Introduction & Concepts of Ubiquitous Tracking

By Troels Frimor 3rd Joint Advanced Student School JASS 2005 Introduction & Concepts of Ubiquitous Tracking

Feel free to ask questions and interrupt if something is not clear.

Roadmap

Very short reminders on concepts

- Augmented Reality
- Tracking Devices
- Ubiquitous Computing
- Ubiquitous Tracking
 - Motivation
 - Theoretical Framework
 - Relationship graphs
 - Data flow graphs
 - Super nodes
 - Example

Augmented Reality

Characteristics of Augmented Reality
 Combines real and virtual
 Interactive in real time
 Registered in 3D

Augmented Reality

Courtesy: TUM http://wwwbruegge.in.tum.de/DWARF/ProjectShe ep

Courtesy: MEDARPA http://www.medarpa.de/

Augmented Reality

Characteristics of Augmented Reality

- Combines real and virtual
- Interactive in real time
- Registered in 3D
- Many technical issues

Domain specific

Medical, maintenance, production, design, ...

- Visualization
- User interfaces
- Tracking

••••

Tracking Devices

- Many different ways of tracking exists
 - All have different characteristics
 - Physical medium mechanical, inertia, field sensing, …
 - Measurement 2D pixel value, time of flight, …
 - Accuracy level of noise
 - Update rate time between each measurement
 - Mobile is it user attached, weight, fashion, …
 - •

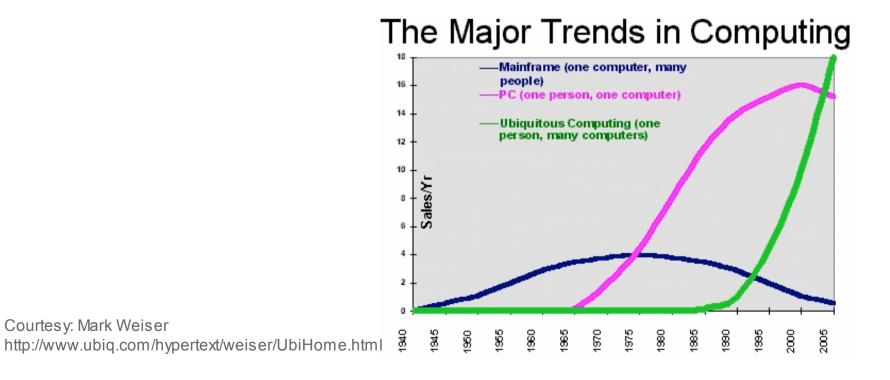
Tracking Devices

- Hybrid systems
 - Combine trackers to take advantages of their individual characteristics
 - Optic inertial
 - Inside-out outside-in
 - ...
- Domain issues have to be considered
 - Magnetism in factories (pipes of iron/steel)
 - □ Is it possible to make sterile for a medical environment
 - Light pollution in infrared sensitive environments

Ubiquitous Computing

Ubiquitous Computing

 It is invisible, everywhere computing that does not live on a personal device of any sort, but is in the woodwork everywhere. - Mark Weiser



Ubiquitous Tracking

- Motivation:
 - All tracking devices have
 - limitations in range
 - very different attributes
 - Assuming an ubiquitous computing environment
 - Many trackers distributed out to help providing a wide-area augmented reality support
 - Each setup has to reinvent the wheel by creating a system for combining all the sensor data

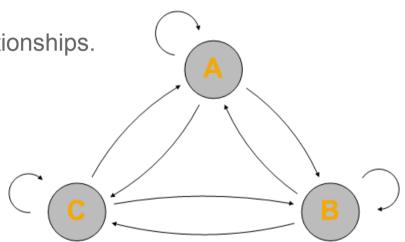
Goal:

- To provide, at any point in time, an optimal estimate of the spatial relationship between any arbitrary objects
- Make a separating layer between application and sensors

Fundamentals of Ubiquitous Tracking

Ubiquitous Tracking framework.

