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Basic terminology of graph theory. I

Definition (Directed graph)

A directed graph G is a pair G = (V , E), where V is a set of any
nature, elements of which is called nodes, E is a set of ordered pairs
(u, v) called arcs.

Definition (In-degree and out-degree)

The out-degree of a node u is the number of distinct arcs (u, v) ∈ E ,
and the in-degree is the number of distinct arcs (v , u) ∈ E .
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Basic terminology of graph theory. II

Definition (Path)

A path from node u to node v is a sequence of arcs
(u, u1), (u1, u2), . . . , (uk , v), where
(u, u1), (ui , ui+1), (uk , v) ∈ E ,∀i = 1, k − 1.

Definition (Strongly connected component)

A strongly connected component (strong component for brevity) of
a graph G = (V , E) is a set of nodes such that for any pair of nodes u
and v in the set there is a path from u to v .

Definition (Diameter)

A diameter of a graph G = (V , E) is the maximum over all ordered
pairs (u, v) of the shortest path from u to v .
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Definition of the Web graph.

We consider pages in
the Web as nodes.
Links between pages
are arcs.
We obtain graph called
the Web graph.
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Properties of the Web graph.

1 Macroscopic structure of the Web graph
2 Diameter of the Web graph
3 In- and out-degree distributions
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Macroscopic structure of the Web graph.
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In- and out-degree distributions.

It is turned out that in-
and out-degree are
distributed according to
power law.
the probability that a
node has in-degree
(out-degree) i is
proportional to
(x > 1)
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In- and out-degree distributions.

In-degree: the exponent of
the power law is around
2.1
Out-degree: the exponent of
the power law is around
2.72
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Markov processes.

Definition (Markov process)

An S-valued Markov process is an infinite sequence of random
variables Xk = X0, X1, . . . ∈ S if S is finite and the probability function
P satisfies:
P(Xk+1 = b|X0 = a0, . . . , Xk = ak ) = P(Xk+1 = b|Xk = ak ) is the
same for all k > 0.
Its transition function is ω(a, b) = P(Xk+1 = b|Xk = a).
Its initial distribution is σ(a) = P(X0 = a).

In the Stochastic processes literature, this is technically called a
homogeneous, discrete time, finite space Markov process. In
applications of the theory, they are often simply called Markov
processes or Markov chains.

Danil Nemirovsky Web graph and PageRank algorithm



Web graph
Markov theory

PageRank
Decomposition

Aggregation/Disaggregation methods
Summary

Markov processes
Convergence of Markov processes
Transition matrix and stationary distribution
Power method

Convergence of Markov processes. I

Definition (Period of state)

Let {Xk} be an S-valued Markov process. The period of a state
a ∈ S is the largest d satisfying: (∀k , n ∈ N)

P(Xn+k = a|Xk = a) > 0 ⇒ d divides n

If d = 1, then the state a is aperiodic.

Definition (Ergodic Markov process)

An ergodic Markov process is a Markov process {Xk} that is both
irreducible: every state is reachable from every other state.
aperiodic: the greatest common divisor of the states’ periods is
1.
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Convergence of Markov processes. II

Lemma (Ergodic Condition)

An irreducible S-valued Markov process with transition function ω that
has ω(a, a) > 0 for some state a ∈ S is aperiodic, and hence ergodic.

Theorem (Ergodic Convergence)

If {Xk} is an ergodic S-valued Markov process, then the probability
function converges for all a ∈ S:

lim
k→∞

P(Xk = a) = pa
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Transition matrix and stationary distribution.

If the set of states is
finite we can define
transition matrix.
If the Markov chain is
ergodic, then it has
unique stationary
probability distribution

Pij = ω(ai , aj),∀ai , aj ∈ S

πP = π πe = 1
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Power method.

