Definitions

3.6.1 Rotation Matrix

A rotation matrix performing a rotation around unit vector ~n = (n1, n2, n3)T with angle θ is
can be computed from axis-angle representation as follows:

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

where

r11 = n2
1 + (1− n2

1) cos θ
r12 = n1n2(1− cos θ)− n3 sin θ
r13 = n1n3(1− cos θ) + n2 sin θ
r21 = n1n2(1− cos θ) + n3 sin θ
r22 = n2

2 + (1− n2
2) cos θ

r23 = n2n3(1− cos θ)− n1 sin θ
r31 = n1n3(1− cos θ) + n2 sin θ
r32 = n2n3(1− cos θ) + n1 sin θ
r33 = n2

3 + (1− n2
3) cos θ

50

Note that the rows and columns both are orthogonal to each other and that the matrix is
normalized.

3.6.2 Homogeneous Transformation

Using homogeneous transformations, we have a unified way to describe both translation and
rotation as matrices, allowing to apply a rigid transformation R~x + ~t by multipling with a
single 4× 4 matrix.

Homogeneous transform for rotation only:

R =

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

Homogeneous transform for translation only

T =

1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

Homogeneous transform for both translation and rotation

Tr =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

Extracting the rotation matrix R from a transformation Tr is very simple, it is direcly given
as the upper left 3×3 matrix. The translation vector is also easily extracted, it’s in the upper
right column.

3.6.3 Extracting Rotation Axis and Angle from Rotation Matrix

From Shiu and Ahmad [6] there is the following way to extract the rotation axis ~n =
(n1, n2, n3)T and its according angle θ from a rotation matrix15:

cos θ =
1
2
(r11 + r22 + r33 − 1)

and

sin θ = ±1
2

√
a+ b+ c

where
a = r32 − r223

b = r13 − r231

c = r21 − r212

15rotation matrix is defined in 3.6.1

51

Since our angle θ is 0 ≤ θ ≤ π this leads us to a unique solution:

θ = arctan
sin θ
cos θ

From θ we can compute the rotation axis ~n by three equations. Which equations we
compute depends on whether r11, r22 or r33 is the most positive.

If r11 is most positive

n1 = sgn (r32 − r23)

√
r11 − cos θ
1− cos θ

n2 =
r21 + r12

2n1(1− cos θ)

n3 =
r13 + r31

2n1(1− cos θ)
where

sgnx =
{

+1 if x ≥ 0
−1 otherwise

If r22 is most positive

n2 = sgn (r13 − r31)

√
r22 − cos θ
1− cos θ

n1 =
r21 + r12

2n2(1− cos θ)

n3 =
r32 + r23

2n2(1− cos θ)

If r33 is most positive

n3 = sgn (r21 − r12)

√
r33 − cos θ
1− cos θ

n1 =
r31 + r13

2n3(1− cos θ)

n2 =
r23 + r23

2n3(1− cos θ)

No matter which factor is the most positive one, we always get a unique θ and ~n for each
rotational matrix.

3.6.4 Modified Rodrigues Formula

This modified Rodrigues formula is used by Tsai and Lenz [4] as substitute for a rotation
matrix defined in 3.6.1:

~r = 2 sin
θ

2
~n

where 0 ≤ θ ≤ π. Using this representation, a rotation matrix R can be calculated the
following way:

R =
(

1− |~r|2

2

)
I+

1
2
(~r~rT +

√
4− |~r|2[~r]x)

52

For definintion of [~r]x see 3.6.5.
Note that this conversion does not contain any trigonomic functions in contrast to usual

Rodrigues formula to rotation matrix conversions.

3.6.5 Skew-symmetric Matrix [~a]x

[~a]x is a skew-symmetric matrix generated from the three dimensional vector ~a = (a1, a2, a3)T

as follows:

[~a]x =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

A skew symmetric (also called antisymmetric) matrix A has the following characteristic16:
A = −AT – for a symmetric matrix this is AT = A.

A skew symmetric matrix [~a]x multiplied with another vector ~b is equivalent to the cross
product ~a×~b, i.e.

~a×~b = [~a]x~b = (~aT [~b]x)T

3.6.6 Complex Numbers

A complex number z = a + bi = (a, b)T consists of a real part a and an imaginary part b. i
is a square root of −1, i.e. i2 = −1. Complex numbers17 were first used in the 17th century
and proved the Fundamental Theorem of Algebra (see 3.6.7). For us, complex numbers are
of particular interest as they can be used to implement rotation in R2 as shown in 3.4.2.

The basic calculation rules addition, subtraction, multiplication and division of complex
numbers are defined (both in regular representation and in vector-form) as follows:

Addition

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i(
a
b

)
+
(
c
d

)
=
(
a+ c
b+ d

)
Subtraction

(a+ bi)− (c+ di) = (a− c) + (b− d)i(
a
b

)
−
(
c
d

)
=
(
a− c
b− d

)
Multiplication

(a+ bi)(c+ di) =(ac− bd)
+ (ad+ bc)i(

a
b

)(
c
d

)
=
(
ac− bd
ad+ bc

)
16taken from Eric W. Weisstein et al. ”Antisymmetric Matrix.” From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/AntisymmetricMatrix.html
17nice overview is at http://www.clarku.edu/ djoyce/complex/

53

Division

(a+ bi)
(c+ di)

=
(ac+ bd) + (bc− ad)i

c2 + d2(
a
b

)
(
c
d

) =
1

c2 + d2

(
ac+ bd
bc− ad

)

The conjugate of a complex number x = a + bi = (a, b)T is denoted as ā = a − bi = (a,−b);
the absolute value of a complex number x is |x| =

√
a2 + b2 = |(a, b)T |.

3.6.7 Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra states that every polynom of degree n has exactly n
zeroes:

f(x) = xn + an−1x
n−1 + · · ·+ a0

can be rearranged to
f(x) = (x− z1)(x− z2) · · · (x− zn)

where ai and zi are complex numbers.

3.6.8 Gimbal Lock

A gimbal lock is the coincidence when two rotational axis of an object are pointing in the
same direction. This means that an object won’t rotate the way it is expected to rotate.
Gimbal locks occur when using Euler angles as means to rotation as in this representation,
the Euler angles are evaluated for each axis indepenently and in a fixed order.

Here is an example of a gimbal lock18:
Assume that an object is being rotated in the order Z,Y,X and that the rotation in the

Y-axis is 90 degrees. In this case, rotation in the Z-axis is performed first and therefore
correctly. The Y-axis is also rotated correctly. However, after rotation in the Y axis, the
X-axis is rotated onto the Z-axis.

Thus, any rotation in the X-axis actually rotates the object in the Z-axis. Even worse, it
begins to rotate the object in the X-axis.

A convinient solution to this problem is to make use of quaternions.

3.6.9 Quaternions

A quaternion is a 4-tupel consisting of one real part and three imaginary parts; it can be
written as q = a + bi + cj + dk = (a, b, c, d)T where a, b, c and d are real numbers, a is the
real part, b, c and d form the imaginary part, and i, j and k are imaginary units for that the

18taken from matrix faq of gamedev.net

54

following multiplication table applies:

i j k

i −1 k −j
j −k −1 i
k j −i −1

We can also write a quaternion q as

q =
(
s
~q

)
= s+ q1i+ q2j + q3k

with s ∈ R and ~q = (q1, q2, q3)T ∈ R3. A quaternion q can be constructed from a vector ~x by
setting the real part to zero, i.e. x = (0, ~x). The conjugate q̄ of a quaternion q is defined as

q̄ =
(

s
−~q

)
= s− q1i− q2j − q3k

General calculation rules using p = (r, ~p)T and q = (s, ~q)T are defined as follows:
Addition

p+ q =
(
r
~p

)
+
(
s
~q

)
=
(
r + s
~p+ ~q

)
Subtraction

p− q =
(
r
~p

)
−
(
s
~q

)
=
(
r − s
~p− ~q

)
Multiplication19

pq =rs+ ~q~p+ s~p+ r~q + ~p× ~q

=

rs− p1q1 − p2q2 − p3q3
q1r + sp1 + q2p3 − q3p2

q2r + sp2 + q3p1 − q1p3

q3r + sp3 + q1p2 − q2p1

Note that since the multiplication of quaternions uses a cross-product, it is not commutative.

The norm of a quaternion is also defined similar to complex numbers:

|q| =
√
qq̄

=

√(
s
~q

)(
s
−~q

)
=
√
s2 + |~q|2

=
√
s2 + q21 + q22 + q23

19This way of multiplying quaternions is also called the Grassmann product

55

Unit quaterions are quaternions with a norm of 1, i.e. |q| = 1, these are used to represent
rotations in 3.4.2.

A quaternion can be used to calculate the cross-product of two vectors ~p and ~q by generating
the two quaterions p = (0, ~p) and q = (0, ~q), multipying them to generate the new quaterion
r = (s, ~r). The vector ~r is the cross-product ~p × ~q, the scalar part s is the dot-product ~p~q
with opposite sign.

3.6.10 Dual Numbers

A dual number are defined as

x̌ = a+ bε =
(
a
b

)
with ε2 = 0 and a, b ∈ R.

General calculation rules for two dual numbers ǎ = (a1, a2)T and b̌ = (b1, b2)T are defined
as follows:

Addition

ǎ+ b̌ =
(
a1

a2

)
+
(
b1
b2

)
=
(
a1 + b1
a2 + b2

)
Subtraction

ǎ− b̌ =
(
a1

a2

)
−
(
b1
b2

)
=
(
a1 − b1
a2 − b2

)
Multiplication

ǎb̌ =
(
a1

a2

)(
b1
b2

)
= (a1 + a2ε)(b1 + b2ε)

= a1b1 + a1b2ε+ a2b1ε+ a2b2ε
2

= a1b1 + (a1b2 + a2b1)ε

=
(

a1b1
a1b2 + a2b1

)
Division

ǎ

b̌
=

(
a1
b1

a2
b1
− a1b2

b21

)

for any b1 6= 0. This is why the dual numbers form an abelian i.e. commutative ring but not
a field.

Our main use of dual numbers in this papers is for their representation of lines, see 3.4.2.

56

3.6.11 Application of Plücker Coordinates

Plücker coordinated can be used to in following applications:

check if two lines are identical Given L1 and L2 are Plücker coordinates, they are the same
line if L1 = αL2 with α ∈ R\{0}. If α is negative, the lines have opposite directions.

check if two lines intersect Given L1 = (~U1, ~V1) and L2 = (~U2, ~V2), β is the sum of their dot
products β = U1V1 + U2V2, the following three cases can occur:

β = 0 L1 and L2 do intersect.

β < 0 L1 and L2 pass clockwise (see figure 3.12).

β > 0 L1 and L2 pass counterclockwise.

check if a line intersects a triangle If a line L hits a triangle given by three lines T1, T2 and
T3, which all point either clockwise or counterclockwise, an intersection is applied when

L hits one or two lines Ti ∈ {T1, T2, T3} If L intersects one of the lines defining the
triangle directly, one or two of the βs from the above are zero.

L hits triangle somewhere else If L intersects somewhere else, all βs have the same
sign.

Figure 3.12: Lines 2 and 3 pass line 1 clockwise

57

3.7 History of Quaternions

Figure 3.13: Plaque at the Brougham Bridge in Dublin, Ireland

Sir William Rowan Hamilton is said to have discovered the central concept of quaternions
when taking a walk with his wife; on the Brougham20 Bridge, he had the idea and was so
fascinated that he curved it into the bridge. In memory of this moment, there is a plaque
(see figure 3.13) with the following text:

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton
in a flash of genius discovered the fundamental formula for quaternion multiplica-
tion
i2 = j2 = k2 = ijk = −1
& cut it on a stone of this bridge

20The Broughman Bridge is nowadays called Broom Bridge

58

Bibliography

[1] K. Daniilidis, Hand-eye calibration using dual quaternions, Int. Journ Robotics Res, 18
(1999), pp. 286–298.

[2] S. W. R. Hamilton, On Quaternions, Proceedings of the Royal Irish Academy, 3
(1844), pp. 1–16.

[3] H. N. J. Schmidt, F. Vogt, Robust Hand-Eye Calibration of an Endoscopic Surgery
Robot Using Dual Quaternions, Pattern Recognition, 25th DAGM Symposium, LNCS
2781, (1999), pp. 548–556.

[4] R. L. R. Tsai, A new technique for fully autonomous and efficient 3D robotics hand/eye
calibration, IEEE Transactions on Robotics and Automation, 5 (1989), pp. 345–358.

[5] R. Y. Tsai, Versatile camera calibration technique for high-accuracy 3-D machine vision
metrology using off-the-shelf TV cameras and lenses, IEEE Journal of Robotics and
Automation, 3 (1987), pp. 323–344.

[6] S. A. Y. Shiu, Calibration of wrist-mounted robotic sensors by solving homogeneous
transform equations of the form AX=XB, IEEE Transactions on Robotics and
Automation, 5 (1989), pp. 16–29.

59

4 Sensor Fusion: The Kalman Filter and its
Extensions

Katharina Pentenrieder, Technische Universität München

Sensor Fusion aims to coveniently integrate data from different sensors in order to compute
a dynamic systems’s state. Here problems arise out of uncertainty. In general the knowledge
about the system is incomplete and the given data is corrupted with noise. Hence the state
of the system can only be estimated.

The Kalman Filter is a very robust and popular approach for stochastic estimation given
noisy measurements. This paper therefore concentrates on the ideas of Kalman Filtering for
linear and non-linear process models and the application of the filter for the task of combining
different data sets. Furthermore some extensions of the Kalman Filter are presented which
are useful for sensor fusion: the SCAAT method and the Federated Kalman Filter.

4.1 Introduction

Our task is sensor fusion, we want to combine data sets received from different sensors. A
very simple approach would be to take all the data available together with a nicely derived
deterministic process model and calculate a least-squares solution. So given this result, why
should we consider approaches which are a lot more difficult? Why should be bother about
stochastic models or estimation concepts?

The answer is given by the nature of the regarded systems. Deterministic models and
control theories do not suffice for the analysis of general physical systems, whether they handle
chemical processes or economy. Our models for these processes will mostly be imperfect and
can only approximate the system. Furthermore the data is imperfect or incomplete. And
finally the system is driven by disturbances which can neither be modelled nor controlled
deterministically [5]. Hence we cannot assume perfect knowledge or perfect control over the
system.

Knowing about these difficulties we need to develop a system model which takes these
uncertainties into account and optimally estimates the desired quantities. Here we find the
Kalman Filter - an optimal linear recursive estimator. The filter incorporates all available
system information to estimate the current value of the variables of interest such that the
estimated error is minimized when some presumed conditions are met. Because of its sim-
plicity and robustness the Kalman Filter is subject of extensive research and application, for
example in Computer Graphics. The filter even works well if the conditions necessary for
optimal estimation are not met. It uses knowledge about the system and the measurement

60

device, statistical descriptions of process noise, measurement error and uncertainties and any
available information about initial conditions of the variables. Unlike other data processing
algorithms the Kalman Filter does not need to reprocess all previous data every time new
measurements arrive but computes new estimates based on the last estimate and current
measurements. It can therefore be regarded as a recursive algorithm.

