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Introduction

 Task
Fusion of different data sets

 Approaches
Simple

Stochastic approach
 No perfect model

 Disturbances

 Imperfect or incomplete data



Introduction

 Kalman Filter
Optimal linear recursive estimator

 Incorporates all available information
 Knowledge about system and measurement device

 Statistical description of noise and error

 Initial conditions

 “prediction-correction-cycle”
 Time update

 Measurement update

Simple, robust and popular



Overview

 Stochastic Basics

 Discrete Kalman Filter

 Extended Kalman Filter

 Sensor Fusion
DKF and EKF

SCAAT

FKF

 Conclusion



Stochastic Basics

 Probability and Random Variables
 Probability

 Random Variable X: Sample Space → Numbers

 Cumm. distribution function

 Probability density function

 Mean and Covariance
 Mean

(discrete, continuous)

 Variance

 Std. deviation

outcomes possible of number total
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Stochastic Basics

 Gaussian distribution
 Popular for modelling random systems

 Normally distributed

 Probability density function

 White noise
 Autocorrelation

 White noise is uncorrelated, independent
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The Discrete Kalman Filter

 Process and Measurement Models
 Models

 Noise

 Origins of the Filter
 state estimates, errors and covariances

 Computational origin

 Probabilistic origin
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The Discrete Kalman Filter

 Discrete Kalman Filter Cycle
 Time update

 Measurement update

 Influence of Q and R
 Process noise covariance Q:

large → close track of changes in data

 Measurement noise covariance R:
large → measurements are considered not very accurate

QAAPP

BuxAx

T

kk

kkk

+=

+=

!

!

!

!

1

1
ˆˆ

!

!!

!!!

!=

!+=

+=

kkk

kkkkk

T

k

T

kk

PHKIP

xHzKxx

RHHPHPK

)(

)ˆ(ˆˆ

)( 1



The Discrete Kalman Filter

 Influence of Q and R

Q small, R large Q large, R small



The Discrete Kalman Filter

 Assumptions
All underlying models are linear

 Often adequate

 More complete theory

Gaussian probability distribution
 “natural”

 Completely determined by μ and σ
White (independent) noise

 Identical to wideband noise in bandpass

 Mathematics are vastly simplified



The Discrete Kalman Filter

 Optimality
 Filter minimizes the estimated error covariance

 Based on computation of Kalman gain K

diagonal of P contains mean squared errors → minimize trace
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The Discrete Kalman Filter

 Examples
 1D voltage measurement

 Models

 Noise covariances

 Measurements
mean m →

 Results
red=measurements
green=predicted states
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The Discrete Kalman Filter

 Examples
 3D position measurement

 State vector

 Models

 Filter cycle
 Compute Δt since previous estimate

 Compute state transition matrix A(Δt)

 Do the prediction and correction steps

 Determination of Q and R
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The Extended Kalman Filter

 Non-Linearity
 Assumptions of the DKF do not always hold

 EKF linearizes about the current mean and covariance

 EKF Models
 Non-linear equations

 Noise values unknown

 Linearization

Jacobians
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The Extended Kalman Filter

 Extended Kalman Filter Cycle
 Time update

 Measurement update
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The Extended Kalman Filter

 Example
 3D position and orientation tracking with quaternions

 State vector

 Models

 Filter cycle: equations as presented
Jacobians need to be computed
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Kalman Filter Discussion

 Kalman Filter
stable, robust and popular optimal estimator

 DKF
(+) optimal linear estimator

     applicable to many system processes

(-) three assumptions

 EKF
(+) faces non-linearity problem

(-) unreliable for non Gaussian distributions



Sensor Fusion with KFs

 Discrete and Extended Kalman Filter
One Filter

 Multiple sensors summed up in a single filter

 Updates when enough information is gathered

→ UNC hybrid landmark-magnetic tracker

Separate Filters
 Separate filters for each sensor

 Optimal adjusting

→ Azuma: head location prediction



Sensor Fusion with KFs

 Single Constraint at a Time (SCAAT)
 Introduction

 Multiple seq. measurements for a single update

 Problems
 Simultaneity assumption

 System depends on sufficient data sets

SCAAT idea
 Single-constraint-at-a-time

 Each measurement provides some information about
the current state

 Incremental improvement of previous estimates



Sensor Fusion with KFs

 Single Constraint at a Time (SCAAT)
 State vector and models

 State vector

 Process model

 Measurement model

for each sensors σ a corresponding measurement vector
b and c are tracker source and sensor parameters

 Ideal SCAAT application
only a single source and sensor pair for each update
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Sensor Fusion with KFs

 Single Constraint at a Time (SCAAT)
 Algorithm

 Compute Δt since previous estimate

 Predict state and error covariance

 Predict measurement and compute Jacobian

 Compute Kalman gain

 Correct state estimate and error covariance

 Discussion
 SCAAT integrates individual (incomplete) measurements

 Faster, more accurate, no simultaneity assumption
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Sensor Fusion with KFs

 The Federated Kalman Filter
 Introduction

 Computational load problems in
multisensor systems

 Decentralization and reduced
rate at master filter

 FKF idea
 Decentr. approach with local filter

and a master filter

 Local data compression through
pre-filtering

 Optimal or suboptimal accuracy
via selectable master filter rate



Sensor Fusion with KFs

 The Federated Kalman Filter
 Filter Structure

 Models

 Composite global filter

 Global cost index

 Globally optimal solution if local estimates are uncorrelated

 Elimination of cross-correlations through upper bounds for
covariances Q and P:        as bounding variable
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Sensor Fusion with KFs

 The Federated Kalman Filter
 Algorithm

 Set initial local covariances to      x common system value

 Local filters process own measurements via locally optimal KF

 Master filter combines local filter solutions after each cycle
update via the equations

 Master filter resets local filter states to master value and local
covariances to      x master value

 Discussion
 Highly fault tolerant, rate-reduced, decentralized filtering

approach
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Conclusion

 Kalman Filter
 DKF: optimal linear estimator with three assumptions
 EKF: faces non-linear models, linearizes about μ and σ

 Sensor Fusion
 KF - Direct fusion: easy and common
 KF - Separate filters: faces complexity, ignores

possible correlations
 SCAAT: integrates single measurements, more

accurate and faster
 FKF: decentralized system with pre-filtering, high fault

tolerance and globally optimal/suboptimal estimation
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