- Representing Spatial Relationships
 - What information is measured
- Graph based model of spatial relationships.
- Optimal path
- Attributes tracking quality
- Error functions
- Optimizations
 - Data flow graphs
 - Super nodes



Representing Spatial Relationships

- Different sensors often measure properties other than pose
 - position or orientation only, 2D pixel values, acceleration
 - These can be related to a pose indirectly
- For the purpose of this presentation an 4x4 matrix is assumed for relations

Spatial Relationships

Real

□ The actual relationships. Continuous over time.

- Measured
 - Every time a sensor provides a measurement, a new relation is added.

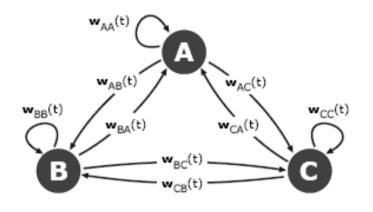
Inferred

 Relations are added by combining knowledge from measurements or using external information

Real Relationships

 All information from the view of an all-knowing observer

Representation



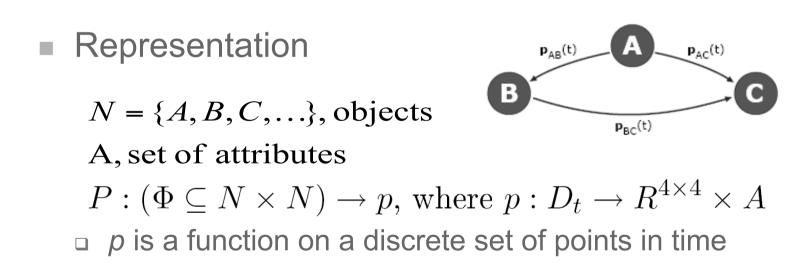
 $N = \{A, B, C, \ldots\}$, objects

 $W: (\Omega = N \times N) \to w$, where $w: D_t \to R^{4 \times 4}$

□ w is defined at all points in time

Measured Relationships

- Measurements made
 - Noise
 - Not all relations are known



Inferred Relationships

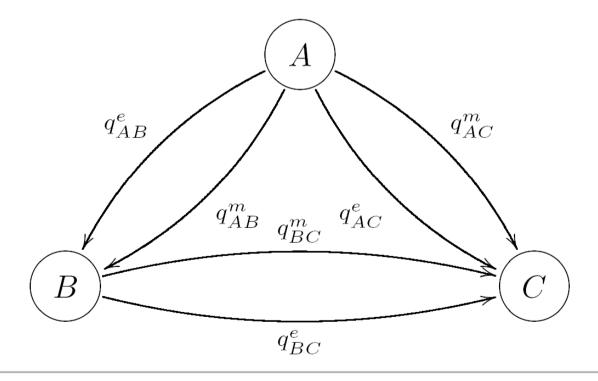
 Try to approximate Ω (real world), by adding inferred relationships

 $Q: (\Psi \subseteq N \times N) \to q$, where $q: D_t \to R^{4 \times 4} \times A$

- $\ \ \, \circ q_{XY}, \text{ is a union of basis relationships functions between } X \\ \text{ and } Y \text{ and contains}$
 - The measurement relationships $q_{XY}^m(t) = p_{XY}(t)$
 - All inferred relationships $q_{XY}^{e}(t), q_{XY}^{i}(t), q_{XY}^{k}(t), \ldots$

Inferred Relationships – graph

- $G(\Psi)$, is the graph for the inferred relationships
 - \Box Drawn with each element of *q* as an edge



Inferred Relationships – examples

• Measurements
$$q_{XY}^m(t) = p_{XY}(t) = \begin{cases} (H_1, A_1) & \text{if } t = t_1 \\ (H_2, A_2) & \text{if } t = t_2 \\ undefined & \text{otherwise} \end{cases}$$

• **Extrapolation**
$$q_{XY}^e(t) = \begin{cases} (H_1, A_1) & \text{if } |t - t_1| < |t - t_2| \\ (H_2, A_2) & \text{otherwise} \end{cases}$$

$$Interpolation \qquad q_{XY}^{i}(t) = \begin{cases} (H_1, A_1) & \text{if } t_1 \leq t \leq t_1 + \frac{t_2 - t_1}{2} \\ (H_2, A_2) & \text{if } t_1 + \frac{t_2 - t_1}{2} < t \leq t_2 \\ undefined \text{ otherwise} \end{cases}$$

Inferred Relationships – examples

- General inference $q_{XY}^{f}(t) = f((H_1, A_1), (H_2, A_2), ..., t)$
- This is also used to model different filters like the Kalman filter. More on this in a later presentation.