‖π‖1 = πe
v is the first
approximation
ε is an accuracy

rate of convergence |λ2|
|λ1|

If P is row-stochastic
matrix then
λ1 = 1, 1 > |λ2| >
|λ3| > . . . > |λn| > 0

π(k+1) = π(k)P
function π(m) = PowerMethod(P, v , ε)

{
π(0) = v ;

k = 1;

repeat
π(k) = π(k−1)P;

δ = ‖π(k) − π(k−1)‖1;

k = k + 1;

until δ < ε;

}
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Defining of PageRank.

A is a page
c is a damping factor
Ti is a page, linking to the page A
π(A) is PageRank of a page A
l(Ti) is the number of outgoing link from Ti

π(A) =
(1− c)

n
+ c(π(T1)/l(T1) + . . . + π(Tm)/l(Tm))
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PageRank vector.

If we number all pages
we can define a
PageRank vector as row
vector whose every
entry is PageRank of
some page.
The PageRank vector is
a stationary distribution
of specially formed
Markov chain

p1 → π1,
p2 → π2,
. . . . . . . . . ,
pn → πn.
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Defining Markov chain.
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Transition matrix.
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Defining of PageRank

Google matrix and PageRank.

G = cP + (1− c)1/nE

π = πG

πe = 1

Google: c = 0.85
About 6 clicks before going to arbitrary page

π =
1− c

n
et(I − cP)−1
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Power method for PageRank.

v = (1/n, 1/n, . . . , 1/n) is the first approximation
ε is an accuracy
PowerMethod(G, v , ε)

Rate of convergence = c
c = 0.85 ⇒ about 100 iterations
c = 0.99 ⇒ about 1000 iterations
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Decomposition a Google matrix.

P =


P11 P12 . . . P1N
P21 P22 . . . P2N

...
...

. . .
...

PN1 PN2 . . . PNN


where N < n. The PageRank vector is

π = (π1, π2, . . . , πN)

where πI is row vector with dim(πI) = nI and

N∑
I=1

nI = n
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Block-diagonal case.

P =


P1 0 . . . 0
0 P2 . . . 0
...

...
. . .

...
0 0 . . . PN


GI = cPI + (1− c)1/nIE

πI = πIGI

πIe = 1

Theorem
The PageRank π is given by

π =
(n1

n
π1,

n2

n
π2, . . . ,

nN

n
πN

)
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Block-diagonal case
2 × 2 case

Macroscopic structure of the Web graph.
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2× 2 case.

P =

(
P11 P12
P21 P22

)
, π = (π1, π2)

π(I − P) = 0.

I − P = LDU

L =

(
I 0

−P21(I − P11)
−1 I

)
D =

(
I − P11 0

0 I − S

)

U =

(
I −(I − P11)

−1P12
0 I

)
S = P22 + P21(I − P11)

−1P12

πLD = 0

π2S = π2 π1 = π2P21(I − P11)
−1

σS = σ, σe = 1

π2 = ρσ πe = 1
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Aggregation/Disaggregation methods.

The Power Method
converges for components
with different rate and we do
more then need iteration for
the components.

π = (π1, π2, . . . , πN)

G =


G11 G12 . . . G1N
G21 G22 . . . G2N

...
...

. . .
...

GN1 GN2 . . . GNN
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Blockrank method.

πi , i = 1, N

πi = PowerMethod(Gii ,
1
n

et , ε)

Aij = πiGije
νA = ν

π̃ = (ν1π1, . . . , νNπN)

π = PowerMethod(G, π̃, ε)

G =


G11 G12 . . . G1N
G21 G22 . . . G2N

...
...

. . .
...

GN1 GN2 . . . GNN
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Blockrank method.
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Iteration aggregation/disaggregation method.

function π(m) = IAD(G, v , ε){
π(0) = v ;

k = 1;

repeat

A(k)
ij = π

(k)
i Gije;

ν(k)A(k) = ν(k);

π̃(k) = (ν
(k)
1 [π

(k)
1 ], . . . , ν

(k)
N [π

(k)
N ])

π(k+1) = π̃(k)Gm

δ = ‖π(k+1) − π(k)‖1;

k = k + 1;

until δ < ε;

}

[πi ] =
πi

πie

π = (π1, π2, . . . , πN)

G =


G11 G12 . . . G1N
G21 G22 . . . G2N

...
...

