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The history of quantum computation

1936 Alan Turing

1982 Feynman

1985 Deutsch

• Church-Turing thesis: 
There is a „Universal Turing machine“, that can efficiently 
simulate any other algorithm on any physical device

• Computer based on quantum mechanics might 
avoid problems in simulating quantum mech. 
systems

• Search for a computational device to simulate an 
arbitrary physical system
quantum mechanics -> quantum computer
Efficient solution of algorithms on a quantum computer 
with no efficient solution on a Turing machine?



1994 Peter Shor

1995 Lov Grover

In the 1990s

1995 Schumacher

1996 Calderbank, 
Shor, Steane

• Efficient quantum algorithms
- prime factorization
- discrete logarithm problem
->more power

• Efficient quantum search algorithm

• Efficient simulation of quantum mechanical systems

• “Quantum bit” or “qubit” as physical resource

• Quantum error correction codes
- protecting quantum states against noise

The history of quantum computation



The basics of quantum computation

• Classical bit: 0 or 1

• 2 possible values

• Qubit:

• are complex -> infinite possible 
values -> continuum of states
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Qubit measurement: result 0 with probability 

result 1 with probability

Wave function collapses during measurement,
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Qubits

Bloch sphere:
We can rewrite our state with
phase factors 

Qubit realizations: 2 level systems
1) ground- and excited states of electron orbits
2) photon polarizations
3) alignment of nuclear spin in magnetic field
4) electron spin
…
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Bloch sphere [from Nielson&Chuang]



Single qubit gates

• Qubits are a possibility to store 
information quantum mechanically

• Now we need operations to 
perform calculations with qubits 

• -> quantum gates:

• NOT gate:
classical NOT gate: 0 -> 1; 1 -> 0
quantum NOT gate:

• Linear mapping -> matrix 
operation 
Equal to the Pauli spin-matrix 
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Single qubit gates

• Every single qubit operation can be 
written as a matrix U

• Due to the normalization condition every 
gate operation U has to be unitary

• -> Every unitary matrix specifies a valid 
quantum gate

• Only 1 classical gate on 1 bit, but
quantum gates on 1 qubit.

• Z-Gate leaves      unchanged, and flips 
the sign of 

• Hadamard gate = “square root of NOT”
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Hadamard gate

• Bloch sphere:
- Rotation about the y-axis by 90°
- Reflection through the x-y-plane

• Creating a superposition
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Decomposing single qubit operations

• An arbitrary unitary matrix can be 
decomposed as a product of rotations

• 1st and 3rd matrix: rotations about the z-axis

• 2nd matrix: normal rotation

• Arbitrary single qubit operations with a finite 
set of quantum gates

• Universal gates
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Multiple qubits

For quantum computation multiple qubits are needed!
2 qubit system:
computational bases stats: 
superposition:

Measuring a subset of the qubits:
Measurement of the 1st qubit gives 0 with probability 
leaving the state 
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Entanglement

• Bell state or EPR pair:
prepare a state: 

• Measuring the 1st qubit gives 

0 with prop. 50% leaving 
1 with prop. 50% leaving 

• The measurement of the 2nd qubits always 
gives the same result as the first qubit!

• The measurement outcomes are correlated!

• Non-locality of quantum mechanics
• Entanglement means that state can not be 

written as a product state
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Multiple qubit gates, CNOT

• Classical: AND, OR, XOR, NAND, NOR -> NAND is universal
• Quantum gates: NOT, CNOT

• CNOT gate:
- controlled NOT gate = classical XOR
- If the control qubit is set to 0, target qubit is the same
- If the control qubit is set to 1, target qubit is flipped

• CNOT is universal for quantum computation
• Any multiple qubit logic gate may be composed from CNOT and single qubit gates

• Unitary operations are reversible 
(unitary matrices are invertible,      unitary ->        too  )

• Quantum gate are always reversible, classical gates are not reversible
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Qubit copying?

• classical: CNOT copies bits
• Quantum mech.: impossible

• We try to copy an unknown state 
• Target qubit: 
• Full state: 

• Application of CNOT gate: 
• We have successful copied      , but only in the case 

• General state 

• No-cloning theorem: major difference between quantum and 
classical information
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Quantum parallelism

• Evaluation of a function:
• Unitary map: black box

• Resulting state:

• Information on f(0) and f(1) with 
a single operation

• Not immediately useful, because 
during measurement the 
superposition will collapse
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Deutsch algorithm

• Input state: 

• Application of       :
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Deutsch algorithm
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• global property determined with 
one evaluation of f(x)

• classically: 2 evaluations needed

• Faster than any classical device

• Classically 2 alternatives exclude 
one another

• In quantum mech.: interference



Quantum algorithms
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Classical steps quantum logic steps

Fourier transform
e.g.: 
- Shor’s prime factorization
- discrete logarithm problem
- Deutsch Jozsa algorithm

- n qubits
- N numbers

- hidden information!
- Wave function collapse 
prevents us from directly 
accessing the information

Search algorithms

Quantum simulation cN bits kn qubits

N N



The Five Commandments of DiVincenzo

1. A physical system containing qubits is needed

2. The ability to initialize the qubit state

3. Long decoherence times, longer than the gate 
operation time
• Decoherence time: 104-105 x “clock time”
• Then error-correction can be successful

4. A universal set of quantum gates (CNOT)

5. Qubit read-out measurement

...000



Realization of a quantum computer

• Systems have to be almost 
completely isolated from their 
environment

• The coherent quantum state has 
to be preserved

• Completely preventing 
decoherence is impossible

• Due to the discovery of quantum 
error-correcting codes, slight 
decoherence is tolerable