Quick sum up on SR Graphs

- Real relationships
 - Defined at all points in time

W: $(\Omega = N \times N) \rightarrow w$, where w: $D_t \rightarrow R^{4 \times 4}$

- Measured relationships
 - Each measurement at a discrete point in time

 $P: (\Phi \subseteq N \times N) \rightarrow p$, where $p: D_t \rightarrow R^{4 \times 4} \times A$

- Inferred relationships
 - □ Deduced knowledge gives an approximation to real world $Q: (\Psi \subseteq N \times N) \rightarrow q$, where $q: D_t \rightarrow R^{4 \times 4} \times A$

Querying for Optimal Paths

- An error function is used to estimate the quality of a path $e: A \to \mathbb{R}$
 - The error function can be designed to value, for example, latency over frequency or spatial accuracy.
 (more on attributes later)

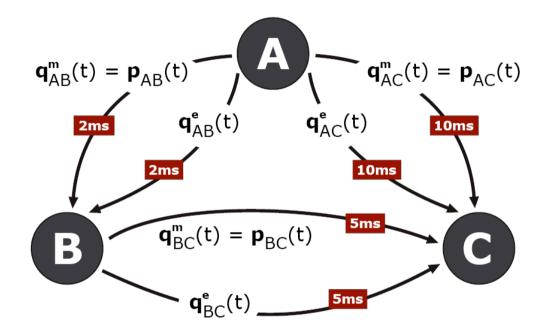
Querying for Optimal Paths

- Query for optimal path from A to B
 - Extend error function to take a ordered set of attributes

 $e:A^*\to\mathbb{R}$

- □ Algorithm given graph $G(\Psi)$, objects A and B, error function e and time t
 - Find all paths *R* from *A* to *B* that are defined at given time
 - Evaluate given error function on collected attributes for every path $r \in R$
 - Calculate the spatial relationship between A and B by multiplying all matrices along the path r
- □ If the result is a new inference then add it to Q

Querying example



 $\mathbf{P1}: A \xrightarrow{q^e_{AB}} B \xrightarrow{q^e_{BC}} C, \qquad \mathbf{P2}: A \xrightarrow{q^m_{AC}} C, \qquad \mathbf{P3}: A \xrightarrow{q^e_{AC}} C$

Attributes for Relation Quality

- Many different attributes can be useful, examples:
 - Latency
 - s, time from actual measurement to it is available
 - Update frequency
 - Hz, rate of measurements
 - Confidence value
 - [0;1], probability that it is the correct feature that is detected
 - Pose accuracy
 - Gaussian noise?
 - Time to live
 - s, time a relationship is likely to be valid

Attributes for Relation Quality

- Other attributes like the costs of the sensors can also be useful.
 - Before building the system a model can be created with all available trackers from the marked. An error function, including cost, can be used for figuring out optimal combinations with certain cost restraints.
- Open question: can a general attribute set for all applications be found?

Error functions

- Can be an arbitrary complex function
 - speedup can be gained if an edge by edge evaluation is possible
 - → Weight in Dijkstra's shortest path algorithm

Simple example – weighting between lag and update rate:

$$e^t := \sum_{q \in path} \log(q) + \frac{\lambda}{\operatorname{rate}(q)}$$

Optimizations

The formalism described so far:

$$Q: (\Psi \subseteq N \times N) \to q, \text{ where } q: D_t \to \mathbb{R}^{4 \times 4} \times \mathbb{A}$$
$$q_{XY}^f(t) = f((H_1, A_1), (H_2, A_2), \dots, t)$$
$$e: A^* \to \mathbb{R}$$

- Performance issues:
 - Data flow graphs save optimal paths found
 - □ Super nodes group nodes to reduce complexity

Optimizations – Data Flow Graphs

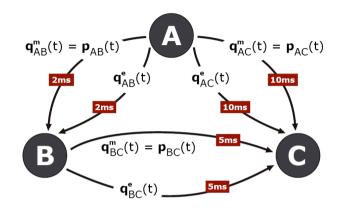
 Build data flow graphs from the found optimal paths in a component based manor so

