
IP = PSPACE

Johannes Mittmann

Technische Universität München

May 21, 2006

Abstract

In [Sh92], Adi Shamir proved a complete characterization of the
complexity class IP. He showed that when both randomization and
interaction are allowed, the proofs that can be verified in polynomial
time are exactly those proofs that can be generated within polynomial
space.

This paper gives a detailed description of the proof. Besides the
original paper, it is based on [Pa94] and [SchPr98].

Contents

1 Introduction 2

2 Polynomial Space 2
2.1 Quantified Satisfiability . 3
2.2 PSPACE-Completeness . 4

3 Shamir’s Theorem 6
3.1 Arithmetization . 7
3.2 Reduction to a Finite Field . 9
3.3 Polynomials and Simple Expressions 11
3.4 The Interactive Protocol . 12

1

1 Introduction

Interactive proof systems were introduced by Goldwasser et al. in [GMR85].
An earlier result by Papadimitriou [Pa83] implied that IP ⊆ PSPACE. But
IP was considered to be only a slight generalization of NP and it was not even
expected to contain coNP. Oracle results actually suggested the converse,
what shows that the proof presented in this paper does not ”relativize”.

However, the situation changed on November 27, 1989, when Nisan sur-
prised a few insiders by e-mail announcement (see [Ba90]) that he had found a
multi-prover interactive protocol for the permanent. This result was improved
soon by Lund, Fortnow and Karloff to the (single-prover) LFKN-protocol for
the permanent [LFKN92], and announced on the mailing list on December 13,
1989. Because of results of Valiant [Va79] (the permanent is #P-complete)
and Toda [To89] (PH ⊆ P#P), this implied that IP contains the whole poly-
nomial hierarchy PH ⊆ IP. Now, IP was much more powerful than previously
suspected, so why could not IP actually contain PSPACE?

This question was finally answered on December 26, 1989. The proof was
accomplished by extending the techniques of Lund et al. to quantified Boolean
formulas. A difficulty that arised was the exponential growth of the degree of
polynomials involved in arithmetizations of those formulas. The first one who
could overcome this problem was the Indian Adi Shamir who worked over the
Christmas holidays.

2 Polynomial Space

The complexity class

PSPACE =
⋃
k>0

SPACE(nk)

is the class of problems that are decided by a deterministic Turing machine
using a polynomial amount of space. We review some of the facts about
PSPACE.

There are two results about space whose analogous statements about time
are widely believed not to be true. The first one is Savitch’s Theorem which
states that PSPACE = NPSPACE. The second is the Immerman-Szelep-
scényi Theorem which says that nondeterministic space classes are closed under
complement. The relationship to other complexity classes is given by the
following tower of inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

From the Space Hierarchy Theorem we obtain that the inclusion L PSPACE
is proper, but there is nothing known about the four inclusions in between.

2

In this paper we want to show the characterization IP = PSPACE. In
order to proof the identity of complexity classes (that are closed under re-
ductions), it suffices to show that they share the same complete problems.
Therefore we introduce a decision problem that is complete for PSPACE.

2.1 Quantified Satisfiability

Satisfiability for Boolean formulas is NP-complete. It turns out that, if we
add quantifiers to our formulas, satisfiability becomes PSPACE-complete.

Definition 1. Let X = {x1, x2, . . . } be an alphabet of Boolean variables.
They can take the two truth values true and false.

A quantified Boolean expression (QBF) φ is defined inductively by

1. a Boolean variable xi,

or an expression of the form

2. ¬φ1 (negation),

3. φ1 ∨ φ2 (disjunction),

4. φ1 ∧ φ2 (conjunction),

5. ∃xi φ1 (existential quantification),

6. ∀xi φ1 (universal quantification),

where φ1 and φ2 are quantified Boolean expressions.

As the definition is inductive, many proofs about QBFs will work by in-
duction on the structure of the formula.

Let φ be a QBF. A variable xi in φ that is not quantified is called free. If
φ does not have any free variables, it is called closed. A closed QBF evaluates
to either true or false.

Two QBFs φ, ψ are equivalent, written φ ≡ ψ, if for any truth assignment,
φ is satisfied if and only if ψ is satisfied. Besides the obvious commutativity
and associativity laws for ∨ and ∧, the following properties hold.

Proposition 2. Let φ and ψ be QBFs. Then

1. ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ. (De Morgan’s Laws)

2. ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ.

3. ¬(∃xi φ) ≡ ∀xi ¬φ.

4. ¬(∀xi φ) ≡ ∃xi ¬φ.

5. ¬(¬φ) ≡ φ.

3

6. ∃xi (φ ∨ ψ) ≡ (∃xi φ) ∨ (∃xi ψ).

7. ∀xi (φ ∧ ψ) ≡ (∀xi φ) ∧ (∀xi ψ).

8. If xi does not appear free in ψ, ∀xi (φ ∨ ψ) ≡ (∀xi φ) ∨ ψ.

9. If xi does not appear free in ψ, ∀xi (φ ∧ ψ) ≡ (∀xi φ) ∧ ψ.

10. If xj does not appear in φ, ∀xi φ ≡ ∀xj φ[xi ← xj].

Properties 8 through 10 still hold, if we replace ∀ by ∃, whereas for prop-
erties 6 and 7 this is not true in general.