• Decoherence times have to be 
very long -> implementation 
realizable

• Performing operations on several 
qubits in parallel

• 2- Level system as qubit:
– Spin ½ particles
– Nuclear spins

• Read-out:
– Measuring the single spin states
– Bulk spin resonance



Si:31P, Kane concept from 1998

• Logical operations on nuclear spins of 
31P(I=1/2) donors in a Si host(I=0)

• Weakly bound 31P valence electron at 
T=100mK

• Spin degeneracy is broken by B-field
• Electrons will only occupy the lowest 

energy state when 
• Spin polarization by a strong B-field 

and low temperature

• Long 31P spin relaxation time           ,         
due to low T
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Single spin rotations

• Hyperfine interaction              at the nucleus

• : frequency separation of the nuclear levels

• A-gate voltage pulls the electron wave function 
envelope away from the donors

• Precession frequency of nuclear spins is 
controllable

• 2nd magnetic field Bac in resonance to the 
changed precession frequency

• Selectively addressing qubits
• Arbitrary spin rotations on each nuclear spin
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Qubit coupling

• J-gates influence the neighboring 
electrons -> qubit coupling

• Strength of exchange coupling 
depends on the overlap of the 
wave function

• Donor separation: 100-200 
• Electrons mediate nuclear spin 

interactions, and facilitate 
measurement of nuclear spins
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Qubit measurement

• J < µBB/2: qubit operation
• J > µBB/2: qubit measurement

• Orientation of nuclear spin 1 alone 
determines if the system evolves 
into singlet or triplet state

• Both electrons bound to same 
donor (D- state, singlet)

• Charge motion between donors
• Single-electron capacitance 

measurement

• Particles are indistinguishable 



Many problems

• Materials free of spin(         
isotopes)

• Ordered 1D or 2D-donor array

• Single atom doping methodes

• Grow high-quality Si layers on 
array surface

• 100-A-scale gate devices

• Every transistor is individual -> 
large scale calibration

• A-gate voltage increases the 
electron-tunneling probability

• Problems with low temperature 
environment
– Dissipation through gate biasing
– Eddy currents by Bac

– Spins not fully polarized

0≠I



SRT with Si-Ge heterostructures

• Spin resonance transistors, at a size of 
2000 A

• Larger Bohr radius (larger          )
• Done by electron beam lithography

• Electron spin as qubit
– Isotropic purity not critical
– No needed spin transfer between 

nucleus and electrons

• Different g-factors
Si: g=1.998 / Ge: g=1.563

• Spin Zeeman energy changes
• Gate bias pulls wave function away 

from donor

ε*,m



Confinement and spin rotations

• Confinement through B-layer
• RF-field in resonance with SRT -> arbitrary spin phase change



2-qubit interaction

• No J-gate needed

• Both wave functions are pulled 
near the B-layer

• Coulomb potential weakens
• Larger Bohr radius

• Overlap can be tuned

• CNOT gate



Detection of spin resonance

• FET channel:
n-Si0.4Ge0.6 ground plane counter-
electrode

• Qubit between FET channel and 
gate electrode

• Channel current is sensitive to 
donor charge states:
– ionized / neutral / 

doubly occupied (D- state)

• D- state (D+ state) on neighbor 
transistors, change in channel 
current -> Singlet state

• Channel current constant -> triplet 
state 



Electro-statically defined QD

• GaAs/AlGaAs
heterostructure -> 2DEG

• address qubits with
– high-g layer
– gradient B-field

• Qubit coupling by lowering 
the tunnel barrier



Single spin read-out in QD

• Spin-to-charge conversion of electron 
confined in QD (circle)

• Magnetic field to split states

• GaAs/AlGaAs heterostructure -> 2DEG
• Dots defined by gates M, R, T
• Potential minimum at the center

• Electron will leave when spin-
• Electron will stay when spin-
• QPC as charge detector

• Electron tunneling between reservoir 
and dot

• Changes in QQPC detected by 
measuring IQPC



Two-level pulse on P-gate



Self-assembled QD-molecule

• Coupled InAs quantum dots
– quantum molecule

• Vertical electric field localizes 
carriers

• Upper dot = index 0
• Lower dot = index 1

• Optical created exciton
• Electric field off -> tunneling -> 

entangled state



Self-assembled Quantum Dots array

• Single QD layer
• Optical resonant excitation of e-h

pairs

• Electric field forces the holes into 
the GaAs buffer

• Single electrons in the QD ground 
state (remains for hours, at low T)

• Vread: holes drift back and 
recombine

• Large B-field: Zeeman splitting of 
exciton levels



Self-assembled Quantum Dots array

• Circularly polarized photons

• Mixed states
• Zeeman splitting yields either

• Optical selection of pure spin 
states
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NV- center in diamond

• Nitrogen Vacancy center: defect in 
diamond, N-impurity

• 3A -> 3E transition: spin conserving 
• 3E -> 1A transition: spin flip

• Spin polarization of the ground state
• Axial symmetry -> ground state 

splitting at zero field

• B-field for Zeeman splitting of triplet 
ground state

• Low temperature spectroscopy



NV- center in diamond

• Fluorescence excitation with laser

• Ground state energy splitting 
greater than transition line with

• Excitation line marks spin 
configuration of defect center

• On resonant excitation:
• Excitation-emission cycles 3A -> 3E

– bright intervals, bursts

• Crossing to 1A singlet small
– No resonance
– Dark intervals in fluorescence



Thank you very much!
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