The basis of the filter is provided by the ”prediction-correction-cycle” shown in figure 4.1.
The variables of interest are stored in a so called state vector and an initial estimate is used
to start the cycle. Then the current state estimate and error covariance are projected ahead
in the time update step in order to get the a priori estimates for the next step. After that
the current measurements are incorporated as a feedback in the measurement update step to
obtain improved a posteriori estimates.

Figure 4.1: Kalman Filter Cycle

As we see, the Kalman Filter is a good approach for stochastic estimation from noisy sensor
measurements. Because of its popularity and appropriateness for our purpose of data fusion
we will concentrate on the ideas of the filter, its extensions and applications.

In the following sections the filter will be described in detail. First the simple Discrete
Kalman Filter, its models and update equations are presented in section 4.3. This filter deals
with linear models. For the case of non-linear systems the Extended Kalman Filter can be
applied which is discussed afterwards in section 4.4. Finally section 4.6 considers Sensor
Fusion using the Kalman Filter and provides examples and applications of the introduced
filters. But before we consider the filter and its extensions a short introduction to the necessary
probabilistic basics is given.

4.2 Stochastic Basics

This section can by no means give a full introduction to stochastics. It will only provide the
definitions which are necessary for the following explanations on the Kalman Filter.

4.2.1 Probability and Random Variables

The probability that the outcome of a discrete event favors a particular event A is given by

p(A) =
possible outcomes favoring A

total number of possible outcomes

For two outcomes A and B the probability p(A ∪ B) = p(A) + p(B) and for independent
outcomes p(A∩B) = p(A)p(B). The conditional probability of outcome A given B is defined

61

as
p(A|B) =

p(A ∩B)
p(B)

A random variable is essentially a function that maps all points in the sample space to
numbers. X(t) for example might map time to the expected position of an object. For
continuous random variables the probability of a single discrete event is 0, hence we rather
evaluate intervals. A common function is the cumulative distribution function FX(x) =
p(−∞, x]. Even more important is its derivative, the probability density function:

fX(x) =
∂

∂x
FX(x)

With f , the probability over an interval [a, b] is defined as

pX [a, b] =

b∫
a

fX(x)dx

4.2.2 Mean and Variance

Given random variables we would like to know about their average. This mean or so called
expected value for a discrete random variable is calculated by averaging the probability-
weighted events:

E(X) =
n∑

i=1

pixi

Similar for continuous random variables we get

E(X) =

∞∫
−∞

xfX(x)dx

The expected value alone doesn’t provide that much information about a random variable.
We are also interested in the variance of the signal around this mean value because it would
give us an idea of how much noise there is in the signal. The variance is

V ar(X) = E[(X − E(X))2] = E(X2)− E(X)2

Its square root is known as standard deviation σX =
√
V ar(X).

4.2.3 Gaussian distribution

The Gaussian distribution or normal distribution is a special probability distribution which
is very popular for modeling random systems [2]. The reason for this is that many random
processes occurring in nature actually appear to be normally distributed or at least very close.
A normally distributed random process X ∼ N (µ, σ) with mean µ and standard deviation σ
has the probability density function

fX(x) =
1√

2πσ2
e−

1
2

(x−µ)2

σ2

62

4.2.4 White noise

The mean and variance which were introduced in the previous paragraphs tell us something
about the spatial characteristics of a signal, about how much noise there is in the signal.
In order to get an idea of the noise rate over time, the spectral characteristics, the term of
autocorrelation must be introduced. Autocorrelation is the correlation of a signal with itself
over time and is given as

RX(τ) = E[X(t)X(t+ τ)]

White noise is an important case of a random signal as its autocorrelation function is

RX(τ) =

{
a if τ = 0
0 otherwise

Hence white noise is a signal which is completely uncorrelated with itself at any time except
the present. That’s why white noise signals are also called independent. Although it is
impossible to achieve this signal in practice it is a very important building block for design
and analysis [2].

4.3 Discrete Kalman Filter (DKF)

The first section already introduced the Kalman Filter as an optimal linear estimator imple-
menting prediction and correction steps. Now we have a more detailed look at its underlying
models and equations.

4.3.1 Process and Measurement Models

The state x ∈ Rn of a discrete time-controlled process shall be estimated. The process model
is given by the linear stochastic difference equation

xk = Axk−1 +Buk + wk−1

and the measurement model is
zk = Hxk + vk

Hence the next process state xk is related to the previous state xk−1 by an n×n matrix A. uk

is an optional control input related to xk by the n× l matrix B. The m×n matrix H relates
the state xk to the measurement zk. wk and vk represent the process and measurement noise.
They are assumed to be independent and normally distributed:

p(w) ∼ N (0, Q)

p(v) ∼ N (0, R)

with process and measurement covariances Q and R.

63

4.3.2 Origins of the filter

To approach the Kalman Filter and its computational and probabilistic origins we define an
a priori and an a posteriori state estimate: x̂−k , x̂k ∈ Rn. x̂−k is estimated with information
given prior to step k and x̂k is the estimate at step k given measurements zk. Using these
estimates we can define a priori and a posteriori estimate errors e and covariances P :

e−k = xk − x̂−k ek = xk − x̂k

P−k = E[e−k e
−T
k] Pk = E[ekeTk]

Computational Origin For the computational origin of the filter we have a look at the
”prediction-correction-cycle”. For the prediction step we can use the process model on the
state estimate of the previous cycle step x̂k−1 giving us an a priori estimate x̂−k . Now the
equation that computes an a posteriori state estimate shall combine the results of the pre-
diction and the information gained from a new measurement zk.

x̂k = x̂−k +K(zk −Hx̂−k)

The correction is done using a linear combination of the a priori estimate and a difference
zk −Hx̂−k weighted by the so called Kalman gain K. The difference is also called innovation
or residual and reflects the discrepancy between the predicted and the actual measurement.

The Kalman Filter was introduced as an optimal estimator. It minimizes the a posteriori
error. In order to fulfill this criterion the Kalman gain K in the upper equation has to be
chosen accordingly. The derivation of K is presented in section 4.3.5 on optimality.

K =
P−k H

T

HP−k H
T +R

If the measurement noise covariance R approaches 0, K weights the residual more heavily and
the measurements are trusted more. Whereas if P , the estimate error covariance, approaches
0 the gain weights the residual less. Hence the measurements are trusted less.

Probabilistic Origin The Kalman Filter minimizes the mean squared error of the estimated
parameters under some presumed conditions. One of them is that the noise is assumed to
be normally distributed. An important property of the Gaussian distribution is, that it is
completely determined by its mean and variance. In the Kalman Filter process exactly these
two parameters, the first and second moments of the state distribution, are propagated from
time step to time step.

E[xk] = x̂k

E[(xk − x̂k)(xk − x̂k)T] = Pk

The a posteriori state estimate x̂k reflects the mean (the first moment) of the state distribution
and the a posteriori error covariance Pk represents the variance of the state distribution (the
second moment). Hence if the conditions are met and the noises are independent and normally
distributed, the state distribution follows

p(xk|zk) ∼ N (x̂k, Pk)

64

4.3.3 Discrete Kalman Filter Cycle

The filter estimates a process by using a form of feedback control. The process state at some
time is estimated and then a feedback in form of measurements is obtained. This results in
the ”prediction-correction-cycle”.

In the time update step the current state estimate is used to obtain the a priori state
estimate for the next process step. In addition the a priori estimate error covariance is
updated.

Time update equations

x̂−k = Ax̂k−1 +Buk

P−k = APk−1A
T +Q

The measurement update equations are responsible for the feedback. New measurements are
used to obtain an improved a posteriori estimate.

Measurement update equations

Kk = P−k H
T (HP−k H

T +R)−1

x̂k = x̂−k +Kk(zk −Hx̂−k)
Pk = (1−KkH)P−k

Here we find the equation which was introduced in section 4.3.2 on the computational origin.
First the Kalman gain Kk is computed. This n×m matrix minimizes the a posteriori error
covariance equation Pk = E[ekeTk] (see section 4.3.5 on optimality). Then the a posteriori
state estimate x̂k is computed as a linear combination of the a priori estimate x̂−k and the
weighted residual (zk − Hx̂−k). This difference is also called innovation. Finally the error
covariance is updated using the Kalman gain and the a priori estimate error covariance P−k .

Influence of Q and R Section 4.3.2 already observed some of the influence of the covariances.
Now we have a more detailed look at the influence of the process and measurement noise
covariances Q and R.

The process noise covariance Q contributes to the overall uncertainty. When Q is large,
the Kalman Filter tracks large changes in the data more closely than for smaller Q. R, the
measurement noise covariance, determines how much information from the measurement is
used. If R is high, the Kalman Filter considers the measurements as not very accurate. For
smaller R it will follow the measurements more closely.

Figure 4.2 shows two visualizations of a Kalman Filter proceeding for different covariances
Q and R. The red lines represent the measurement data, the green lines are the estimated
states. Corresponding to their influence a small covarianceQ combined with a large covariance
R results in a very smooth curve which follows the measurements only slowly (a). For an
opposite constellation the estimate curve sticks close to the measurement curve (b).

4.3.4 Assumptions

Three basic assumptions are made in the Kalman Filter formulation. Are they too restrictive
or can they be considered as reasonable?

65

(a) Q small and R large (b) Q large and R small

Figure 4.2: Influence of Q and R

First of all the underlying models are linear. This is justifiable for several reasons because
such a simple approach is very often adequate. And in case of non-linearities the typical
engineering approach is to linearize about some point. Furthermore linear models are more
easily manipulated and the theory is much more complete than for the non-linear case.

The second assumption concerns the probability distribution. Here again some practical
reasons apply. The Gaussian distribution is completely determined by its mean and covariance
and - as the section on stochastic basics already stated - a lot of random processes in nature
are normally distributed or close to it. It can be shown mathematically that the sum of
independent random variables with any distribution tends towards a Gaussian distribution.

Finally the noise is considered to be white, hence it is not correlated over time. We already
know that white noise cannot really exist but still there are some good reasons for this
assumption. Physical systems have a certain frequency bandpass, a range of input frequencies
to which they can respond. Furthermore they are typically driven by wideband noise. Now
the first motive for a white noise assumption is that within this system bandpass the wideband
noise and the white noise look identical. But the real advantage of the whiteness assumption
lies in the mathematics which are vastly simplified.

Although the three assumptions are reasonable we’d like to know about the results of the
Kalman Filter in situations where they do not hold. If the noise is not Gaussian the Kalman
Filter is the best linear estimator given only the mean and standard deviation of the noise.
Thus non-linear estimators may be better.

For the case of non-linearity in the process or measurement model the Filter can be modified
to linearize about the current mean and covariance. This so called Extended Kalman Filter
is discussed in section 4.4.

4.3.5 Optimality

Given the assumptions, the filter is optimal in the sense that it minimizes the estimated error
covariance P . This optimality is based on the computation of the Kalman gain K which is
then used to update the a priori state and error covariance estimates. Hence the goal is to
find a Kalman gain that minimizes the a posteriori estimate error covariance

Pk = E[eteTt] = E[(xk − x̂k)(xk − x̂k)T]

66

The first step to achieve this is to set

x̂k = x̂−k +Kk(zk −Hx̂−k)

and zk = Hxk + vk

This results in Pk = E[sks
T
k] with

sk = (I −KkH)(xk − x̂−k)−Kkvk

(xk − x̂−k) = e−k is the error of the prior estimate. It is uncorrelated with the measurement
noise and therefore the expression can be modified to

Pk = (I −KkH)E[e−k (e−k)T](I −KkH)T +KkE[vkv
T
k]KT

k

= (I −KkH)P−k (I −KkH)T +KkRkK
T
k

The diagonal of Pk contains the mean squared errors, hence minimizing the sum of the
diagonal - called the trace of the matrix - means minimizing the sum of the mean squared
errors. So in order to derive the Kalman gain we take the trace of Pk, differentiate it with
respect to Kk, set the result to 0 and solve for Kk.

∂T [Pk]
∂Kk

= −2(HP−k)T + 2Kk(HP−k H
T +R) = 0

Kk =
P−k H

T

HP−k H
T +R

4.3.6 Examples

To get a better idea of the functioning of the Kalman Filter some basic examples are presented
next.

1D voltage measurement For this 1D case the process and measurement model are very
simple.

xk = xk−1 and zk = xk

The process and measurement noise are assumed as Q = 10−5 and R = 10−2. For simulation a
random voltage value m is generated and the measurements are calculated through a normal
distribution z ∼ N (m, 0.1). Figure 4.3 shows the results of the Kalman Filter process.
The red line indicates the voltage measurements and the green line represents the predicted
state estimates. As we see, the Kalman Filter allows to smooth the irregular and noisy
measurements.

3D position measurement We assume a motion with constant acceleration. Our state
vector maintains the positional data together with velocity and acceleration information.

x = (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈)T

The process and measurement model are given by the following linear equations:

x(t+ δt) = A(δt)x(t) + w

67

Figure 4.3: 1D voltage measurements

A =

1 0 0 δt 0 0 (δt)2

2 0 0
0 1 0 0 δt 0 0 (δt)2

2 0
0 0 1 0 0 δt 0 0 (δt)2

2
0 0 0 1 0 0 δt 0 0
0 0 0 0 1 0 0 δt 0
0 0 0 0 0 1 0 0 δt
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

zxzy
zz

 = z(t+ δt) = Hx(t) + v

H =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

As the process and measurement noise values are not known, they are assumed to be 0. Again
we run the discrete Kalman Filter cycle on a set of measurements, received from a tracker
system.

1. compute δt since previous estimate

2. compute state transition matrix A(δt)

3. do the prediction and correction steps

In the 1D example we took fixed values for the error covariances Q and R. Generally these
values are set manually or determined by running a general purpose optimizer offline, over a

68

pre-recorded test data set. The results for two different parameter sets (Q,R) are given in
figure 4.2.

4.4 Extended Kalman Filter (EKF)

4.4.1 Non-Linearity

For a lot of interesting applications the linearity assumption for the discrete Kalman Filter
does not hold. Still the filter can be applied successfully using an extended version. The
Extended Kalman Filter linearizes about the current mean and covariance of the process
to be estimated. It does that using the partial derivatives of the process and measurement
functions which will be introduced in the next paragraph. Thus it allows us to compute
estimates in face of non-linear relationships by modifying the models and update equations.

4.4.2 Process and Measurement Models

The linear models of the discrete Kalman Filter are now replaced by non-linear stochastic
difference equations:

xk = f(xk−1, uk−1, wk−1)

zk = h(xk, vk)

Instead of using matrices the mapping from the previous state xk−1 to the current state xk

is done by the process function f and the measurement function h relates the current state
xk to the measurement zk.
As we do not know the individual values of the noise wk, vk we assume a zero-mean Gaussian
distribution and approximate the state and measurement vectors by setting the noise to 0.
x̂k−1 is some a posteriori estimate from a previous time step.

x̃k = f(x̂k−1, uk−1, 0)

z̃k = h(x̃k, 0)

4.4.3 Linearization

To estimate this non-linear process its model equations are modified to linearize about the
state and measurement vector approximations from above.

xk ≈ x̃k +A(xk−1 − x̂k−1) +Wwk−1

zk ≈ z̃k +H(xk − x̃k) + V vk

Here xk and zk are the actual state and measurement vectors, x̃k and z̃k are their approxi-
mations. The matrices A, H, W , V are Jacobians with partial derivatives of the functions f
and h.