. . .
...

GN1 GN2 . . . GNN
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Summary

The World Wide Web was represented as a directed graph and
properties if the Web graph was considered.
PageRank algorithm and different methods of finding PageRank
are discussed.

Outlook
Convergence of Iteration aggregation/disaggregation method will
be researched.
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Thank you for your patience and attention!

Danil Nemirovsky Web graph and PageRank algorithm



Web graph
Markov theory

PageRank
Decomposition

Aggregation/Disaggregation methods
Summary

References I

K.Avrachenkov and N.Litvak. Decomposition of the Google
PageRank and Optimal Linking Strategy. Inria Sophia Antipolis,
University of Twente, 2004.

E.Behrends. Introduction to Markov Chains (with Special
Emphasis on Rapid Mixing). Vieweg Verlag, 1999.

A.Berman and R.J.Plemmons. Nonnegative Matrices in the
Mathematical Sciences. SIAM Classics In Applied Mathematics,
SIAM, Philadelphia, 1994.

M.Bianchini, M.Gori, and F.Scarselli. Inside PageRank. ACM
Trans, Internet Technology, In press, 2002.

Danil Nemirovsky Web graph and PageRank algorithm



Web graph
Markov theory

PageRank
Decomposition

Aggregation/Disaggregation methods
Summary

References II

A.Broder, R.Kumar, F.Maghoul, P.Raghavan, S.Rajagopalan,
R.Stata, A.Tomkins, J.Wiener. Graph structure in the web. Proc.
WWW9 conference, 309-320, May 2000.
http://www9.org/w9cdrom/160/160.html

A.Clausen. Online Reputation Systems: The Cost of Attack of
PageRank. 2003

G.H.Golub and C.F.V.Loan. Matrix Computations. The Johns
Hopkins University Press, Baltimore, 1996.

T.H.Haveliwala and S.D.Kanvar. The second eigenvalue of the
Google matrix. Tech. Rep. 2003-20, Stanford University, March
2003. http://dbpubs.stanford.edu/pub/2003-20

C.F.Ipsen and S.Kirklad. Convergence analysis of the
Langville-Meyer PageRank algorithm.

Danil Nemirovsky Web graph and PageRank algorithm



Web graph
Markov theory

PageRank
Decomposition

Aggregation/Disaggregation methods
Summary

References III

S.Kamver, T.Haveliwala, C.Manning, and G.Golub. Exploiting the
block structure of the web for computing PageRank. Tech. Rep.
SCCM03-02, Stanford University,
http://www-sccm.stanford.edu/nf-publications-tech.html, 2003.

A.N.Langville and C.D.Meyer. Deeper Inside PageRank. Preprint,
North Carolina State University, 2003.

C.Meyer. Stochastic complementation, uncoupling Markov
chains, and the theory of nearly reducible systems. SIAM Rev.,
31 (1989), pp. 240-72.

C.D.Moler and K.A.Moler. Numerical Computing with MATLAB.
SIAM, 2003.

Danil Nemirovsky Web graph and PageRank algorithm



Web graph
Markov theory

PageRank
Decomposition

Aggregation/Disaggregation methods
Summary

References IV

L.Page, S.Brin, R.Motwani, and T.Winograd. The PageRank
citation ranking: Bringing order to the web. Technical report,
Stanford Digital Library Technologies Project, 1998.

J.H.Wilkinson. The Algebraic Eigenvalue Problem. Oxford
University Press, Oxford, 1965.

Danil Nemirovsky Web graph and PageRank algorithm


	Web graph
	Basic terminology of graph theory
	Definition of the Web graph
	Properties of the Web graph

	Markov theory
	Markov processes
	Convergence of Markov processes
	Transition matrix and stationary distribution
	Power method

	PageRank
	Defining of PageRank

	Decomposition
	Block-diagonal case
	22 case

	Aggregation/Disaggregation methods
	Blockrank method
	Iteration aggregation/disaggregation method

	Summary