□ An edge from a relationship graph is considered one node

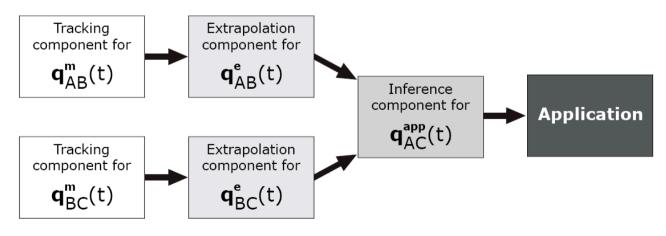
- Constructed as an a three structure with
 - Data flow from the leaves to the root
 - Measurements and information of static setups as leaves
 - Fusion, extra-, interpolation, filter and other inferred components as the internal nodes
 - The root is the final relation

Optimizations – Data Flow Graphs

Example graph:



- Found optimal path *P1* from *A* to *C*: **P1** : $A \xrightarrow{q_{AB}^e} B \xrightarrow{q_{BC}^e} C$
- Constructed data flow graph for P1:



Optimizations – Data Flow Graphs

This approach depends on:

- Rare structural changes to the relationship graph
 - Tracked person goes to another room
- Rare changes of attributes for the components in the created data flow graph
 - The error function depends only on the attributes so if the attributes rarely change then an update to the data flow graph is rarely necessary
- Thus once setup, graphs searches may be performed in the background leaving computation of the pose estimation to be performed in real time.

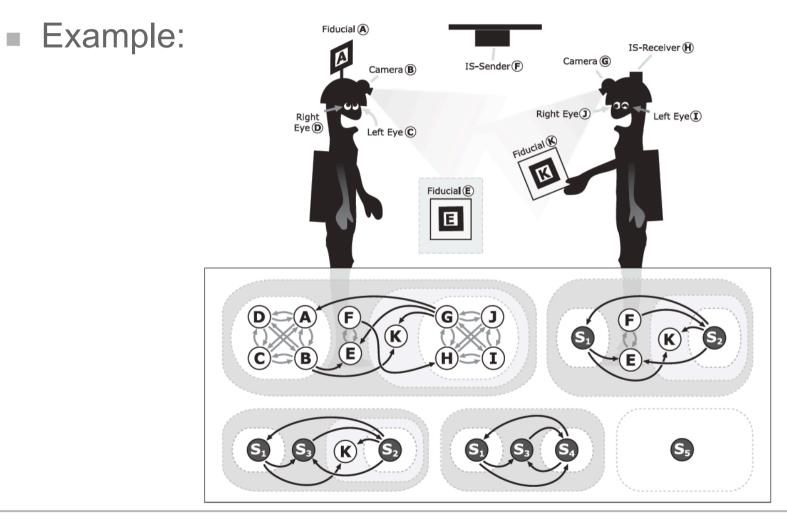
Optimizations – Super Nodes

 Grouping of nodes to optimize performance can be done if

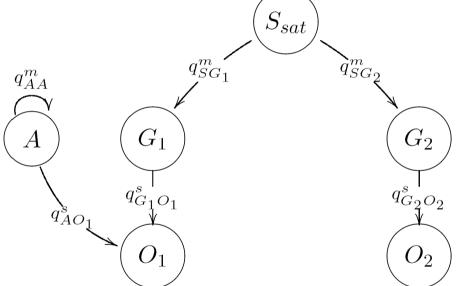
□ the nodes are statically related

 the graph searches are concentrated to clusters of nodes – (near) cliques

Optimizations – Super Nodes



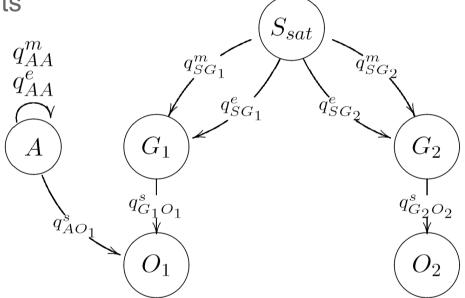
- Measurements:
 - \Box O₁ is a moving car
 - \Box O₂ is a stationary object