Ak =
∂f

∂x
(x̂k, uk, 0)

Wk =
∂f

∂w
(x̂k, uk, 0)

Hk =
∂h

∂x
(x̂−k , 0)

Vk =
∂h

∂v
(x̂−k , 0)

69

4.4.4 Extended Kalman Filter Cycle

The prediction and correction steps run similar to the discrete cycle. But due to the non-
linearity the update equations slightly differ from the linear case.

Time update equations

x̂−k = f(x̂k−1,uk, 0)
P−k = AkPk−1A

T
k +WkQk−1W

T
k

The current state xk−1 is projected ahead to determine an a priori estimate. The process
function is used but as the individual noise values are unknown wk−1 is set to 0 and an
approximation is computed. Then the a priori estimate for the error covariance is calculated.
The update equation uses the Jacobian matrices A and W .

Measurement update equations

Kk = P−k H
T
k (HkP

−
k H

T
k + VkRkV

T
k)−1

x̂k = x̂−k +Kk(zk − h(x̂−k , 0))
Pk = (I −KkH)P−k

For the measurement update the Kalman gain is computed similar to the discrete approach.
Because of the non-linearity the measurement Jacobians H and V are applied. Afterwards
the state and the error covariance are updated and their a posteriori estimates are retrieved.
Again the values of the measurement noise vk are not known and are thus set to 0.

4.4.5 Example

Let’s consider again the 3D example of section 4.3.6. If we extend it to rotation tracking an
Extended Kalman Filter is needed to face the rotation update.

State and Models The state vector now contains the position data (x, y, z) with its first
and second derivatives and the rotation as quaternion r together with the angular velocity
and acceleration.

x = (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈, rx, ry, rz, rw, ω1, ω2, ω3, ω̇1, ω̇2, ω̇3)T

Using a shorter description of the state x = (pT , ṗT , p̈T , rT , ωT , ω̇T)T the process and mea-
surement models are defined as follows:pk

ṗk

p̈k

 =

I ∆tI 1
2(∆t)2I

0 I ∆tI
0 0 I

pk−1

ṗk−1

p̈k−1

rk = rk−1 ⊗ dk−1 =

= rk−1 ⊗ e∆tωk−1+ 1
2
(∆t)2ω̇k−1 =

= rk−1 ⊗ ev = (cos(
1
2
|v|) v

|v|
, cos(

1
2
|v|))

70

zk = h(x) =
(

p
normalize(r)

)
=
(

p
r
|r|

)
The position data is updated linearly as before. But for the rotation the quaternions are
updated according to the formula given above. The measurement model requires a normal-
ization of the quaternion entries but the position vector simply can be extracted from the
state vector. The quaternion update and the normalization are non-linear and thus are the
reason for the application of the Extended Kalman Filter.

Filter Cycle We already learnt the update equations of the EKF. What we need to do is to
compute the Jacobian matrices. A and H can be derived in a straightforward way.

Ak =
∂f

∂x
=
(
AT 0
0 AR

)
Translation and Rotation do not interfere with each other. AT is the matrix from the linear
case above. The Jacobian for the rotation AR is too large to be displayed here. A detailed
representation can be found in [6].

Hk =
[
I 0 0 ... 0 0 0
0 0 0 HR 0 0 0

]
Hk extracts the position data and normalizes the quaternion from the state vector through
the matrix HR. Again we refer to [6] for a complete representation of HR.

4.5 Discussion of the Kalman Filter

The Kalman Filter faces the question ”How do we get accurate information out of inaccurate
data?”. Through its prediction and correction cycle it is a robust and stable estimator. It
copes with missing or uncertain data and is able to fuse information from multiple sensors.
In the previous sections we introduced the Discrete and the Extended Kalman Filter.

The DKF is applicable to many system processes with a linear process model. For these
types of systems it is an optimal estimator if the noise can be assumed white and Gaussian.
And here we find the disadvantage of the Discrete Filter. It is only optimal if the three
conditions of linearity and white and Gaussian noise hold. In any other case it can be used
as an estimator but non-linear approaches may be better.

The EKF tries to fill this gap by providing a filter for non-linear models. It linearizes about
the current mean and covariance of the process to be estimated. But nevertheless it cannot
take account of the problem of non-Gaussian models. There the Extended Kalman Filter
tends to be unreliable [4].

For both filter their usage requires the construction of a process and a measurement model.
Furthermore it can be costly and difficult to determine an adequate value for the process
noise covariance. The measurement noise covariance can be computed by running a general
purpose optimizer over a pre-recorded data set.

4.6 Sensor Fusion with the Kalman Filter

In the previous section we introduced the Kalman Filter, its models and equations. Now we
discuss its usability for sensor fusion and present some benefitting extensions.

71

4.6.1 DKF and EKF

What we have is a tool providing us with information as accurate as possible, given uncertain
data. Now we want to apply the Kalman Filter for sensor fusion.

One Filter The easiest way to combine data from multiple sensors is to sum them up in
one filter. This filter takes the measurements from all the sensors as they come. It then
updates the state estimate when enough information is gathered. This is method is applied
for the UNC hybrid landmark-magnetic presented at SIGGRAPH 96 [7]. This system uses a
magnetic tracking system along with a vision-based landmark recognition system. Thereby
it achieves superior image registration for augmented reality assisted medical procedures.
When multiple landmarks are identified in a single image, the correction step is applied to
the magnetic readings.

Separate Filters A different approach would be to use separate filters for each sensor. That
way they can be optimally adjusted for the special cases. In our example in section 4.4.5 we
used an Extended Kalman Filter as the quaternion update requires a non-linear model. Still
for the position update we used the linear approach. So in splitting position and orientation
data we could use separate filters: a DKF for the position estimation and an EKF for the
rotation estimation. This approach is taken by Azuma in his thesis [1]. He wants to predict
future head locations in order to reduce dynamic registration errors. For the estimation
process he applies a Discrete Kalman Filter for translation and an Extended Filter for the
orientation components. The translation parts are additionally broken up into the three axes.
This separation greatly simplifies the filters at the cost of ignoring potential correlations across
the three axes. The linear translation update was already presented in the example above
so we will only present the orientation update. Azuma uses a model which holds rotation as
quaternions. They are updated by the formula qk = 1

2qk−1ω. For the measurement model
the quaternion is normalized as in 4.4.5. Again the filter cycle requires the computation of
Jacobians because of the non-linearity.

4.6.2 SCAAT

Introduction The systems which were presented in the previous section combine multiple
sequential measurements for one single update step. It might be too costly to try a different
non-sequential way. Or they need a certain number of individual observations - which can only
be obtained sequentially - in order to have sufficient state information for estimation. The
big problem resulting from this approach is the so called simultaneity assumption. Several
measurements are necessary for the computation. They are taken sequentially but they are
assumed to be collected simultaneously. For a moving target, even with slow motion, this can
cause severe errors.

Consider the landmark-tracker introduced in the previous section. Its cameras provide
images with multiple landmarks, but only one of them is processable at a time. Several
landmarks must be located in order to allow an update step. Besides the simultaneity error
another problem arises. What if the number of visible landmarks is smaller than the number
needed by the system to do an estimation? The system is no longer able to work.

72

SCAAT idea The SCAAT (single-constraint-at-a-time) approach faces this problem of as-
sumed simultaneity. It allows to combine information from different sensors in a flexible way.
A system that uses multiple constraints which are individually incomplete must incorporate
a sufficient set of these incomplete measurements in order to become observable and allow
estimation. The idea behind SCAAT is that this global observability is obtained over time.
Each measurement provides some information about the current state and can therefore help
to incrementally improve the previous estimates.

Single measurements are isolated from each sensor and directly included in the estimation
process. That way the system uses more recent data and works faster. Individual errors are
more easily identified and dealt with. No simultaneity assumption must be made and hence
no motion restriction is needed to avoid errors. And for the UNC landmark-tracker example
we solve the problem of landmark visibility. In each image only one landmark is processed
and the state estimate for this landmark is updated. After that the image is discarded and a
new one is used for the next processing step.

Tracking Algorithm In order to discuss the SCAAT algorithm in detail we use the example
presented in the SCAAT paper [8]. There they have a position-velocity model with six
parameters for position, six for orientation and constant velocity.

x = (x, y, z, ẋ, ẏ, ż, ψ, θ, φ, ψ̇, θ̇, φ̇)T

The state transition matrix A(δt) projects the state forward in time and implements the
following relationships:

x(t+ δt) = x(t) + ẋ(t)δt

ẋ(t+ δt) = ẋ(t)

The process noise w(δt) is normally distributed with covariance Q(δt).
For each sensor type σ we have a measurement vector zσ(t) and a corresponding measure-

ment function hσ.
zσ(t) = hσ(x(t),bt, ct) + vσ(t)

bt and ct are the tracker source and tracker sensor parameters. For an ideal SCAAT ap-
plication only a single sensor and source pair should be observed for each SCAAT Kalman
Filter measurement update (|zσ| = 1). A reasonable usage for this example is |zσ| = 3 for a
separate handling of the position and the orientation data.

The measurement noise follows a Gaussian distribution, too. Its covariance matrix is Rσ(t).
As the measurement model is non-linear we need to determine the corresponding Jacobian
matrix

Hσ(x(t),bt, ct)[i, j] =
∂

∂x(j)
hσ(x(t),bt, ct)[i]

Algorithm The initial state estimate and error covariance estimate are x̂(0) and P (0).
Whenever a discrete measurement zσ(t) is available:

1. compute δt since previous estimate

2. predict state and error covariance

x̂− = A(δt)x̂(t− δt)

P− = A(δt)P (t− δt)AT (δt) +Q(δt)

73

3. predict measurement and compute corresponding Jacobian

ẑ = hσ(x̂−,bt, ct)

H = Hσ(x̂−,bt, ct)

4. compute Kalman gain
K = P−HT (HP−HT +Rσ(t))−1

5. correct state estimate and error covariance

x̂(t) = x̂− +K(zσ(t)− ẑ)

P (t) = (I −KH)P−

Discussion The SCAAT method integrates individual measurements - which alone are in-
complete constraints - into the complete state estimate. This is accomplished through the
Kalman gain. K minimizes the error covariance if the conditions are met. It reflects the
relative uncertainties of the state and the measurement. K is influenced by the Jacobian H
which reflects the rate of change of each measurement with respect to the current state. K
is recomputed in each step and thus it indicates the amount and direction of information in
state space provided by the individual constraint.

SCAAT has been implemented for the UNC Hiball tracker, a wide-area optoelectronic
tracking system [8]. Simulation results show that the method leads to smoother curves and
higher update rates compared to a conventional approach. There the estimated curves appear
very jerky, mostly because of the low estimate rate. Furthermore SCAAT reduces the root
mean square error.

All in all SCAAT is a stable method which provides estimation with individual measure-
ments. It hereby avoids the simultaneity assumption and is faster and more accurate because
it uses more recent data. Hence it allows better prediction and eases the discrimination of
bad measurements.

4.6.3 Federated Kalman Filter (FKF)

Introduction Multisensor systems which apply classical techniques can get severe problems
with computational load. In addition simplifications are not always reliable and can lead to
poor accuracy, instability or divergence [3].

The idea of using decentralized filtering is a first step to face this difficulties. Independent
local state estimates are constructed which can then be combined in a straightforward way
by a master filter. But what we need to take into account is the master filter rate. We would
like to do some sort of pre-filtering at the lower level in order to achieve a rate reduction at
the master filter level.

Federated Kalman Filter The Federated Kalman Filter allows this local data compression
and presents estimation with globally optimal or suboptimal accuracy as a function of the
selectable master filter rate. Furthermore it offers a high degree of fault tolerance. Its general
structure is shown in figure 4.4. Each local filter is dedicated to a separate sensor subsystem.
The outputs of these local filters are subsequently processed and combined by the larger
master filter.

74

Figure 4.4: Structure of the FKF

Filter Structure Now let’s have a look at the underlying models and equations.
The process and measurement models are the following:

xk = Axk−1 +Gw

The states a related over time via the state transition matrix A. G is the process noise dis-
tribution matrix and w represents white normal process noise with its corresponding process
noise covariance Q. The initial state x̂0 and the noise values w(t) are uncorrelated.

ẑi = Hix + vi

The external measurements from the different sensors i = 1..N are independent and are
related to the true state via the measurement observation matrices Hi. vi is the measurement
noise, assumed to be white and Gaussian, too. Its covariance matrix is Ri.

First we define the composite global filter, its state and error covariance.

x = [x1...xN]T xi =
[
xci

xbi

]

P =

P11 ... P1N

...
PN1 ... PNN

The full state vector is the composite of all N local state partitions. Each of them contains
the common system states xci and the sensor bias states xbi

. The composite covariance P
can contain cross-partitions Pji as well as local partitions Pii.

75

Now given a set of N local state estimates x̂i and their covariances P the global optimal state
estimate of the full system x minimizes the weighted least squares cost index ψ = eTP−1e
with e = (x̂− x). If the cross partitions Pji are zero, the expression is reduced to

ψ =
N∑

i=1

||(x̂i − xi)||2Pii−1

In this case the globally optimal solutions for the state and the error covariance are

x̂m = Pmm[P−1
11 x̂1 + ...+ P−1

NN x̂N]

Pmm = [P−1
11 + ...+ P−1

NN]−1

These equations represent the optimal combination of the local filter results when the local
estimates are uncorrelated.

In order to prove this noncorrelation we have a look at the composite global variables and
the global time propagation step.

1. Processing of local measurement from sensor i

ẑi = Hx + vi; H = [0...Hi...0]

K = PjiH
T
i (HPHT +R)−1 = PjiH

T
i (HiPiiH

T
i +Ri)−1

x̂j = x̂−j +K(ẑi = Hix̂i)

Pjk = P−jk −KHiP
T
ki

2. Global time propagation step
x1

.

.
xN

k

= diag[Aii]

x1

.

.
xN

k−1

+

G1

.

.
GN

w

P11 ... P1N

...
PN1 ... PNN

k

= diag[Aii]

P11 ... P1N

...
PN1 ... PNN

k−1

diag[AT
ii] +

G1

.

.
GN

w[GT
1 ...G

T
N]

[Pji]k = Ajj [Pji]k−1A
T
ii +GiQG

T
i

In (1) equations with j = i indicate that sensor i measurements affect the state i and its
covariance as if only i existed. i measurements do only affect other local states i 6= j if the
cross-covariances Pij are nonzero. Thus if the local filter states are initially uncorrelated then
the local measurement sets can be processed independently, they remain uncorrelated.

With (2) we see that the common process noise w cross-correlates the separate local filter
estimates. In doing some modifications and in introducing an upper bound through the factor
γi we can overcome this correlation.

[Pii]k = Aii[Pii]k−1A
T
ii +GiγiQG

T
i

76

[Pji]k = Ajj [Pji]k−1A
T
ii = 0 if [Pji]k−1 = 0

The same upper-bounding approach can be applied to the state covariance matrix. The result
are that A and the local measurements introduce no cross-correlation. The initial covariance
matrix and process noise covariance bounds are uncorrelated by construction. Hence the local
filter estimates can be combined via the simple equations for x̂m and Pmm given above.

