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Problem StatementProblem Statement

 Tracking the stateTracking the state of a system as it evolves
over timetime

 We have: Sequentially arriving (noisy or
ambiguous) observationsobservations

 We want to know: Best possible estimateestimate of
the hidden variables
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MotivationMotivation

 The trend of addressing complex problems
continues

 Large number of applications require
evaluation of integrals

 Non-linear models

 Non-Gaussian noise
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HistoryHistory

 First attempts – simulations of growing polymers
 M. N. Rosenbluth and A.W. Rosenbluth, “Monte Carlo calculation of the average

extension of molecular chains,” Journal of Chemical Physics, vol. 23, no. 2, pp.
356–359, 1956.

 First application in signal processing - 1993
 N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to

nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings-F, vol. 140,
no. 2, pp. 107–113, 1993.

 Books
 A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in

Practice, Springer, 2001.
 B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter: Particle Filters for

Tracking Applications, Artech House Publishers, 2004.

 Tutorials
 M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle

filters for online nonlinear/non-gaussian Bayesian tracking,” IEEE Transactions on
Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.
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Application fieldsApplication fields

 Other applications
 Biology &Biochemistry
 Chemistry
 Economics & Business
 Geosciences
 Immunology
 Materials Science
 Pharmacology &

Toxicology
 Psychiatry/Psychology
 Social Sciences

 Signal processing

 Image processing and
 segmentation

 Model selection

 Tracking and navigation

 Communications

 Channel estimation

 Blind equalization

 Positioning in wireless
  networks
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Example: Robot LocalizationExample: Robot Localization

 Sensory model: never more than 1 mistake
 Motion model: may not execute action with small

probability
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Example: Robot LocalizationExample: Robot Localization
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Example: Robot LocalizationExample: Robot Localization
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Example: Robot LocalizationExample: Robot Localization



June 05 JASS '05, St.Petersburg, AR Group 12

Example: Robot LocalizationExample: Robot Localization
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Example: Robot LocalizationExample: Robot Localization
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Applications: ExampleApplications: Example

 Observations are the velocity
and turn information1)

 A car is equipped with an
electronic roadmap

 The initial position of a car is
available with 1km accuracy

 In the beginning, the
particles are spread evenly
on the roads

 As the car is moving the
particles concentrate at one
place

1) Gustafsson et al., “Particle Filters for Positioning, Navigation, and Tracking,” IEEE Transactions on SP, 2002
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FundamentalsFundamentals

 The Dynamic System Model
 states of a system and state transition

equation; measurement equation

 Bayesian Filter Approach
 estimation of the state; probabilistic

modelling; Bayesian filter

 Optimal and Suboptimal Solutions
 KF and Grid Filter; EKF, Particle Filter ...
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The Dynamic SystemThe Dynamic System

Modeling: State Transition or Evolution Equation

xk = fk(xk-1,uk-1,vk-1)

Where:
 f (·, ·, ·): evolution function (possible non-linear)
 xk, xk-1: current and previous state
 vk-1: state noise (usually not Gaussian)
 uk-1: known input

Note: state only depends on previous state, i.e. first
order Markov process
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The Dynamic SystemThe Dynamic System

Modeling: Measurement Equation

zk = hk(xk,uk,nk)

Where:
 h (·, ·, ·): measurement function (possible non-linear)
 Zk : measurement
 nk: measurement noise (usually not Gaussian)
 uk: known input

Remark:
 dimensionality of state, measurement, input, state noise, and

measurement noise can all be different!)
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The Dynamic SystemThe Dynamic System
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The Dynamic SystemThe Dynamic System
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The Dynamic SystemThe Dynamic System
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The Dynamic System
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The Dynamic System
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The Dynamic System
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Bayesian Filtering-Tracking ProblemBayesian Filtering-Tracking Problem

 Unknown State Vector x0:k= (x0, …, xk)
 Observation Vector      z1:k= (z1, …, zk)

 Find PDF p(x0:k | z1:k) … posterior distribution
 or p(xk | z1:k) … filtering distribution

 Prior Information given:

 p(x0 ) … prior on state distribution
 p(zk | xk) … sensor model
 p(xk | xk-1) … Markovian state-space 

     model
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Sequential UpdateSequential Update

 Storing all incoming measurements is
inconvenient

 Recursive filtering:
 Predict next state pdf from current

estimate
 Update the prediction using sequentially

arriving new measurements
 Optimal Bayesian solution: recursively

calculating exact posterior density
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Bayesian Filter ApproachBayesian Filter Approach

 Prediction Stage: Chapman-Kolmogorov equation

 Update Stage:

 BUT: This is optimal Bayesian Solution! For non-
Gaussian there is no determined analytical solution

 Remedy: Approximation with EKF and particle filter
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Bayesian Filter Approach

 Estimation Process
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Reminder: Kalman Filter (KF)Reminder: Kalman Filter (KF)

