

Semiconductor Quantum Dots

M. Hallermann

"Semiconductor Physics and Nanoscience" St. Petersburg – JASS 2005

- Introduction
- Fabrication Experiments Applications
 - Porous Silicon
 - II-VI Quantum Dots
 - III-V Quantum Dots
 - Cleaved Edge Overgrowth (CEO)
 - Self Assembling Quantum Dots
 - Electronic Structure

Introduction Low Dimensional Systems

 Motion of electron in conduction band is described by the effective mass concept

$$E = \frac{p^2}{2m^*}$$

• Dispersion relation with $p = \hbar k$

$$\Rightarrow E(k) = \frac{\hbar^2 k^2}{2m^*}$$

 In low dimensional systems the carrier motion is quantized in one or more spatial directions

Inroduction Density of States – 3D

• Wave function in 3D box of volume $\Omega = L_x L_y L_z$

$$\Phi_{lmn}(\mathbf{R}) = \frac{1}{\sqrt{\Omega}} \exp(i\mathbf{K} \cdot \mathbf{R}) \qquad \mathbf{K} = \left(\frac{2\pi l}{L_x}, \frac{2\pi m}{L_y}, \frac{2\pi n}{L_z}\right)$$

Density of states / per unit volume

$$N_{3D}(\mathbf{K}) = \frac{2\Omega}{(2\pi)^3} \frac{4}{3} \mathbf{K}^3 \pi \qquad n_{3D}(\mathbf{K}) = \frac{1}{3\pi^2} \mathbf{K}^3$$

Density of states in Energy

$$D_{3D}(E) = \frac{d}{dE} n_{3D}(\mathbf{K}) = \frac{1}{2\pi^2} \left(\frac{2m^*}{\hbar^2}\right)^{\frac{3}{2}} \sqrt{E - E_g}$$

• For example $GaAs/Al_xGa_{1-x}As(x<0.4)$ quantum well

Density of states

$$D_{2D}\left(E\right) = \frac{m^*}{\pi \hbar^2}$$

Quantum wire through cleaved edge overgrowth

Density of states

$$D_{1D}(E) = \frac{\sqrt{2m^*}}{2\pi\hbar} \frac{1}{\sqrt{E - E_{nm}}}$$

Kinetic quantization along x, y and z-direction

- Energy spectrum fully quantized
- Density of States

$$D_{0D}(E) = discrete$$

Introduction Quantum Dots as Artificial Atoms

	Atom	QD	
Particle:	Electron	on Exciton	
Energy scale:	13eV – 100keV	Typ. 1 eV	
Length scale:	0.1 – 0.3 nm	Typ. 10 nm	
Potential:	V(r) ~ 1/r	Tunable	

Tunable properties in QDs

- Applications
 - Lasers in visible and near infrared spectrum
 - Optical data storage
 - Optical detectors
 - Quantum information processing and cryptography
- Publications

- Size $\Delta E > 3k_BT \sim 75meV$
- Crystal quality
- Uniformity
- Density
- Growth compatibility
- Confinement for electrons and/or holes
- Electrically active matrix material

- Introduction
- Fabrication Experiments Applications
 - Porous Silicon
 - II-VI Quantum Dots
 - III-V Quantum Dots
 - Cleaved Edge Overgrowth (CEO)
 - Self Assembling Quantum Dots
 - Electronic Structure

Fabrication – Experiments – Applications Introduction

Several approaches:

- Porous Silicon
- Nanometer semiconductor inclusions in matrices
- Lithographic patterning of higher dimensional systems
- Strain driven selfassembly

- Introduction
- Fabrication Experiments Applications
 - Porous Silicon
 - II-VI Quantum Dots
 - III-V Quantum Dots
 - Cleaved Edge Overgrowth (CEO)
 - Self Assembling Quantum Dots
 - Electronic Structure

- C-Si: indirect bandgap → inefficient emitter even at 4K
- P-Si: emission efficiency up to 10% (optical excitation)
- Nanocrystals of different size and shape
- Structure of high complexity
- Confinement leads to bandgap widening and higher overlap of wavefunctions
- Easy fabrication of p-Si
- Pure Si optoelectronic devices possible

 Anodic biased c-Si in hydrofluoric acid (HF)

Structure depends on:

- Doping
- Etching conditions
- Illumination conditions

$$Si + 4HF + 2F^- + 2h^+ \rightarrow SiF_6^{2-} + H_2 + 2H^+$$

Si bandgap

Smaller nc's size

Widely tunable emission band due to quantum size effect: all emission energies are available

Broad spectrum

→ line narrowing

Porous Silicon *k*-space

- P-Si has indirect nature
- k-conservation rule breaks down due to confinement

Porous Silicon Electron-Hole Exchange Interaction

Absorption in a singlet state

After spin flip emission via triplet state

Electronic structure of excitons is very similar to dye molecules

Porous Silicon Indirect Excitation: Photosensitization

Basic principle:

Energy transfer (dipole-dipole or direct electron exchange) is efficient if:

- photoexcited donor has long lifetime
- overlap of energy bands of D/A is good
- space separation of D/A is small

Silicon nanocrystals (almost ideal donor):

- ground state is triplet
- •long exciton lifetime (10⁻⁵-10⁻³ s)
- wide emission band
- •huge internal surface area (10³ m²/cm³)

Acceptor having triplet ground state?