Algorithm

1. set initial local covariances to γi× common system value

2. local filters process own measurements via locally optimal KF

3. master filter combines local filter solutions after each update cycle via the equations

x̂m = Pmm[P−1
11 x̂1 + ...+ P−1

NN x̂N]

Pmm = [P−1
11 + ...+ P−1

NN]−1

4. master filter resets local filter states to master value and local covariances to γi× master
value

Discussion The Federated Kalman Filter offers a highly fault-tolerant, rate-reduced decen-
tralized filtering approach for sensor fusion. It can be applied to systems with fixed local
filter design for stand-alone operations as well as to very flexible local designs which allow
best support for federated filtering operations. The filter provides globally optimal or subop-
timal estimation accuracy depending on the selected master filter rate.

4.7 Conclusion

The fist part of this paper concentrated on the basic concepts of the Kalman Filter. We
presented the models and equations of the Discrete Kalman Filter, an optimal estimator
for linear systems assuming white Gaussian noise distribution. For the non-linear case the
Extended Kalman Filter was introduced. This filter linearizes about the mean and covariance
of the current estimate and presumes independent and normally distributed noise, too. Several
examples have been described to ease the understanding of the presented ideas.

In the second part multiple approaches for sensor fusion are shown. An easy way is to use
the DKF or the EKF directly for the sensor measurements. The information is taken and -
when sufficient data is collected - used for a new update cycle. Depending on the complexity
of the system and the models it can be useful to split the work and use several filters for
different sets of data. This approach creates a simpler structure but in using separate and
independent filters possible correlations between the data sets are ignored.

In addition to these general possibilities two special extensions of the Kalman Filter are
introduced. The SCAAT method allows incremental improvement of previous estimates by
integrating single measurements (or constraints), ideally one at a time. That way an update is
possible even when the given data is not sufficient for a complete state estimate. Furthermore
SCAAT enables more accurate estimation as more recent data is used for update. This is
especially helpful for motion tracking where several landmarks would have be processed for a

77

full update which at the same time would causes prediction errors because of the simultaneity
assumption.

The last extension which was presented is the so called federated Kalman Filter. It uses
a decentralized filtering system to achieve higher performance and tries at the same time to
reduce the master filter rate by the invention of a pre-filtering technique. It supports a variety
of system requirements and facilitates performance trade.

78

Bibliography

[1] R. Azuma, Predictive Tracking for Augmented Reality, PhD thesis, University of North
Carolina at Chapel Hill, 1995.

[2] G. Bishop and G. Welch, An Introduction to the Kalman Filter. SIGGRAPH 2001,
Course Notes.

[3] N. A. Carlson, Federated Square Root Filter for Decentralized Parallel Processing, in
IEEE Transactions on Aerospace and Electronic Systems, 1990.

[4] D. A. Forsyth and J. Ponce, Tracking with Nonlinear Models. Chapter that did not
make it into the book ”Computer Vision - A Modern Approach”.

[5] P. S. Maybeck, Stochastic Models, estimation and control, Vol. 1, in Academic Press
New York, 1979.

[6] D. Pustka, Handling Errors in Ubiquitous Tracking Setups, Master’s thesis, Technical
University Munich, Department of Computer Science, 2003.

[7] A. State, G. Hirota, D. T. Chen, B. Garrett, and M. Livingston, Superior
Augmented Reality Registration by Integrating Landmark Tracking and Magnetic
Tracking, in ACM SIGGRAPH, Addison Wesley, 1996.

[8] G. Welch and G. Bishop, SCAAT: Incremental Tracking with Incomplete
Information, in SIGGRAPH, 1997.

79

5 Adaptive transform of the color space in
image compression

Kirill Yourkov, State Univ. of Aerospace Instrumentation St. Petersburg

BMP (bit map) is one of the main formats in color image representation. The standard
representation of pixels in this format is RGB, it uses 24 bits for one pixel. Every color compo-
nent (Red, Green, Blue) is represented by one byte. Since components in this representation
are correlated, their independent compression is redundant. The linear transform is usually
used at the first stage of image and video compression. Mostly this is the RGB-to-YUV non-
singular linear transform with fixed coefficients. This transform decreases correlation between
color components and improve energy localization. In general this transform is not optimal
since its coefficients are fixed. So, one can choose coefficients of the linear transform for a
given image on the base of some optimality criterion. Information on the applied transform
depends on the image and must be transmitted to the decoder. The author introduces some
optimality criterion. The optimal transform coefficients are found according to this crite-
rion and analyzed. Then the algorithm for efficient transmission of information about the
transform is proposed and estimated.

80

6 Decimation of color-difference components
by wavelet filtering

Alexander Chuikov, State Univ. of Aerospace Instrumentation St. Petersburg

Usually all pixels in color images are presented by the color space transform, e.g., RGB-to-
YUV. After such transform the color-difference components U,V are redundant and decima-
tion of them is used for decreasing the redundancy. Standard decimation uses 1:4:4 format
and decreases the number of U,V- components in 4 times. Such decimation may be consid-
ered as a result of low-pass filtering by the Haar wavelet filter. We generalize such approach
considering the wavelet filtering with more complex filters. As the example we consider the
application of the low-pass 3/5-wavelet filtering of color-difference components providing the
wavelet decimation. Such filtering improves compression without visible destruction of im-
ages. We present the investigation results in this area.

81

7 Real-Time: The Zerberus System

Christian Buckl, Technische Universität München

In this paper a development model for the implementation of augmented reality application
is suggested. The Zerberus System, originally designed for the development of safety-critical
real-time applications, provides a tool chain and offers amongst other things an automatic
code generation. By its platform independancy, by the use of commercial-of-the-shelf hard-
ware and by the acceleration of the development process the costs for system design and
implementation can be reduced.
This paper makes suggestions how the Zerberus System can be used in the context of aug-
mented reality.

7.1 Introduction

In this paper a development model for the implementation of augmented reality is suggested.
The need for development models can be derived from the different requirements imposed by
the application scenarios.
Since several requirements are repeatedly demanded in different applications, an automatic
or tool-aided realisation of mechanisms to satisfy these requirements can be very useful. This
is especially true since for most of the requirements experts of domains different from the
application domain are needed.
This paper is structured as follows: in section 7.2 three typical applications of augmented
reality are described and the requirements on the system solutions are discussed. Section 7.3
introduces the Zerberus System, a development system with a complete tool-chain. A special
focus is set on the Zerberus Language that is used for the specification of the functional design
of the application. But also the other steps are described and it is shown that the Zerberus
System can satisfy the requirements worked out in section 7.2.
Section 7.4 describes modifications that could be useful in the context of augmented reality
development.
Finally section 7.5 summarizes this paper.

7.2 Requirement elicitation

In this section typical requirements imposed by the application scenarios are worked out.
Therefore three different applications are discussed: a medical assistence application for
minimal-invasive surgery, a robot remote control and a maintenance support application.

82

Figure 7.1: Medical assistence

7.2.1 Example applications

Medical assistence The first example that will be discussed is a medical assistence appli-
cation. Since minimal-invasive surgery is increasingly applied to improve the surgery results
and minimize the risk of complications, this is a typical application for augmented reality.
Figure 7.1 shows one possible scenario. Via video, magnetic resonance imaging, ultrasound
or computed tomography scans the instruments position can be determined and the system
can provide useful information to the surgeon.
In the application description the first requirement can be easily detected. Augmented reality
applications must often handle different sensor devices. These devices are often unreliable
and erroneous. For this reason different sensors are frequently used and different algorithms
have to be executed in parallel. Since these algorithms are very complex and time consuming
in some cases it may be necessary to use a distributed system to satisfy the temporal require-
ments.
Another requirement of this application is of course safety: the system must in no case pro-
duce an erroneous result. This requirement is especially hard to fulfill due to the addressed
sensor problems.
A last obvious requirement is the real-time ability of the system. It is not acceptable for the
surgeon to deal with long delays of the computer system.

Robot remote control The second example deals with a remote robot control application.
A possible application scenario is described in [1]. Due to long delays in the communication
link it can be preferable to control a virtual version of the robot instead the real robot. The
user plans and specifies the robot’s actions by manipulating the local virtual version in real
time, see figure 7.2. Once the plan is tested amd determined the user tells the real robot to
execute the specified plan.
This application introduces a new requirement: since the robot may be in a place where
maintenance or repair is very difficult (for example in case the robot operates in a environment
dangerous for human) or even impossible (e.g. in space) the application must be very reliable.
Of course also the safety requirement is valid.

83

Figure 7.2: Remote control

Maintenance support Another established application domain are solutions for maintenance
assisting systems. One possible form of such solutions is shown in picture 7.3. The user wears
a head-mounted display. On the display the system can show instructions and mark objects.
The user can communicate with the system by voice or buttons.
This system also has strict requirements to the real-time ability. A small delay can lead
to a divergence between the illustrated videos and the reality. Therefore strict real-time
requirements have to be met.

7.2.2 Requirements summary

As seen in the discussed applications different non-functional reqirements have to be fulfilled
by augmented reality solutions. These requirements are:

Figure 7.3: Maintenance application

84

1. Safety

2. Reliability

3. Real-time ability

4. Ability to cope with different erroneous sensors

5. Ability for distributed computing

The last item leads to another problem. If several processors are used, the system must
guarantee a correct and sufficient synchronization algorithm.
Another demand is focussed on the performance of the system. Since many algorithms are
very complex and time-consuming it might be preferable to change the hardware as soon as
new, more powerful hardware is available. This leads to the requirement that the system have
to be designed in a way that a platform tranformation can be realized with minimal effort.

7.2.3 Requests on a development system

Due to the specified requirements there are different demands on a development model. The
most important demand is the cost-efficiency of the approach. The development costs should
be reduced by using such a development model. To allow a fast familiarisation with the de-
velopment model the system has to be simple and intuitive. This way the error rate can also
be reduced.
As many requirements are repeatedly needed for AR applications, the development system
should also assist the developer in designing appropriate mechanisms to fulfill these require-
ments. In an optimal case the realization of these mechanisms could be automatic.
Another important aspect is the safety. An increasing number of applications can be classified
as safety critical. Therefore the development process should provide an inherent safety.
Finally the system should allow an application domain expert to develop the system without
needing assistence by other experts.

7.3 Zerberus system

In this section the Zerberus System, a development system with a complete tool-chain, is
introduced. In the first paragraph the original background is illustrated. Afterwards the
process model in described. A focus is thereby set on the Zerberus language that allows the
platform independent specification of the functional model of the application.

7.3.1 Background

The Zerberus System was originally designed for the development of safety critical real-time
applications. Due to this reason the focus of the system is set on fault-tolerance mechanisms.
These mechanisms are achieved by active structural redundancy as depicted in figure 7.4. At
least three equivalent units process the application in parallel. Voting, sychronization and
integration protocols are provided to achieve a safe and reliable execution of the applications.
Besides the pure structural redundancy diversity in hardware and software is supported by
the system. To reduce the costs of the developed applications the system is based on the use
of commercial-of-the-shelf hardware.

85

Figure 7.4: Hardware structure

Highlights of the system are the Zerberus language that allows the platform independent
specification of the functional model with all temporal constraints and the automatic code
generation.

7.3.2 Development process

The Zerberus System suggests different steps in the development process for dependable
systems. In each step the system assists the developer to accelerate the process and to
improve the results by tool support or by providing guidelines. The individual steps to
produce executable code are illustrated in fig. 7.5 and are described below.

Step 1: Specification of the Functional Model Within this step the user has to specify the
functional objects of the application, their relationship towards each other and the temporal
constraints. The specification is realized by the use of the Zerberus Language. Since the
specification of the functional model should be independent of a specific platform the Zerberus
Language has to be designed in a way to support this independency. A platform in the
context of the Zerberus System is understood as the hardware, the operating system and the
programming language.

To avoid an error source and a long-lasting learning process the Zerberus Language has to
be intuitive. For complying with the generality of the Zerberus approach the language should
as well do not pose too many constraints on the applications.

The Zerberus language is described more detailed below.

7.3.3 Analysis of the Requirements on the Dependability

Currently the Zerberus System offers active structural redundancy as fault-tolerance mecha-
nism. At least three Zerberus units compute the application in parallel. At specified points
in time the units perform a distributed voting and synchronization algorithm. Erroneous

86

Figure 7.5: Development process

units are excluded from the computation and can perform error detection algorithms. After
a successful completion the system allows the reintegration into the running system.

Since a replication of identical units allows no toleration of design errors, the system also
supports diversity of hardware and software. While hardware diversity leads to no or only
few extra costs because of the support of COTS hardware, N-Version programming is often
not considered due to the extra costs for the development of the individual versions.

As a result of these considerations several requirements are posed to the Zerberus Language.
First of all the language must support the replica determinism: during the voting the systems
must be in a state that allows a comparison of these states and an error detection. Especially
due to the support of N-Version programming this is a non-trivial requirement.

Another requirement that arises from the voting is the existence of deterministic points in
time, when the voting should be performed.

To support the re-integration of a previously excluded Zerberus unit, the system must offer
facilities for state synchronization. Since the algorithms are realized automatically by the
system a derivation of the state of the individual units must be possible out of functional
model.

Finally to achieve a reduction of the implementation effort for N-Version programming the
code that has to be implemented by the developer should be restricted to the pure application
dependant code.

7.3.4 Implementation of Application Dependent Code

In this step the developer has to implement code for the application. As already implied in
the previous section this code is restricted to the pure application dependant functionality of
the main parts which were identified within the design process of the formal model. By this
restriction the implementation effort can be minimized to the absolute minimum.

The implementation step is platform dependant. This implies that for every used platform
the code has to be reimplemented by the developer.

87

Figure 7.6: Code generation process

7.3.5 Code Generation

The transformation of the functional model, the application dependant code and the selected
fault-tolerance mechanisms into an executable code is performed automatically by the Zer-
berus code generator. Since the code generator is designed platform independent another
mean has to be used in addition to achieve the platform mapping. These means are the Zer-
berus run-time systems. Zerberus run-time systems are platform dependent and realize the
execution on the specific platform. To allow the reuse of Zerberus run-time systems another
language, the Zerberus tags, are introduced. By the use of Zerberus tags locations in the
run-time code can be marked that need to be replaced by application dependent data. The
Zerberus code generator parses the runtime files and realizes the replacement by using the
information contained in the functional model of the application.

In addition the Zerberus code generator performs syntactical and semantical checks on the
formal model and on the runtime system files. The whole code generation process is depicted
in fig. 7.6.

7.3.6 Zerberus language

In the last preceding paragraph the requirements on the Zerberus language were discussed in
the context of the different development process steps. In this section the Zerberus language
is described informal and it is shown that the requirements can be satisfied by the Zerberus
language. The language was influenced by the language Giotto introduced in Berkeley [4].
Giotto is a language to describe the functional model of distributed control application in-
dependent of the platform. Giotto was changed and extended in a way that the Zerberus
language was suited for the use of fault-tolerance mechanisms.

The main attribute to support voting, synchronization and integration algorithms is replica
determinism. This is a non-trivial issue since different platforms can be used to achieve
fault-tolerance. This includes the simultaneous use of different hardware, operating systems,
programming languages and control algorithms in one control system. To achieve nevertheless
replica determinism the Zerberus language is based upon the time-triggered paradigm [5].