 Optimal solution for linear-Gaussian
case

 Assumptions:
 State model is known linear function of last

state and Gaussian noise signal

 Sensory model is known linear function of
state and Gaussian noise signal

 Posterior density is Gaussian
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Reminder: Limitations of KFReminder: Limitations of KF

 Assumptions are „too strong“. We often
find:
 Non-linear Models

 Non-Gaussian Noise or Posterior

 Multi-modal Distributions

 Extended Kalman Filter:
 local linearization of non-linear models

 still limited to Gaussian posterior!
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Particle FilterParticle Filter

 Different names:

 (Sequential)
Monte Carlo
filters

 Bootstrap filters

 Condensation

 Interacting
Particle
Approximations

 Survival of the
fittest
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Particle Filter

 The key idea:

 represent the required predictive or filtering
distribution by a set of random samples
(possibly with weights) and compute
estimates
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Particle FilterParticle Filter

 Two types of information required:
 Data

 Controls (e.g., robot motion commands) and
 Measurements (e.g., camera images).

 Probabilistic model of the system

 Data given by:
 The measurement at time t:  zt=(z1, z2, ..., zt)
 The control asserted in the time interval (t-1,t]: ut=(u1, u2, ..., ut)

 Remark:
 Superscript:denote all events leading up to time t
 Subscript: event at time t
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Probabilistic model of the systemProbabilistic model of the system

 Particle filters, like any member of the family of Bayes
filters such as KF, EKF, estimate the posterior
distribution of the state of the dynamical system
conditioned on the data p(xt

 | zt,ut)

 Three probability distributions are required:
A measurement model, p(zt

 | xt)
A control model, p(xt

 | ut ,xt-1)
An initial state distribution, p(x0)

 Represent the distribution using weighted samples
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Particle FilterParticle Filter

 Definition:

A set of random samples {X0:t
i,w0:t

i} drawn from a
distribution q(x0:t|z1:t) is said to be properly weighted
with respect to p(x0:t|z1:t) if for any integrable function
g() the following holds:
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Particle FilterParticle Filter

 Random Measure {x0:k
i,wk

i}, i=1...Ns

 Posterior PDF p(x0:k | z1:k)
 Set of support points {x0:k

i, i=1...Ns}

 Assosiated weights {wk
i, i=1...Ns}

 Then, pdf p() can be approximated by properly
weighted samples (so called particles):

=> discrete weighted approximation to the true
posterior p(x0:k | z1:k)
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Importance SamplingImportance Sampling

 Suppose p(x)~π(x), π(x) can be evaluated

 Let xi ~ q(x), i=1..Ns, samples
 q(x) - Importance Density

 Weighted approximation to density p():

    where                       normalized weight of the i-th
particle
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Degeneracy ProblemDegeneracy Problem

 After a few iterations, all but one particle will have
negligible weight

 Measure for degeneracy:

 Effective sample size

 Small Neff indicates severe degeneracy

 Brute force solution: Use very large N
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Particle Filtering MethodsParticle Filtering Methods

 SIS-Method
 Sequential Importance Sampling

(Implementation of a recursive Bayesian
filter wirh monte-carlo simulations)

 Other derived methods
 Sequential Importance Resampling- SIR

 Auxiliary SIR

 Regularized Particle Filter
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SIS Particle Filter: AlgorithmSIS Particle Filter: Algorithm

Where wi
k
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SISSIS

 State space
representation

 Bayesian filtering

 Monte-Carlo
sampling

 Importance
sampling

State space 
model

Solution Problem

Estimate 
posterior

Difficult to 
draw samples

Integrals are 
not tractable

Monte Carlo 
Sampling

Importance
Sampling
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Basic Particle Filter - SchematicBasic Particle Filter - Schematic
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SISSIS

 Degeneracy problem!

 Solutios:
 Good choise of importance density (critical point!)

 Resampling
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SIR Particle Filter: AlgorithmSIR Particle Filter: Algorithm
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SIR Particle Filter: AlgorithmSIR Particle Filter: Algorithm
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Tracking PeopleTracking People

 Use of particle filters neccesary

 Two components:
 Motion model (strong or weak)

 Likelihood model (almost alwaus the most
dificult part)
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AdvantagesAdvantages

+ Ability to represent arbitrary densities

+ Adaptive focusing on probable regions
of state-space

+ Dealing with non-Gaussian noise

+ The framework allows for including
multiple models (tracking maneuvering
targets)
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DisadvantagesDisadvantages

- High computational complexity
- It is difficult to determine optimal number

of particles
- Number of particles increase with

increasing model dimension
- Potential problems: degeneracy and loss

of diversity
- The choice of importance density is

crucial
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DisadvantagesDisadvantages

Number of particles grows exponentially with dimensionality of state space!
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SummarySummary

 Particle Filters is an evolving and active topic, with
good potential to handle “hard” estimation problems,
involving non-linearity and multi-modal distributions.

 In general, the scheme is computationally expensive
as the number of “particles” N needs to be large for
precise results.

 Additional work required: optimizing the choice of N,
and related error bounds.



Thank You for Your Attention!

Questions...?!