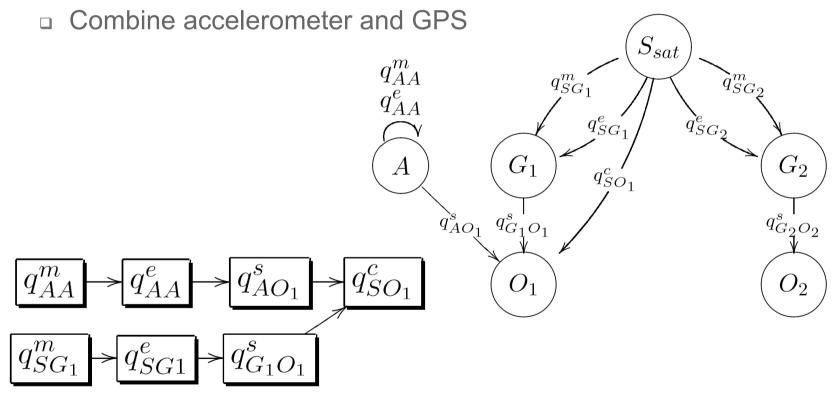
Querying:

• O_1 spatial relation to O_2 at time T+ Δ t (via Kalman filter)

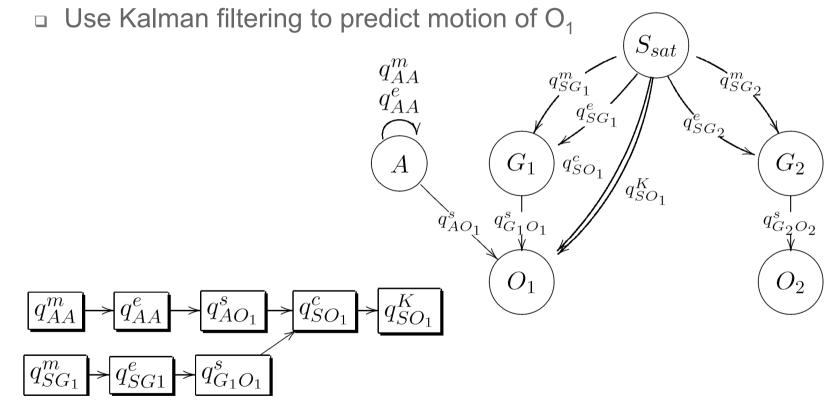
- O_1 spatial relation to O_2 at time T+ Δ t (via Kalman filter)
 - Extrapolate measurements



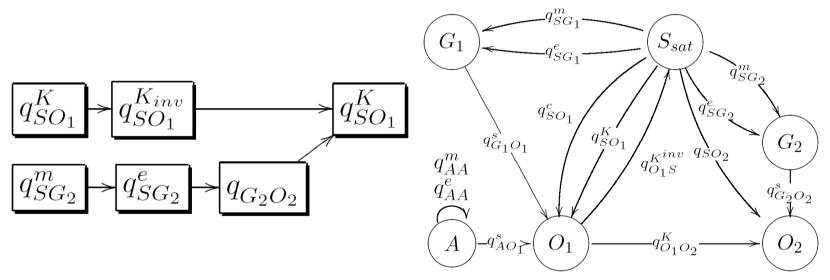
• O_1 spatial relation to O_2 at time T+ Δ t (via Kalman filter)



• O_1 spatial relation to O_2 at time T+ Δ t (via Kalman filter)



O₁ spatial relation to O₂ at time T+Δt (via Kalman filter)
 Infer relation between O₁ and O₂



Introduction & Concepts of Ubiquitous Tracking

Questions

Introduction & Concepts of Ubiquitous Tracking - References

- Fundamentals of Ubiquitous Tracking for Augmented Reality
 J. Newman, M. Wagner, T. Pintaric, A. MacWilliams, M. Bauer, G. Klinker, D. Schmalstieg
- An Architecture for Distributed Spatial Configuration of Context Aware Applications
 M. Wagner, G. Klinker
- Distributed User Tracking Concepts for Augmented Reality Applications
 - G. Klinker, T. Reicher, B. Bruegge