88

Similar to the approach in [6] replica determinism can be achieved by using the knowledge
about the execution times. In the context of control applications the execution times can be
related to the frequency of control cycles.

Basing the voting, synchronization and integration algorithms on the frequency of con-
trol cycles has different positive outcomes: by specified frequencies of control cycles in the
functional model there exist on the one hand deterministic points in time, when the syn-
chronization and voting algorithms can take place, and on the other hand the execution and
scheduling of the different processes can be carried out in different ways on the Zerberus units
between these points.

The realization of the voting, sychronisation and integrations algorithms by the run-time
systems guarantees in addition the consistency of the algorithm executions, since the execution
of the voting algorithms can be made independent from the execution order of the different
control processes.

To achieve the claimed simplicity of the language, the Zerberus language consists of only
seven different object types: ports, actors, sensors, guards, modes and modechanges. In this
section the different object types are explained informally.

Port All communication in the Zerberus System is performed via ports. A port is a unique
space in memory with a predetermined size and a specified representation. The available port
types are platform independent, but are based on the fundamental types of the most common
programming languages.

The values of the ports represent the state of the Zerberus units. Therefore a comparison
of the different Zerberus units can be based on the values of these ports. It is required
that there are no spaces in memory to store internal states besides the ports. Thus the state
synchronization can be based on the values of the ports during the reintegration of a Zerberus
unit. The platform independent specification of the size and the representation of the port
values is the foundation to allow also N-Version programming using different programming
languages and operating systems.

In the following the attributes of ports are described. Ports are persistent, that means the
ports keep their values over time until the port is updated. The update access has to be
performed deterministic. It is not allowed that more than one write access is performed at
a certain point in time. This condition is checked by the code generator while parsing the
formal model and in addition at run-time (due to guards,see sec.7.3.6).

Replica indeterminism can also have reasons in the small clock differences (since the syn-
chronization algorithm can only guarantee a deviation of the local clock from the global clock
smaller than ε) or in the different implementations of the different versions. Due to these
facts the correct port values are normally situated in a small interval. To support this fact the
comparison of ports can also be based on an interval decision. This can be done by declaring
a voting function for the port that has to be implemented by the developer. In case no voting
function is specified the voting of the port values are based on the bit-by-bit comparison.

The voting on the value of a specific port takes place at least every time an output is
performed based on this port value. For a faster detection of errors the developer can also
specify shorter voting intervals.

Task The separation of the pure functionality of the application and the run-time system
with the fault-tolerance mechanisms is realized by tasks. Tasks are periodically called func-

89

tions and realize the actual control system functionality. The simultaneous execution of
different tasks is allowed but to achieve determinism in the execution the tasks have to be
independent of each other and synchronization points are forbidden. Thus the implementa-
tion of the task functions is simplified and accelerated since they represent only sequential
programs and the requirement of the strict partitioning of the integrated modules to reduce
the certification effort is satisfied.

The communication of the tasks between each other and with the environment is exclusively
performed via ports. The access of tasks on ports occurs in a time-triggered manner. At the
begin of every invocation the task reads the values of the input ports, at the end of the
invocation the results are written into the output ports of the task. The begin and the end
refers here to the invocation period as specified in the functional model. The port access is
realized by the Zerberus run-time system and is performed in logical zero time.

The actual execution of the task on the CPU is scheduled by the Zerberus run-time system
and is transparent to the developer. Nevertheless the developer has to guarantee that the
worst-case execution times (WCETs) of the tasks allow a completion of the tasks satisfying
the temporal restrictions as specified in the functional model.

Sensor and Actor Sensors and actors realize the communication of the application with the
environment and should not be mistaken for the hardware devices. Sensors are functions that
are executed to read values from the environment and to write these values into ports, actors
are functions to read values from the port and write these values to the environment.

The execution of the sensors and actor function is also performed time-triggered. The
execution frequency has to be specified by the developer. The sensor execution takes thereby
place at the begin of each interval, the actor execution at the end of each interval. Both
executions are regarded as instantaneous. To legitimate this assumptions the functions must
represent short sequential code without synchronization points and blocks. For example in
case of a network device the sensor functions may check the arrival of a message and copy
the message into a port but a block until the receive event of a new message is not allowed.

Mode Applications can have different operational mode. To support this feature the Zer-
berus language introduces modes. A mode is a set of tasks, sensors and actors those are
currently active on the Zerberus units. In addition a mode is specified by the mode cycle
duration. Within each mode cycle the tasks, sensors and actors are executed according to
their frequency as specified in the mode declaration.

Figure 7.7 shows the declaration of an example mode m. m contains two tasks t1 with
frequency 1 and t2 with frequency 2, a sensor s with frequency 1 and an actor with frequency
2. The duration of one mode cycle is set to 50 ms.

The formal execution model is depicted in fig. 7.8 under the assumption that the mode
cycle starts at time t. At time t the function of sensor s is executed and the tasks t1 and
t2 are started. At time t+25ms the task t2 is stopped and the actor function is executed.
Afterwards the task t2 is started for a second time. At the end of the mode cycle at t+50ms
both tasks are stopped and the actor a is executed a second time. The execution of the sensor
and actor functions appear instantaneous in the execution model.

Figure 7.9 shows a possible actual execution of the mode cycle on the machine. In addition
to the task execution also the times required for the actor and sensor function execution,
as well as the time consumed for run-time system execution have to be considered. The

90

Figure 7.7: Mode declaration

Figure 7.8: Formal execution model

Figure 7.9: Actual execution

91

run-time system realizes the scheduling of the tasks, the port accesses and the voting and
synchronization with the other Zerberus units.

The scheduler used in the example of fig. 7.9 uses a Earliest-Deadline-First strategy for the
task execution. Sensors and actors are executed within the run-time system context.

Modechange To enable the switch between different operation modes modechanges can be
used. A modechange is a function implemented by the developer that evaluates if a mode
should be switched or not. The developer has to specify within the modechange declaration
the target mode and a non-empty set of source modes. The evaluation of the function, which
is based on the values of the assigned ports, takes place always at the end of the source mode
cycles.

Mode switches must be deterministic, this means that for every achievable configuration
(port values and modes) at most one assigned modechange can reach a positive evaluation
for a modechange. This condition is checked in the Zerberus System at run-time.

Guard Guards are another possibility to change the behavior of a Zerberus program. Guards
are similar to modechanges functions based on port values but while modechanges should be
used for different operation modes, guards can be used to control individual tasks. Thereto
the guard is assigned to a certain tasks. At the begin of every invocation of this task, the
guard function is evaluated and only in case of a positive evaluation the according task is
started. The main advantage of guards over modechanges is therefore their flexibility. A
guard can be used also within a mode cycle and not only at the end of the mode cycle.

Introductory example In this paragraph an example application is used to illustrate the
Zerberus language. The application scenario is depicted in 7.11. A robot control should be
designed with the following tasks: the robot is placed in a biochemical laboratory and should
move around, pick up some objects and deliver these to their goal. For the movement collision
avoidance algorithms should be used.
The robot used several devices to accomplish its tasks: by radio the exact position of the
robot can be determined, new jobs are received via wireless LAN, and a camera can detect
objects.
The first step in the design is to extract the functional elements of the application. Here on
the first glance there exist two functionalities: the control of the robots movements (robot
path planer) and the control of the robots arm (arm path planer). As the algorithms are
very complex and time-consuming (WCETs 1 second), other tasks are introduced to achieve
a smoother track of the robot: the tasks robot control and joint control. These tasks use the
results of the previous invocation of the time-consuming tasks and are executed with a much
higher frequency (200Hz).
The sensor functions are executed with a frequency of 1Hz (since they are used only by the
slower tasks), while the actor functions are executed with the frequency of the faster tasks.
Regarding the application it becomes obvious that it can be split up into two different appli-
cation modes: in the first mode the robot moves towards the object or the goal, in the second
mode the object is picked up or placed to its destination. The current mode is switched
dependent on the associated path planer (if no action is contained in the planer, a switch can
occur) and on the state of the job queue. Guards are not used within this application.

92

Figure 7.10: Formal model of example application

Figure 7.11: Introductory example

93

7.4 Modifications of Zerberus System regarding augmented reality
applications

The demands as stated in section 7.2 are satisfied by the Zerberus System. But there exist
some problems: first of all the current version of the Zerberus System requires the use of
structural redundancy. This may not be desirable since the extra costs for the redundancy
may not be countervailed by the safety and availability attributes. Especially in case of non
safety-critical systems this is a reason that would forbid the use of the Zerberus System.
Another problem is the destructive voting: in case of the medical application example instead
of a pure voting a merge of the results based on the different sensor data may be the appro-
priate technique.
For these two problems a solution must be suggested.

Abdiction of the requirement for redundancy The mechanisms provided for the redundancy
are very useful in case the application is process on distributed processors. In particular
the synchronisation algorithms are very useful in this scenario. But often one processor
is absolutely satisfying or an application is indeed processen distributed but no redundant
processes are required. Out of this reason the Zerberus System has to be extended in a way
that the different tasks can be assigned to the used processors. Some tasks may then be
calculated redundant, others may be singular.
In case one unit might fail also algorithms for task relocation might be very useful.
Since a support of different fault-tolerance mechanisms that are not based on structural
redundancy is required and foreseen, this modification is already in progress.

Constructive voting As already mentioned other fault-tolerance mechanisms will be sup-
ported soon by the Zerberus System. This will be achieved by seperating the functionality of
the application from the fault-tolerance mechanisms. Another language will be introduced in
the style of an Event/Exception/Handling method.

• Event: An event marks the point in time where fault-tolerance mechanisms are executed.
These mechanisms can be a voting, a plausibility test or a user defined function. An
appropriate interface will be offered.

• Exception: An exception marks the detection of a fault within one component.

• Handling: For the fault handling the user has to specify an application dependent
reaction to the fault.

By the proposed mechanism also the realisation of a constructive voting could be realized.
Therefore the applicability of the Zerberus System in the domain of augmented reality can
be achieved.

7.5 Summary

In this paper the requirements of application in the domain of augemented reality were spec-
ified. With the Zerberus System, a development model with integrated tool-chain was sup-
posed that helps the developer to fulfill these requirements. The remaining problems were

94

addressed and modifications were suggested that allow the usage of the Zerberus System for
the development of augmented reality application.

95

Bibliography

[1] R. Azuma, A survey of augmented reality, 1995.

[2] C. Buckl, Implementierung eines Entwicklungssystems für fehlersichere und
zuverlässige Kontrollsysteme, Feb. 2004.

[3] C. Buckl, Zerberus Language Specification Version 1.0, Tech. Rep. TUM-I0501, TU
München, Jan. 2005.

[4] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, Giotto: A time-triggered
language for embedded programming, Proceedings of the First International Workshop on
Embedded Software (EMSOFT), (2001), pp. 166 – 184.

[5] H. Kopetz and G. Bauer, The Time-Triggered Architecture, Proceedings of the IEEE,
91 (2003), pp. 112 – 126.

[6] S. Poledna, A. Burns, A. Wellings, and P. Barrett, Replica Determinism and
Flexible Scheduling in Hard Real-Time Dependable Systems, IEEE Transactions on
Computers, 49 (2000), pp. 100–110.

[7] D. K. Pradhan, Fault-Tolerant Computer System Design, Prentice Hall, 1996.

96

8 Holography

Alexej Minin, St. Petersburg State University

Holography dates from 1947, when British/Hungarian scientist Dennis Gabor developed
the theory of holography while working to improve the resolution of an electron microscope.
Gabor, who characterized his work as ”an experiment in serendipity” that was ”begun too
soon,” coined the term hologram from the Greek words holos, meaning ”whole,” and gramma,
meaning ”message.” So we can use not only a visible light to produce holograms but also we
can use particles, which have properties of waves. Holograms using electrons (considered in
their ”wave” manifestation, not as particles) provide sharp pictures, but because the electrons
cannot penetrate far into a solid sample, the imaging process is usually restricted to surface
regions. Holograms using x rays go can penetrate much farther, but their limitation consists
of the fact that the penetration depth improves as the square of the atomic number. Therefore
x-holography is not very good for materials with light elements. Holograms with neutrons
are different; rather than scattering from the electrons in the atoms of the sample, neutrons
scatter only from nuclei, which are 100,000 times smaller than the atoms in which they reside.
In an experiment carried out with a beam of neutrons from a reactor at the Institute Laue-
Langevin in Grenoble, a group of scientists has produced, for the first time, an atomic-scale
map of a crystal.

8.1 History

Holography dates from 1947, when British/Hungarian scientist Dennis Gabor developed the
theory of holography while working to improve the resolution of an electron microscope.
Gabor, who characterized his work as ”an experiment in serendipity” that was ”begun too
soon,” coined the term hologram from the Greek words holos, meaning ”whole,” and gramma,
meaning ”message.”

Gabor’s first paper on holography evoked immediate response from scientists worldwide.
Among those who made important contributions to the development of the technique were
G.L. Rogers, A.B. Baez, H. El-Sum, P. Kirkpatrick and M.E. Haine. In these early years, the
mercury arc lamp was the most coherent light source available for making holograms. Because
of the low coherency of this light, it was not possible to produce holograms of any depth,
thus restricting research. Despite equipment limitations, these researchers identified many
of the properties of holography and further elaborated on Gabor’s theory. Most important,
they extended their understanding of the process and its potential to another generation of
scientists.

Gabor’s holography was limited to film transparencies using a mercury arc lamp as the

97

light source. His holograms contained distortions and an extraneous twin image. Further
development in the field was stymied during the next decade because light sources available
at the time were not truly ”coherent” (monochromatic or one-color, from a single point, and
of a single wavelength).

This barrier was overcome in 1960 with the invention of the laser, whose pure, intense
light was ideal for making holograms. For the next ten years, holography techniques and
applications mushroomed.

In 1962 Emmett Leith and Juris Upatnieks of the University of Michigan recognized from
their work in side-reading radar that holography could be used as a 3-D visual medium. In
1962 they read Gabor’s paper and ”simply out of curiosity” decided to duplicate Gabor’s
technique using the laser and an ”off-axis” technique borrowed from their work in the de-
velopment of side-reading radar. The result was the first laser transmission hologram of 3-D
objects (a toy train and bird). These transmission holograms produced images with clarity
and realistic depth but required laser light to view the holographic image.

Also in 1962 Dr. Yuri N. Denisyuk of the U.S.S.R. combined holography with 1908 Nobel
Laureate Gabriel Lippmann’s work in natural color photography. Denisyuk’s approach pro-
duced a white-light reflection hologram which, for the first time, could be viewed in light from
an ordinary incandescent light bulb. Once Denisyuk’s work became known in the US, three
teams of workers set out to take the off-axis recording technique used in laser transmission
holography and apply it to reflection holography. These researchers were: E. Leith, J. Upat-
nieks, A. Kozma, J. Marks and N. Massey (University of Michigan); G. Stroke, A. Labeyrie
(University of Michigan) with K. Pennington and L. Lin (Bell Labs); and C. Schwartz and
N. Hartmann (Batelle Memorial Institute). By the Fall of 1965, each group had successfully
recorded off-axis reflection holograms within months of each other. The U.S. patent for the
process was issued to Hartmann, and marked a further advance for holography as a display
medium.