Porous Silicon Molecular Oxygen: Electronic Structure

ground gtate:

- spin triplet
- chemically inert
 (reaction S+T → S is forbidden)

excited states:

- spin singlet
- energy-rich
- high chemical reactivity
 (reaction S+S → S is allowed

oxidation reactions in organic chemistry, biology, life science photodynamic cancer therapy oxygen-iodine laser

Optical excitation is impossible → Photosensitizer is required → Silicon nanocrystals

Porous Silicon PL Quenching by Oxygen Molecules

- \rightarrow Adsorption of O₂: PL Quenching
- → low temperature: fine structure appears
 - ¹D→ ³S emission line of O₂

- Introduction
- Fabrication Experiments Applications
 - Porous Silicon
 - II-VI Quantum Dots
 - III-V Quantum Dots
 - Cleaved Edge Overgrowth (CEO)
 - Self Assembling Quantum Dots
 - Electronic Structure

- First hints of quantum dots: CdSe and CdS in silicate glasses (X-ray 1932)
- Since 1960s semiconductor doped glasses used as sharp-cut color filter
- Quantum dots in glassy matrices
- Ideal model for the study of basic concepts of 3D confinement in semiconductors
- Many different matrices: glasses, solutions, polymers, even cavities of zeoliths
- Many promising applications already on the way

 Colloidal QDs can be further processed and incorporated in a variety of media

CdSe can be prepared in a wide range of shapes

II-VI Quantum Dots Growth of Nanocrystals

- In polymer composites
 - Nearly full color emitting LEDs
 - (CdSe)ZnS in PLMA (green red)
 - (CdS)ZnS in PLMA (violet blue)
 - (CdS)ZnS in PLMA for temperature measurements

Coupled to bio-molecules → biological sensors

Conformal Solar Cells

Flexible Electronics

Memory

Drug Discovery Substrates

- Type-I core-shell structure (CdSe)CdS
 - Display devices and lasers

- Type-II (CdTe)CdSe and (CdSe)ZnTe
 - Esp. photovoltaic photoconducting devices
 - Energies smaller than bandgap of each material possible
 - Tunable bandgap low yield (<5%)

- Introduction
- Fabrication Experiments Applications
 - Porous Silicon
 - II-VI Quantum Dots
 - III-V Quantum Dots
 - Cleaved Edge Overgrowth (CEO)
 - Self Assembling Quantum Dots
 - Electronic Structure

CEO Molecular-Beam-Epitaxy (MBE)

Quantum Well

MBE→ Atomically precise deposition of layers with different composition and/or doping

- Two cleaving steps enable fabrication of QDs and artificial molecules
 - 1st growth on (001) GaAs
 - 2nd growth on (011)
 - 3rd growth on $(01\overline{1})$
 - At intersection between three quantum wells
 - Weaker localisation
 - Lower energy state

	SL1	SL 2	SL3	SL4
AlAs-width [nm]	32	20	11	20
dot width [nm]	35	22	12	22
dot height [nm]	13 ±4	7 ±1	3	7 ±1
density [dots/µm]	17	14		

quantum dot size correlated with AlAs-width

♦ create chessboard-structure?

Advantages

- Very high crystal quality
- Confinement for both electrons and holes
- Flexibility

Disadvantages

- Relatively low confinement energies (∆~10meV)
- Complex crystal growth and fabrication
- (011) surface not purely As or Ga terminated like (100)

- Introduction
- Fabrication Experiments Applications
 - Porous Silicon
 - II-VI Quantum Dots
 - III-V Quantum Dots
 - Cleaved Edge Overgrowth (CEO)
 - Self Assembling Quantum Dots
 - Electronic Structure

Self Assembling QDs Epitaxial Growth Modes

- Equilibrium crystal growth driven by thermodynamic forces
 - Surface (α) and interface (β) energies
 - Two growth modes = Frank-van der Merwe (FvdM), Volmer-Weber (VW)

$$\alpha_2 + \beta_{12} < \alpha_1$$

Deposited Material Wets Substrate

$$\alpha_2 + \beta_{12} > \alpha_1$$

Clustering reduces free energy

Self Assembling QDs Energy Gap vs. Lattice Constant

Self Assembling QDs Strained Layer Epitaxy

Dislocated

For (001) growth Strain Energy

$$E_s \propto \varepsilon^2 d$$

- Pseudomorphic growth
 - Strain energy increases ~ linearly with d

Self Assembling QDs Growth Modes in Strained Systems

 Switching between FvdM and VW growth possible due to increase of strain energy during heteroepitaxy...