8.2 What is Holography

Before you start building this display holography system and producing holograms, you need
to see a visual overview of what a basic system looks like when it is completely set up and
ready to record a hologram. Figure 1 shows a photographic view (left) as well as a top-view
diagram (right) of a basic system. The system I will be describing is tried and true, but there
are other systems that can be built (like a sandbox system). I have found this system, though,
to be perfect for creating excellent 4” x 5” white-light reflection display holograms. That’s
the objective of all this: to produce a high quality white-light reflection display hologram that
can be hung on your wall and shown-off.

Figure 8.1: (Left) Photograph of a transmission holography setup. (Right) Diagrammatic top
view of the setup. (L = laser, DM = directional mirror, BS = beamsplitter, O =
object beam, R = reference beam, DL = diverging lens, PH = plate holder, PM
= parabolic mirror, OS = object scene)

This particular system has five basic optical components. They are the laser (L), beam-
splitter (BS), directional mirrors (DM), diverging lenses (DL), and the parabolic mirror (PM).

98

In addition to the optical components, there is the object or scene (OS), the photographic
plate holder (PH), the table mounts and the optical holders. Although this system shown
in Figure 1 uses the same optical table and components that you will build, you will not be
using this particular optical arrangement since it does not lend itself well to creating high
quality display holograms

You must use a laser to make a hologram. A laser is a source of coherent light necessary
to produce a high-quality hologram. Fully coherent light sources, such as lasers, are both
spatially coherent and temporally coherent. A laser emits light in a very narrow beam and
is considered a point source (spatially coherent), as opposed to an extended source (spatially
incoherent) such as an incandescent bulb or a fluorescent lamp. A laser also emits light of a
single color or wavelength (temporally coherent) whereas the light bulb or fluorescent lamp
(temporally incoherent) emits light of many wavelengths.

8.2.1 How is a hologram made?

A laser beam is split into two beams: The reference beam is spread by a lens or curved mirror
and aimed directly at the film plate The object beam is spread and aimed at the object. The
object reflects some of the light on the holographic film-plate. The two beams interact forming
an interference pattern on the film. This is the hologram. Laser light is needed because it
is made of coherent waves (of same wavelength and phase). The principle of holography was
discovered in Britain by Dennis Gabor in 1948. He was awarded the Nobel price for this
discovery in the early 70’s.

8.2.2 How is a hologram viewed?

When the hologram is illuminated from the original direction of the reference beam, a 3-
dimensional image of the object appears where the object was originally. Some holograms
must be viewed with laser or monochromatic (single color) light, and others with white light.

8.2.3 What are the main types of holograms?

Transmission Holograms: Viewable with laser light. They are made with both beams ap-
proaching the film from the same side. Reflection (White Light) Holograms: Viewable with
white light from a suitable source such as spotlight, flashlight, the sun, etc. They are made
with the two beams approaching the holographic film from opposite sides.

Multiple channel holograms

Two or more images are visible from different angles. There are different types of multiple
channel holograms:

1. Simple ones with 2, 3, or a few images each viewed from a different angle.

2. Multiplex: A large number of ”flat” pictures of a subject viewed from different angles
are combined into a single, 3-dimensional image of the object. A composed hologram.

3. Rainbow holograms: The same image appears in a different color when viewed from
different angles.

99

Real Image Holograms (H-2’s)

These are usually reflection holograms made from a transmission original (H-1). The image
dramatically projects in front of the plate towards the viewer. Most holograms in holography
museums are of this type. The procedure for making them is quite elaborate and demands
precise control of angles. Mass-Produced Holograms

1. Embossed – Made by stamping on foiled backed mylar film using a metal master (most
common method).

2. Polymer – Made from light sensitive plastic. The Polaroid Corporation mass produces
holograms by this method.

3. Dichromates – Very vivid holograms on jewelry, watches, etc. They are recorded on a
light sensitive coating of gel that contains dichromate.

8.3 X-ray and g-ray Holography Improve Views of Atoms in Solids

New developments make possible the imaging of light atoms and the removal of image dis-
tortions. Although optical and electron holography have by now become commonplace, they
have their limitations. In optical holography, the resolution is restricted by the wavelength of
the light to several hundred nanometers. Lens aberrations in electron microscopes have pre-
vented the achievement of atomic resolution in electron holography. In addition, the strong
electron interactions in solids complicate extracting information from the holographic inter-
ference pattern and confine application of low-energy electron holography to surface studies.

In contrast, the short wavelengths of hard x rays and g rays (on the order of 1) offer
the potential for obtaining atomic resolution from the bulk. Furthermore, x rays are only
weakly scattered in solids, which simplifies the interpretation of the images. Whereas x-ray
diffraction relies on the long-range translational periodicity, x-ray and g-ray holography are
local methods that image the environment around selected atoms. Recent advances in x-ray
and g-ray holograms are increasing their information content, improving the quality of the
reconstructed images, and allowing the imaging of light atoms and noncrystalline and doped
samples. From the inside out

X-ray holography initially presented a greater challenge to experimenters than optical or
electron holography because of the difficulty of obtaining an x-ray source with sufficient
coherence. Without good coherence, the phase information is washed out. Also, for atomic
resolution, the position of an external source must be stable with respect to the sample to
within an angstrom. An elegant solution to these difficulties was proposed 15 years ago by
Abraham Szke at Lawrence Livermore National Laboratory: Use atoms or nuclei within the
sample as the source.

First implemented for holography with photoelectrons and Auger electrons, the technique
also works with x rays and g rays.I illustrates the concept. Within a sample, atoms stimulated
with an external source such as x rays or high-energy electrons, or nuclei undergoing radioac-
tive decay, can emit radiation, which can reach the detector directly (the reference wave) or
after scattering off the electrons of nearby atoms (the object wave). The pattern of interfer-
ence between the direct and scattered radiation can be mapped out by varying the angular
position of the detector. This pattern can be viewed as a hologram from which a real-space
image can be reconstructed numerically. Using this approach, Mikls Tegze and Gyula Faigel

100

at the Research Institute for Solid-State Physics and Optics in Budapest, Hungary, reported
the first x-ray hologram with atomic resolution five years ago (see Physics Today, May 1996,
page 9*). They used an external x-ray source to eject core electrons from strontium atoms in
single-crystal SrTiO3. As the atoms relaxed, they emitted fluorescent photons with a wave-
length of 0.87 . Since photons were emitted not from a single Sr atom but from all the atoms
in the crystal, the real-space image reconstructed from the hologram represented the average
local environment around the Sr atoms. The amplitude of the holographic fringes was only
about 0.3% of the background, but that was sufficient to allow the reconstruction of the 3D
arrangement of the Sr atoms in the crystal.

A powerful extension of this technique of x-ray fluorescence holography (XFH) was demon-
strated soon afterward by Thomas Gog and coworkers from the German Electron Synchrotron
Laboratory (DESY), the University of California, Davis, and Lawrence Berkeley National
Laboratory. They switched the positions of the source and detector to obtain what’s essen-
tially the time-reversed process. Here, atoms within the sample served as detectors, and the
strength of the fluorescence they emitted depended on the interference between the external
radiation reaching them either directly (the reference wave) or after scattering off nearby
atoms (the object waves). In this approach, the fluorescence detector was fixed and the
incident direction of the source radiation was varied with respect to the crystal axes.

8.3.1 The twin problem

The time-reversed approach has the advantage of being able to record holograms at multiple
energies above the x-ray absorption edge–hence the name multiple-energy x-ray holography
(MEXH). John Barton (now with Hewlett-Packard) had previously shown that photoelectron
holograms taken at multiple energies can be used in a Fourier-transform-like approach to re-
move so-called twin images and aberrations, ubiquitous problems for all holographic methods.
Holography doesn’t really record the phase of the object wave with respect to the reference
wave, but only the cosine of the phase difference. A twofold sign ambiguity therefore remains.
As a result, in the reconstruction of a 3D image from the hologram, one gets not only the real
image but also a twin image that’s inverted about the reference point (here, the fluorescing
atom). The superposed images can be out of phase with each other, which can lead to can-
cellations, distortions, and problems with atom identification. But with holograms acquired
at 8-10 different energies, one can solve the local structure unequivocally–something quite
difficult to do with ordinary x-ray diffraction.

Demonstrations of the potential of x-ray holography are continuing. The scattering cross
section for x rays scales with atomic number, and so heavy atoms are easier to see than light
ones. However, last fall, Tegze, Faigel, and colleagues, working at the European Synchrotron
Radiation Facility, achieved sufficient sensitivity with MEXH to image light atoms such as
oxygen. They have also recorded the local atomic structure in the icosahedral quasicrystal
AlPdMn. Although it lacked long-range translational order, the quasicrystal had sufficient
orientational order to allow the direct visualization of the icosahedral arrangement of atoms,
shown in figure 2, averaged over the handful of different Mn environments. Kouichi Hayashi
and coworkers from Kyoto University and the Japan Synchrotron Research Institute have
explored MEXH for imaging the local environment around zinc atoms doped into gallium ar-
senide. And Larry Sorensen’s group at the University of Washington has generated holograms
with x rays produced by means of bremsstrahlung. g-ray holography

”The biggest difficulty with all x-ray holography is that the contrast is very low,” says

101

Szke. Nuclei with low-lying excited states can also serve as the radiation source for atomic-
resolution holography. Such nuclei, used for Mssbauer spectroscopy, can emit ? rays with very
well-defined energy. These photons scatter not only off electrons, but also off nuclei through a
resonant process that has a cross section two orders of magnitude larger. Consequently, g rays
can provide much better contrast, but only a few dozen isotopes have the requisite Mssbauer
resonance to serve as reference nuclei and as scatterers. Fortunately, the most popular Mss-
bauer isotope, iron-57, has a resonance at a wavelength of 0.86 , suitable for atomic-resolution
holography. Using an epitaxial Fe film enriched in this isotope, Pawel Korecki at Jagiellonian
University (now at DESY) and coworkers at the University of Mining and Metallurgy in
Krakow, Poland, first demonstrated atomic-resolution holography with g rays. The g rays
were provided through the radioactive decay of cobalt-57. The researchers used the inverse,
internal-detector configuration, thereby avoiding the need to embed 57Co within the sample.
The absorption of g rays by 57Fe, sensitive to the interference between direct and scattered
radiation reaching the nuclei, was monitored through the flux of conversion electrons emitted
as the nuclei relaxed. Having the g-ray source outside the sample has another advantage.
As in Mssbauer spectroscopy, the frequency of the photons can be tweaked by adjusting the
relative motion of the source with respect to the sample. In February, Korecki and colleagues
capitalized on that ability to suppress twin images using ”complex” holograms1 Working with
the Mssbauer resonance essentially fixes the photon wavelength, but it’s possible to change
the photon phase. As with any resonance, the g rays that scatter off the nuclei experience
a phase shift that varies with the detuning from the center of the resonance. Using g rays
equally detuned on either side of the narrow Mssbauer resonance peak, the researchers could
take linear combinations of two holograms to separate the real and imaginary parts. From
the combination of those complex components, an accurate, twin-free real-space image can
be reconstructed, as shown in figure 3.

The exploitation of the g-ray phase shifts near a resonance is similar to the x-ray crys-
tallography technique of multiple-wavelength anomalous dispersion. When x rays close to
absorption edges are used in diffraction, they also undergo phase shifts; by comparing diffrac-
tion patterns from x rays of different wavelengths, phase information normally lost in x-ray
diffraction can be inferred, yielding additional insight into the underlying structure.

8.3.2 Work in progress

To a large extent, x-ray and g-ray holography are currently detector-limited. But they place
less stringent demands on the crystalline perfection of samples than standard x-ray diffraction
does. ”Whereas a 1 misalignment can kill normal x-ray diffraction,” says Charles Fadley of
UC Davis, ”x-ray holography can tolerate many crystallites with a misalignment of up to a
few degrees.” Given the difficulty of crystallizing many materials, including biological and
other large molecules, such samples may in the future be amenable to study by holographic
methods even though they aren’t candidates for diffraction investigation. Because the Mss-
bauer resonance can be shifted due to hyperfine coupling to electrons, g-ray holography has
the potential for imaging the local magnetic environment. It may also find use in imaging
low-dimensional systems.

1http://www.physicstoday.org/pt/vol-54/iss-4/p21.html

102

8.3.3 Neutron holography

Now the American Institute of Physics, in its Physics News 609. from October 15, 2002,
informs us that neutron holography with atomic-scale resolution has been performed, for the
first time, with an ”inside-detector” approach. Physics News explains some more things:
Holograms with visible light are common enough: they adorn most credit cards. Holograms
using electrons (considered in their ”wave” manifestation, not as particles) provide sharp
pictures, but because the electrons cannot penetrate far into a solid sample, the imaging
process is usually restricted to surface regions. Holograms using x rays go can penetrate
much farther, but their limitation consists of the fact that the penetration depth improves
as the square of the atomic number. Therefore x-holography is not very good for materials
with light elements. Holograms with neutrons are different; rather than scattering from the
electrons in the atoms of the sample, neutrons scatter only from nuclei, which are 100,000
times smaller than the atoms in which they reside. This is important when it comes time to
reconstruct an image of the interior of a crystal lattice. In an experiment carried out with
a beam of neutrons from a reactor at the Institute Laue-Langevin in Grenoble, a group of
scientists has produced, for the first time, an atomic-scale map of a crystal, in particular a
sample of lead atoms, using a technique in which the ”detector,” a trace amount of atoms
(cadmium-113) whose nuclei readily absorb neutrons, are embedded inside the sample itself.
The holographic process unfolds as follows: neutron waves can strike a Cd nucleus directly
(reference beam) or by first scattering from a Pb nucleus. In either case, the absorption of a
neutron stimulates a Cd nucleus to emit a high energy photon observable in a nearby detector.
The overall interference pattern for these two processes (absorbing scattered or direct neutron
waves) is monitored as the profile of the sample to the beam is stepped through various angles.
The result: a crisp picture of a unit cell of 12 lead atoms (see figure from AIP.org). This
process should be great for spotting foreign atoms in a solid (dopants if the atoms are desired,
impurities if they’re not). Since the neutron has a magnetic moment, n-holography might
also contribute to an understanding of the magnetic nature of the sample atoms, in addition
to imaging their whereabouts. (Cser et al., Physical Review Letters, 21 October 2002). As
you can see in the illustration, neutron holography is a thing of beauty and a joy forever.

8.4 About My Task

Electric field in some point r(x,y) is describing with such formula 1) Where a(r,t) is amplitude
of the field. ? is a phase. Lets use Eiler formulas to rewrite (1) formula So E(r,t) we can
rewrite in this way:

And in optics we write E(r,t) in this way: Where f(r,t) is an optic signal a(r)-is an amplitude
of the signal And at list we have the expression we want to count in every point of hologram:
Intensity in some point r (x,y) . So the problem is that it is very difficult to count such
integrals with enough speed. Because the typical size of the hologram is about 1mln x 1mln
pixels. So the number of integrals we have to use is 1012 . I used different approaches to this
problem:

1. Upper darboux summes and lower darboux summes (Very big error)

2. (Upper Darbu + lower Darbu)/2 ? (It takes more time, but the fault is smaller)

3. Simpson method. (Interpolation or exterpolation using polynoms)

103

The main idea is that we have to count integrals very fast and enough accurate. (fault ?10But
it is just an overview of the task.!!!

104

9 Planes and Homographies for Augmented
Reality

Irina Bobkova, State University St. Petersburg

This is the abstract of that chapter. Try to be not longer than 10 lines here.

105

10 Context coding of overlapped DCT
coefficients

Denis Bessonov, State Univ. of Aerospace Instrumentation St. Petersburg

Two-dimension DCT (Discrete Cosine Transform) is the commonly used orthogonal trans-
form applying to the image compression at the time. The main steps of image compression
are: DCT, quantizing of transform coefficients, scanning the block in zig-zag order and en-
coding zero series and nonzero coefficients. However, for getting the high quality compression
quantization steps are to be chosen small enough. In this case zero series become very short or
disappear at all and this method of their encoding becomes inefficient. In order to get a better
performance at high bit rates it is reasonable to use the context encoding on ?coefficient-by-
coefficient? basis (i.e. when there are no zero series). But the generic DCT doesn?t give
much correlation between adjacent blocks. In addition it destroys the original distribution of
transform coefficients because of rectangle-shaped window using in transforming of separate
blocks. So the overlapped DCT with sinusoidal window covering 2 neighboring blocks has
been proposed and investigated as well as context model for encoding of coefficients. The
author presents the analysis showing that the compression is improved up to 10% at 40-44
dB PSNR comparatively with the standard not overlapping DCT.

106

11 Particle Filters

Gordana Stojceska, Technische Universität München

In recent years, particle filters have found widespread application in domains with noisy
sensors, such as computer vision and robotics, as well as in many other technology fields.
Particle filters are powerful tools for Bayesian state estimation in non-linear systems. The key
idea of particle filters is to approximate a posterior distribution over unknown state variables
by a set of particles, drawn from this distribution. This paper addresses a primary definition
and methods of particle filters: Particle filters are insensitive to costs that might arise from
the approximate nature of the particle representation. Their only criterion for generating
a particle is the posterior likelihood of a state. This paper gives also short introduction to
Bayesian filters, continuing with the most known methods, as well as the advantages and
disadvantages of the particle filters as one of the most use tracking methods. There is also
one short overview of particle filter aplication in the area of tracking people.

11.1 Introduction

In many application areas it is becoming very important to include elements of nonlinearity
and non-Gaussianity, so that one can model accurately as good as possible the underlying
dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it
arrives, both from the point of view of storage costs as well as for rapid adaptation to changing
signal characteristics. In this paper it is introduced one of the most successful method used
mostly for nonlinear/non-Gaussian tracking problems, the particle filters method. Particle
filters are sequential Monte Carlo methods [2] based on point mass (or ”particle”) represen-
tations of probability densities, which can be applied to any state-space model and which
generalize the traditional Kalman filtering methods.

Many scientific problems require estimation of the state of a system that changes over time
using a sequence of noisy measurements made on the system. Here the accent is made on
the state-space approach to modelling dynamic systems, and the focus it is on the discrete-
time formulation of the problem. Thus, difference equations are used to model the evolution
of the system with time, and measurements are assumed to be available at discrete times.
For dynamic state estimation, the discrete-time approach is widespread and convenient. The
state-space approach to time-series modelling focuses attention on the state vector of the
system. The state vector contains all relevant information required to describe the system
under investigation. For example, in tracking problems, this information could be related

107

to the kinematics’ characteristics of the target. Alternatively, in an econometrics problem,
it could be related to monetary flow, interest rates, inflation, etc. The measurement vector
represents (noisy) observations that are related to the state vector. The measurement vector
is generally (but not necessarily) of lower dimension than the state vector. The state space
approach is convenient for handling multivariate data and nonlinear/non-Gaussian processes,
and it provides a significant advantage over traditional time-series techniques for these prob-
lems. A full description is provided in [3]. In addition, many varied examples illustrating the
application of nonlinear/non-Gaussian state space models are given in [4].

In order to analyze and make inference about a dynamic system, at least two models are
required: First, a model describing the evolution of the state with time (the system model)
and, second, a model relating the noisy measurements to the state (the measurement model).
We will assume that these models are available in a probabilistic form. The probabilistic
state-space formulation and the requirement for the updating of information on receipt of new
measurements are ideally suited for the Bayesian approach. This provides a rigorous general
framework for dynamic state estimation problems. In the Bayesian approach to dynamic state
estimation, one attempts to construct the posterior probability density function (pdf) of the
state based on all available information, including the set of received measurements. Since this
pdf embodies all available statistical information, it may be said to be the complete solution
to the estimation problem. In principle, an optimal (with respect to any criterion) estimate of
the state may be obtained from the pdf. A measure of the accuracy of the estimate may also
be obtained. For many problems, an estimate is required every time that a measurement is
received. In this case, a recursive filter is a convenient solution. A recursive filtering approach
means that received data can be processed sequential rather than as a batch so that it is not
necessary to store the complete data set, nor reprocess existing data if a new measurement
becomes available.

One such a filter consists of essentially two stages: prediction and update. The prediction
stage uses the system model to predict the state pdf forward from one measurement time to the
next. Since the state is usually subject to unknown disturbances (modelled as random noise),
prediction generally translates, deforms, and spreads the state pdf. The update operation uses
the latest measurement to modify the prediction pdf. This is achieved using Bayes theorem,
which is the mechanism for updating knowledge about the target state in the light of extra
information from new data.

11.2 Non-Linear Bayesian Tracking

First of all it the problem of tracking should be defined. For that reason, one should consider
the evolution of the state sequence {xk, k ∈ N } of a the target being tracked, which is given
by the following equation:

xk = fk(xk−1, vk−1) (11.1)

where fk: <nx × <nv → <nx is a non-linear function of the state xk−1, {vk−1, k ∈ N} is
a process noise sequence, nx is a dimension of the state vector, nx is a dimension of the
process noise vector, and N is the set of natural numbers. On the other hand, there should

108

be introduced the measurement model, because the aim of tracking is to recursively estimate
xk from the measurements. The measurement vector is defined as follows:

zk = hk(xk, nk) (11.2)

where hk: <nx × <nn → <nz is a non-linear function, {nk, k ∈ N} is a measurement
noise sequence, nn is a dimension of the measurement noise vector, nz is a dimension of the
measurement vector, and N is the set of natural numbers. Based on this information, what
we need is filtered estimate for xk given all available measurements z1:k = {zi, i = 1, .., k} up
to time k.

From Bayesian point of view, the tracking problem should solve and recursively compute
some degree of probability in the state xk at time k, taking different values, when the data
z1:k are given. Therefore it is required to construct the pdf p(xk|z1:k). Almost always should
be assumed that the initial pdf, p(x0|z0) ≡ p(x0), of the state vector, also called prior , is
avaliable (here z0 is known as set of no measurements). Then the required pdf p(xk|z1:k)
may be obtained recursively in two stages: prediction und update . If we suppose that the
required pdf in time p(xk−1 | z1:k−1) at time k-1 is avaliable, then the prediction stage should
obtain the prior pdf of the state at time k, using the system model (11.1). This is done with
use of the Chapman-Kolmogorov equation:

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (11.3)

It should be mentioned that in the equation (11.3) it has been made use of the fact that
p(xk|xk−1, z1:k−1) = p(xk|xk−1), since (11.1) describes a Markov process of order one. The
probabilistic model of the state evolution, p(xk|xk−1), is defined by the system equation (11.1)
and the known statistics of vk−1.

At the time step k, the measurement zk is avaliable and this may be used to update the
prior (update stage) using the Bayes’ rule:

p(xk|z1:k) =
p(xk|z1:k−1)p(zk|z1:k−1)

p(zk|z1:k−1)
(11.4)

where the normalising constant has the following form:

p(zk|z1:k−1) =
∫
p(zk|xk)p(xk|z1:k−1)dxk (11.5)

This constant depends on the likelihood function p(zk|xk), which is defined by the measure-
ment model given by (11.2) and the already known statistics of nk. In the update stage (11.4),
the measurement zk is used to modify the prior pdf to obtain the required posterior pdf of
the current state (Fig 11.1).

The optimal Bayesian solution for the problem of tracking is based on the recurrence
relations (11.3) and (11.4). Optimal Bayesian solution solves the problem of recursively
calculating the exact posterior density function. The recursive propagation of the posterior
density is only a conceptual solution, that in general, cannot be determined analytically,
although solutions do exist in a very restrictive cases, including the Kalman and grid-based
filters, which will be mentioned below. But in the cases when the analytical solution is

109

Figure 11.1: Visual representation of the measurement-state model

intractable, there could be found an approximation to the optimal Bayesian solution using
the extended Kalman filter, approximate grid-based filter, as well as the particle filters. In
this paper the main aspect is turned to the particle filters.

11.3 Suboptimal Algorithms

The Kalman and grid-based filter assume that the posterior density function at every time step
is Gaussian and hence parameterised by a mean and covariance. Doing some computation, one
can derive the optimal Bayesian solution to the tracking problem, under the abovementioned
assumption. But in many situation of interest, the assumption might do not hold. The
Kalman and grid-based methods can not be used, because in that case we are interested in
approximation of the optimal solution. Then one can chose between the following approximate
non-linear Bayesian filters (or in other words, suboptimal algorithms): the extended Karman
filter, the approximate grid-based methods and the particle filters.

The extended Kalman filter always approximates p(xk|z1 : k) to be Gaussian. If the true
probability density function is non-Gaussian (eg. if it is bi-modal or heavily skewed) then a
Gaussian can never describe it well. In such cases, approximate grid-based filters and par-
ticle filters will yield an improvement in performance in comparison to that of the extended
Kalman filter [1]. Recently, the unscented transform has been used in an EKF (Extended
Kalman Filter) framework, for example [6], [7], [8]. The resulting filter, known as the ”Un-
scented Kalman Filter” considers a set of points that are deterministically selected from the

110

Gaussian approximation to p(xk|z1 : k). First these points are propagated through the true
non-linearity and the parameters of the Gaussian approximation are then re-estimated. For
some cases, this filter showed better performance than a standard EKF since it approximates
the non-linearity much better than the extended Kalman filter. The parameters of the Gaus-
sian approximation are improved. On the other hand, the grid-based method besides the
advantages, has also some disadvantages. Gridbased approaches’ disadvantage is the compu-
tational and space complexity required to keep the position grid in memory and to update
it for every new observation. Because the complexity grows exponentially with the number
of dimensions, we can apply grid-based approaches only to low-dimensional estimation prob-
lems, such as estimating a person’s position and orientation [12]. Here our main focus is on
the particle filters. In the next section there will be presented the particle filter method as
well as the advantages and disadvantages of this method.

11.4 Particle Filters

The Sequential Importance Sampling (SIS) algorithm forms the basis for most particle filters
that have been developed so far. Besides this one, there exists various algorithms, but almost
all of them are derived from the SIS algorithm. Therefore this algorithms in the literature are
regarded as special case of the general SIS algorithm. In order to see how they are related to
each other, first we should show how the general particle filter algorithm works.

Figure 11.2: Schematic Particle Filter Method

The SIS algorithm is a Monte Carlo method thar forms the basis for most sequential Monte
Carlo filters developed so far [10],[11]. This sequential monte carlo approach is known under
different names in the literature as bootstrap filtering [12], the condensation algorithm [13],
particle filtering [13], interacting particle approximations [14],[15] and survival of the fittest

111

[16]. This so called technique implements a recursive Bayesian filter by Monte Carlo Simula-
tions. The main idea used for this technique is to respresent the required posterior density
function by a set of random samples with assosiated weights and to compute estimates based
on these samples and weights (Fig.11.2). As the number of samples becomes very large,
the Monte Carlo approach becomes equivalent representation to the usual functional descrip-
tion of the posterior probability density function and then the SIS algorithm approaches the
optimal Bayesian solution.

Now follows the derivation of the algorithm. Let

{xi
0:k, w

i
k}

Ns

i=1 (11.6)

denote a Random Measure that characterises the posterior probability density function
p(x0:k|z1:k), where

{xi
0:k, i = 0, ..., Ns} (11.7)

is a set of support points with associated weights

{wi
k, i = 1, ..., Ns} (11.8)

and x0:k = {xj , j = 0, ..., k} is the set of all states up to time k. The weights are normalised
such that the following holds: ∑

i

wi
k = 1 (11.9)

Then the posterior density function at time moment k can be approximated according to the
following equation:

p(x0:k|z1:k) ≈
Ns∑
i=1

wi
kδ(x0:k − xi

0:k) (11.10)

where δ(◦) represents the Dirac delta measure. So in this way we can get a discrete weighted
approximation to the true posterior, p(x0:k|z1:k). The weights are chosen with respect to the
principle Importance Sampling [17],[18] which relies on the following: suppose p(x) ∝ π(x)
is a probability density function from which it is somehow difficult to draw samples, but for
which pi(x) can be evaluated (and on this way also p(x) up to proportionality. Let

xi ∼ q(x), i = 1, ..., Ns (11.11)

be samples that are easily generated from a proposal q(◦), called an Importance density .
In such case, a weighted approximation to the density q(◦) is given by the following equation:

p(x) ≈
Ns∑
i=1

wiδ(x− xi) (11.12)

where

wi ∝ π(xi)
q(xi)

(11.13)

is the normalised weight of the i-th particle.

112

So, if the samples, xi
0:k, were drawn from an importance dencity, q(x0:k|z1:k), then the

weights in (11.10) are defined by (11.13) to be

wi
k ∝

p(xi
0:k|z1:k)

q(xi
0:k|z1:k

(11.14)

In the sequential case, in each iteration one could have samples constituing an approximation
to p(x0:k−1|z1:k−1), and probably wants to approximate p(x0:k|z1:k) with a new set of samples.
If the importance density is chosen in such a way so that it factorise according to the following
equation

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) (11.15)

then one can obtain samples xi
0:k ∼ q(x0:k|z1:k) by augmenting each of the already klnown

samples xi
0:k−1 ∼ q(x0:k−1|z1:k−1) with the new state xi

k ∼ q(xk|x0:k−1, z1:k). To derive the
weight update equation, p(x0:k|z1:k) is first expressed in terms of p(x0:k−1|z1:k−1), p(zk|xk)
and p(xk|xk−1), and one can get:

p(x0:k|z1:k) =
p(zk|x0:k, z1:k−1)p(x0:k|z1:k−1)

p(zk|z1:k−1)
∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1) (11.16)

With a substitution of (11.15) and (11.16) in (11.14), the weight update equation has the
following form:

wi
k ∝ wi

k−1

p(zk|xi
k)p(x

i
k|xi

k−1)
q(xi

k|xi
0:k−1, z1:k)

(11.17)

Moreover, if q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk), then the importance density becomes only
dependent on xk−1 and zk. This is useful when only a filtered estimate of p(xk|z1:k) is
required in each time step. Then one can store only the values of xi

k and in the same time
discard the path xi

0:k−1 and the history of measurements z1:k−1. Then the weight looks like:

wi
k ∝ wi

k−1

p(zk|xi
k)p(x

i
k|xi

k−1)
q(xi

k|xi
k−1, zk)

(11.18)

and the posterior filtered density p(xk|z1:k) could be approximated as:

p(xk|z1:k) ≈
Ns∑
i=1

wi
kδ(xk − xi

k) (11.19)

where the weights wi
k are defined with (11.18). It could be also shown that as Ns −→∞ the

approximation (11.19) approaches the true posterior density p(xk|z1:k).