Planar FvdM growth at start ($\alpha_2 + \beta_{12} < \alpha_1$) but growing strain energy (E_s) drives a change from FvdM to VW like growth \rightarrow Stranski-Krastanow Mechanism

Self Assembling QDs Stranski-Krastanov Growth

Nanostructures formed during lattice mismatched epitaxy (e.g. InAs on GaAs)

Self Assembling QDs Islands → **Quantum Dots**

- Formed during Stranski-Krastanow growth of lattice mismatched materials
 - e.g. GaAs substrate + InAs islands + GaAs cap

Self Assembling QDs Influence of Growth Parameters

Growth conditions control QD size, density and composition

Self Assembling QDs Strain

Upper layers of dots tend to nucleate in strain field generated by lower layers

Strain field extends outside buried QD

a)

Transmission Electron Micrograph of single coupled QD molecule

Self Assembling QDs Strain

- InGaAs-GaAs self assembled QD-molecules
- Self alignment via strain field

Self Assembling QDs Quantum Logic

- Introduction
- Fabrication Experiments Applications
 - Porous Silicon
 - II-VI Quantum Dots
 - III-V Quantum Dots
 - Cleaved Edge Overgrowth (CEO)
 - Self Assembling Quantum Dots
 - Electronic Structure

Electronic Structure Single Dot Spectroscopy

Inhomogeneous broadening

- →Size, shape and composition fluctuations
- →Limits range of physical phenomena investigable

Electronic Structure Photoluminescence of QD Ensemble

Electronic Structure Ensemble → **Single Quantum Dot**

4.58 nm

Electronic Structure Low Quantum Dot Density

- Growth without substrate rotation
 - Control of In-gradient and In:Ga Ratio
- QD density 300-10μm⁻²
- Characterization using PL and AFM

Electronic Structure Spatially Resolved Spectroscopy

Shadowmask Apertures

Cryogenic Microscope

Electronic Structure Optical Nonlinearities

Each occupancy state (1e + 1h, 2e + 2h...) has <u>distinct</u> transition frequency

Application of single dots for quantum information science?
Charge and spin qubits...

Deterministic single photon sources...

Electronic Structure Single QD Photoluminescence

- Power controls occupancy
 - Low → Single emission line
 - High → Two groups of lines

- Two "energy scales"
 - Quantisation energy ~40meV
 - Few particle interactions ~meV

Electronic Structure Identification of Occupancy States

QD occupancy states (X, 2X, 3X...)

→ Identified from power characteristics

$$P(q) = \frac{N^q \exp(-N)}{q!}$$
 Prob. dot occupied with "q" e-h pairs Seneration rate

→Two "single exciton" lines (X and X*)

Pulsed optical excitation of a single dot

Each external laser pulse produces single photon at X0 energy

Electronic Structure Calculate Strain

Minimization of elastic energy in continuum model.

$$E_{EL} = \frac{1}{2} \int_{V} C_{ijkl} \, \varepsilon_{ij}(\mathbf{r}) \varepsilon_{kl}(\mathbf{r}) dV$$

Electronic Structure Calculate the Quantum States

Solve single- or multi-band (k.p) Schrödinger equation

$$\nabla \frac{1}{m_c^*(\mathbf{r})} \nabla \Psi(\mathbf{r}) + E_c(\mathbf{r}) - e\Phi(\mathbf{r}) = E\Psi(\mathbf{r})$$

Electron wavefunctions

Hole wavefunctions

Nanoscale islands form during strain driven self-assembly

- Formation is driven by thermodynamic forces
- Size of islands is self-limiting 10-100nm range
- Realised in many materials systems
 - (e.g. InAs on (Al)GaAs, Ge on Si, InAs on InP...)
- Already incorporated into many optoelectronic devices
 - Lasers, LEDs, Detectors, Non-Classical Light emitters, Hardware for quantum computation

Advantages

- Large confinement energies (>60meV)
- High crystal (optical) quality
- High areal density (10¹⁰-10¹¹cm⁻²)
- Weak coupling to their environment
- Multiple layers of dots can be readily fabricated

Disadvantages

Homogeneity - size, shape and morphology fluctuations

- Jon Finley
- Dimitri Kovalev
- Martin Stutzmann
- Andreas Kress, Felix Hofbauer, Michael Kaniber
- WSI (E24)

References: Please ask for special topics.