Now we can summarize the results and show how the SIS algorithm according to these
computation should look like. The algorithm consists of recursive propagation of the weights
and support points as each measurement is received sequentially. The most important steps
are:

• [{xi
k, w

i
k}

Ns
i=1] = SIS[{xi

k, w
i
k}

Ns
i=1, zk]

• FOR i = 1 : Ns

113

– Draw samples xi
k ∼ q(xk|xk−1, zk)

– Assign the particle a weight, wi
k, according to (11.18)

• END FOR

Very common problem with the SIS particle filter algorithm is shown to be the degeneracy
phenomenon. That means, after a few iterations, all but one particle will have negligible
weight. It has been proved [18] that the variance of the importance weights can only increase
over time, and therefore it is impossible to avoid the degeneracy phenomenon. A suitable
measure of degeneracy of the algorithm is the so called effective sample size Neff introduced
in [15],[16] and defined as:

Neff =
Ns

1 + V ar(w∗k
i)

(11.20)

where w∗k
i) = p(xi

k|z1:k)

q(xi
k|x

i
k−1,zk)

is referred to as the ”true weight”. Although this cannot be

evaluated exactly, one can obtain an estimate using the following formula:

N̂eff =
1∑Ns

i=1 (wi
k)

2 (11.21)

where wi
k is normalised weight using (11.17). Because this problem is undesirable, one should

find solution to avoid it. The first one is the brute force approach to use a very large Ns. But
this is not that helpful, thus one can choose between two other methods:

1. Good choise of the importance density

2. Use of resampling

11.4.1 Good choise of the importance density

This method presents the importance density q(xk|xi
k−1, zk) minimising V ar(w∗k

i) so that
Neff is maximised. The optimal importance density function has been shown [18] to be:

q(xk|xi
k−1, zk)opt

= p(xk|xi
k−1, zk) =

p(zk|xk, x
i
k−1)p(xk|xi

k−1)
p(zk|xi

k−1)
(11.22)

Substitution of (11.22) into (11.18) lieds to:

wi
k ∝ wi

k−1p(zk|xi
k−1) = wi

k−1

∫
p(zk|x

′
k)p(x

′
k|x

′
k−1)dx

′
k (11.23)

But it is very often convinient to choose th importance density function to be the prior,

q(xk|xi
k−1, zk) = p(xk|xi

k−1) (11.24)

Substitution of (11.24) into (11.18) leads to:

wi
k ∝ wi

k−1p(zk|xi
k) (11.25)

This seems to be the most common way to choose the importance density function since it is
intuitive and easy to implement. However, one can use many differen ways, since this choise
is the crucial step in the design of a particle filter.

114

11.4.2 Resampling

The second method which could help to reduce the degeneracy is resampling. It can be
used wehnever a significant degeneracy is observed, or that means when Neff is below some
threshold, NT . The main idea of this method is the following: those particles which have
small weights should be eliminated and those with large weights should be preserved. The
resampling step involves generation of a new set {xi∗

k}N
i=1 by resampling with replacement

Ns times from an approximate discrete respresentation of p(xk|z1:k) given by (11.19). The
resulting sample is in fact sample from the discrete density (11.19) and according to that the
weights are now reset to wi

k = 1
Ns

. There are various efficient resampling schemes [14],[16].
Figure (11.3) represents one example of the algorithms, namely the systematic resampling
algorithm [14].

Figure 11.3: ALGORITHM 2: Systematic Resampling

Although this method reduces the effects of the degeneracy problem, it indroduces other
practical problems, like limit of the opportunity for parallelization since all the particles
should be combined. One problem more is the statistical selection over and over again of the
particles with a high weight, and this leads to loss of diversity among the particles as the
resultant sample will contain many repeated points.

One special case of the general SIS algorithm is Sampling Importance Resampling (SIR)
filter [14], one Monte Carlo method that can be applied to recursive Bayesian filtering prob-
lems. The assumptions required to use the SIR filter are very weak. The state dynamics
and measurements functions, fk(◦, ◦) and hk(◦, ◦) in (11.1) and (11.2) respectively, need to
be known, and also it is required to be able to sample realisations from the process noise
distribution of vk−1 and from the prior. Finally, the likelihood function p(zk|xk) needs to be
avaliable for pointwise evaluation. Then the SIR algorithm can be easily derived from the SIS
algorithm by an appropriate choise of: first, the important density (q(xk|xi

k−1, z1:k) is chosen

115

to be the prior density p(xk|xi
k−1)) and second, the resampling step (it should be applied to

every time step/index).

Such made choise of the importance density implies that one needs samples from p(xk|xi
k−1).

Such sample xi
k ∼ p(xk|xi

k−1) could be generated by generatin a process noise sample vi
k−1 ∼

pv(vk−1) and setting xi
k = fk(xi

k−1, z
i
k−1), where pv(◦) is the probability density function of

vk−1. For this choise of the importance density the weights are computed as:

wi
k ∝ wi

k−1p(zk|xi
k) (11.26)

Since the resampling is applied at every time step, wi
k−1 = 1

N ∀i and then

wi
k ∝ p(zk|xi

k) (11.27)

The weights given in (11.27) are normalised before the resampling stage. The SIR algorithm
is represented in the figure (11.4).

Figure 11.4: ALGORITHM 3: Sampling Importance Resampling

The advantages of this filter is that the importance weights are easily evaluated and the
importance density can be easily sampled. But unfortunatelly it has also some disadvantages,
like rapid loss of diversity in particles, because of resampling in each iteration.

11.5 Tracking People with particle filters

Tracking people is difficult. The first difficulty is that there is a great deal of state to a human:
there are many joint angles, etc. that may need to be represented. The second difficulty is that
it is currently very hard to find people in an image. This means that it can be hard to initiate
tracks. Most systems come with a rich collection of constraints that must be true before they
can be used. This is because people have a large number of degrees of freedom: bits of the
body move around, we can change clothing, etc., which means it is quite difficult to predict
appearance. People are typically modelled as a collection of body segments, connected with

116

rigid transformations. These segments can be modelled as cylinders (Fig. 11.5), in which
case, one can ignore the top and bottom of the cylinder and any variations in view, and
represent the cylinder as an image rectangle of fixed size or as ellipsoids. The state of the
tracker is then given by the rigid body transformations connecting these body segments (and
perhaps, various velocities and accelerations associated with them).

Figure 11.5: Tracking People with Particle Filters

Both particle filters and (variants of) Kalman filters [9] have been used to track people.
Each approach can be made to succeed, but neither is particularly robust. There are two
components to building a particle filter tracker: first, one needs a motion model and second,
a likelihood model. One can use either a strong motion model, which can be obtained by
attaching markers to a model and using them to measure the way the model’s joint angles
change as a function of time, or a weak motion model, perhaps a drift model. Strong motion
models have some disadvantages: perhaps the individual that are tracked moves in a funny
way; then a different models for walking are neccessary, walking carrying a weight, jogging
and running (say). The difficulty with a weak motion model is that each frame is a poor
guide to the next [5].

Likelihood models are another source of difficulties, because of the complexity of the re-
lationship between the tracker’s state and the image. The likelihood function tends to have
many local extrema. This is because the likelihood function is evaluated by, in essence, ren-
dering a person using the state of the tracker and then comparing this rendering to the image.
Assume that one knows the configuration of the person in the previous image; to assess the
likelihood of a particular configuration in the current image, it should be used the configu-
ration to compute a correspondence between pixels in the current image and in the previous
image. The simplest likelihood function can be obtained using the sum of squared differences
between corresponding pixel values and this assumes that clothing is rigid with respect to the
human body, that pixel values are independent given the configuration, and that there are no
shading variations. These are all extremely dubious assumptions.

117

11.6 Advantages and disadvantages of particle filters

One of the greatest advantage of the paticle filters most probably is that they deals with a
non-Gaussian noise. The ability to represent arbitrary densities is also one big step forward
toward tracking different aims. This framework also allows including multiple methods, or
in other words, one can achieve succesful tracking maneuvering targets. However, there are
also some disadvantages, as mentioned above. The high computational complexity is a result
of the great number of particles used. Moreover, it is very dificult to determine the optimal
number of particles, since this number increases with the model’s dimension. The problems
arrising are already mentioned: degeneracy and loss of diversity. Also, one should be very
careful by the choise of the importance density, since this step is the cruical one.

11.7 Conclusion and future work

In conclusion, the Particle Filter approach for tracking proposed in the paper has significantly
improved in the last years among the research community. There is a lot of work to be done,
improving the likelihood models used by tracking people od even by tracking of multiple
interacting targets. Any invention might be helpful in these cases. In future work, we hope
that the interacting multi-target tracking [10], [11] would be one of the most exciting topic
where the particle filters could contrubute in some way.

118

Bibliography

[1] S. Arulampalam and B. Ristic, Comparison of the Particle Filter with Range
parametrised and Modified Polar EKF’s for Angle-Only Tracking, Signal and data
Processing of Small Targets. 2000, SPIE Volume 4048, pp.288-299

[2] C.P. Robert and G. Casella, Monte Carlo Statistical Methods (second edition).
2004, New York: Springer-Verlag.

[3] M. West and J. Harrison , Bayesian Forecasting and Dynamic Models. 1997,
Springer Series in Statistics, 2nd Edition, Springer-Verlag, New York

[4] G. Kitagawa and W. Gersch, Smoothness priors analysis of time series. 1996, New
York: Springer-Verlag.

[5] D. A. Forsyth, J. Ponce, Tracking with Nonlinear Dynamic Models. 2001, Prentice
Hall,

[6] S. Julier, A skewed Approach to filtering, Signal and Data Processing of small
Targets. 1998, SPIE Volume 3373, pp. 271-282

[7] E.A. Wan and R. Van der Merwe, The Unscented Kalman Filter for Non-linear
Estimation. 200, Oct. Proceedings of Symposium 2001 on Adaptive Systems for Signal
Processing, Communication and Control, Lake Louise, Alberta, Canada.

[8] E.A. Wan and R. Van der Merwe, To appear in Kalman Filtering and Neural
Networks. 2001, Chapter 7: The Unscented Kalman Filter, Wiley Publishing

[9] Target Tracking, http://www.ie.ncsu.edu/kay/msf/tracking.htm.

[10] Z. Khan, T. Balch, and F. Dellaert, An MCMC-based Particle Filter for
Tracking Multiple Interacting Targets. College of Computing,Georgia Institute of
Technology Atlanta, GA, USA

[11] Schulz, D., Burgard, W., Fox, D., Cremers., A.B., Tracking multiple moving
targets with a mobile robot using particle filters and statistical data association. 2001,
In: IEEE Intl. Conf. on Robotics and Automation (ICRA).

[12] D.Fox, J. Hightower, L. Liao, D. Schulz, G. Borriello, Bayesian Filters for
location estimation. University of Washington, Dept. of Computer Science and
Engineering, Seattle, WA, Intel Research Seattle, Seattle, WA

[13] N. Gordon, D. Salmond and A. F. M. Smith, Novel Approach to Non-linear and
Non-Gaussian Bayesian State Estimation. 1993,IEE Proceedings-F, Volume 140,
pp.107-113

119

[14] G. Kitagawa, Monte Carlo Filter and Smoother for Non-Gaussian Non-Linear Space
State Models. 1996, Journal of Computational and Graphical Statistics, Volume 5(1),
pp1-25

[15] N. Bergman, Recursive Bayesian Estimation: Navigation and Tracking Applications.
1999, PhD Thesis, Linkoping University, Sweden

[16] J. S. Liu and R. Chen, Monte Carlo Methods for Dynamical Systems. 1998, Journal
of the American Statistical Association, Volume 93, pp.1032-1044

[17] N. Bergman, A. Doucet and N. Gordon, Optimal Estimation and Cramer-Rao
Bounds for Partial Non-Gaussian State Space Models. Ann. Inst. Statist. Math., 2001,
Volume 53

[18] A. Doucet, On Sequential Monte Carlo Methods for Bayesian Filtering 1998,
Technical Report, University of Cambridge, UK, Department of Engineering

120

	Introduction and Concepts of Ubiquitous Tracking
	Introduction
	Related Concepts
	Augmented Reality
	Tracking Devices
	Ubiquitous Computing

	Ubiquitous Tracking
	Framework
	Spatial Relationship Graphs
	Optimizations
	Example

	Conclusion

	Existing Software and Systems
	Introduction
	Important goals and requirements
	Existing Systems
	OpenTracker
	DWARF
	VRPN
	Trackd

	Conclusion

	Algorithms for Tracker Alignment
	Introduction
	What is Tracker Alignment?
	What are Aligned Trackers used for?

	How to perform Tracker Alignment
	Forward Engineering
	Manually Registering Points
	Automatic Alignment from Movements

	Setup
	Solving AX=XB
	Classical Solution
	Modern Way
	Improving Accuracy

	Conclusion
	Mathematical Definitions
	Rotation Matrix
	Homogeneous Transformation
	Extracting Rotation Axis and Angle from Rotation Matrix
	Modified Rodrigues Formula
	Skew-symmetric Matrix []x
	Complex Numbers
	Fundamental Theorem of Algebra
	Gimbal Lock
	Quaternions
	Dual Numbers
	Application of Plücker Coordinates

	History of Quaternions

	Sensor Fusion: The Kalman Filter and its Extensions
	Introduction
	Stochastic Basics
	Probability and Random Variables
	Mean and Variance
	Gaussian distribution
	White noise

	Discrete Kalman Filter (DKF)
	Process and Measurement Models
	Origins of the filter
	Discrete Kalman Filter Cycle
	Assumptions
	Optimality
	Examples

	Extended Kalman Filter (EKF)
	Non-Linearity
	Process and Measurement Models
	Linearization
	Extended Kalman Filter Cycle
	Example

	Discussion of the Kalman Filter
	Sensor Fusion with the Kalman Filter
	DKF and EKF
	SCAAT
	Federated Kalman Filter (FKF)

	Conclusion

	Adaptive transform of the color space in image compression
	Decimation of color-difference components by wavelet filtering
	Real-Time: The Zerberus System
	Introduction
	Requirement elicitation
	Example applications
	Requirements summary
	Requests on a development system

	Zerberus system
	Background
	Development process
	Analysis of the Requirements on the Dependability
	Implementation of Application Dependent Code
	Code Generation
	Zerberus language

	Modifications of Zerberus System regarding augmented reality applications
	Summary

	Holography
	History
	What is Holography
	How is a hologram made?
	How is a hologram viewed?
	What are the main types of holograms?

	X-ray and g-ray Holography Improve Views of Atoms in Solids
	The twin problem
	Work in progress
	Neutron holography

	About My Task

	Planes and Homographies for Augmented Reality
	Context coding of overlapped DCT coefficients
	Particle Filters
	Introduction
	Non-Linear Bayesian Tracking
	Suboptimal Algorithms
	Particle Filters
	Good choise of the importance density
	Resampling

	Tracking People with particle filters
	Advantages and disadvantages of particle filters
	Conclusion and future work