A QBF is said to be in prenex normal form, if it is of the form

φ = ∃x1∀x2∃x3 . . . Qnxn ψ,

where ψ is quantifier-free and Qn = ∃ if n is odd and Qn = ∀ otherwise. The
string of quantifiers is called prefix, and ψ is called the matrix of the formula.
The alternation of quantifiers is not always demanded in the definition of the
normal form, however, it can be easily accomplished by introducing dummy
variables that do not appear in the matrix.

Proposition 3. Any QBF φ can be transformed to an equivalent one in prenex
normal form.

Proof sketch. First, assign different variable names to each quantification and
each free variable. Then move the quantifiers out by the rules in Prop. 2.

The decision problem of quantified satisfiability is now defined as follows:

QSAT =
{
〈φ〉 : φ is a true QBF in conjunctive prenex normal form

}
.

Note that, in particular, the formulas in QSAT are closed, since they
evaluate to true.

2.2 PSPACE-Completeness

Theorem 4 (Stockmeyer/Meyer 1973). QSAT is PSPACE-complete.

Proof. In order to prove the theorem, we have to show that

1. QSAT ∈ PSPACE.

2. For all L ∈ PSPACE : L ≤log QSAT.

Proof sketch of 1. Let φ = ∃x1∀x2∃x3 . . . Qnxn ψ(x1, . . . , xn) be a QBF. Then
φ can be evaluated as it is shown in Figure 1.

However, we cannot store the whole tree, since it has exponential size. But
we can traverse it in a depth-first search manner like in the following recursive
algorithm.

4

Algorithm. Truth(φ)

1: if φ is quantifier-free then
2: return truth value of φ
3: end if

4: denote φ = Q1x1 . . . Qnxn ψ(x1, . . . , xn)

5: b0 ← Truth(Q2x2 . . . Qnxn ψ(false, x2, . . . , xn))
6: b1 ← Truth(Q2x2 . . . Qnxn ψ(true, x2, . . . , xn))

7: if Q1 = ∃ then
8: return b0 ∨ b1
9: else

10: return b0 ∧ b1
11: end if

If lines 5 and 6 are implemented with a stack that reuses space, then the
stack size is bounded by the height of the tree which is linear in the input
length.

φ = ∃x1∀x2∃x3 . . . Qnxn ψ(x1, . . . , xn)

∃
x1 = false x1 = true

∀x2∃x3 . . . ψ(0, x2, . . .) ∀ ∀x2∃x3 . . . ψ(1, x2, . . .)∀
. . .x2 = false x2 = true

∃x3 . . . ψ(0, 0, x3, . . .) ∃ ∃x3 . . . ψ(0, 1, x3, . . .)∃
...

Qn Qn

ψ(0, . . . , 0) ψ(0, . . . , 1) ψ(0, . . . , 1, 0)ψ(0, . . . , 1, 1)

. . .

Figure 1: Evaluation tree.

Proof sketch of 2. Let L ∈ PSPACE. Then L is decidable by a Turing ma-
chine M that, for input x, uses polynomial space. Thus, the number of possible
configurations is 2m, where m = O(|x|k), and we can encode each configuration
as a bit vector X of length m. We consider the configuration graph G(M,x)
of M on input x, i. e. the graph that has as node set all possible configura-
tions, and a directed edge between two nodes if and only if one configuration

5

yields the other in one step. Deciding now wether x ∈ L is equivalent to the
existence of a path in G(M,x) from the initial configuration to an accepting
configuration.

Therefore this proof makes use of the reachability method and is essen-
tially a restatement of the proof of Savitch’s Theorem in the language of logic.
We want to construct a QBF ψi(X, Y) that is true if and only if there is a
path from the configuration encoded by the truth assignment for X to the
configuration encoded by Y of length ≤ 2i. To complete the proof, we need
to construct the formula ψm(A,B), where A encodes the initial configuration
and B the accepting configuration (we can assume w. l. o. g. that B is unique,
since we can modify every program such that it clears its work tape and moves
the cursor to the initial position before accepting). We use induction on i.

For i = 0, ψ0(A,B) should express that A = B or that configuration B
can be reached from A in one step. This formula can be written easily in DNF
(why we use DNF instead of CNF will become clear in the induction step).

A first idea for the induction step might be, to define ψi+1(A,B) as

ψi+1(A,B) = ∃Z
[
ψi(A,Z) ∧ ψi(Z,B)

]
,

where Z encodes the unique midpoint of the path. However, this is a bad idea,
since in each step the length of the formula at least doubles and we would end
up with an exponentially large expression. Here we apply Savitch’s trick of
reusing space:

ψi+1(A,B) = ∃Z∀X∀Y
[(

(X = A∧Y = Z)∨(X = Z∧Y = B)
)
⇒ ψi(X, Y)

]
.

This means that we use the formula ψi(X, Y) for both telling that there is a
path from A to Z and from Z to B, using X and Y as placeholders.

Converting this formula to CNF could produce exponentially large expres-
sions, but the DNF of this formula is small and easy to compute. However,
the negation of a QBF in DNF is an expression in CNF by de Morgan’s laws.
So we reduced L to QSAT, but this finishes the proof, since PSPACE, like
any other deterministic complexity class, is closed under complement.

Thus, QSAT is PSPACE-complete.

3 Shamir’s Theorem

The complexity class IP consists of all languages L having an interactive proof
system, i. e. a protocol between a prover Alice and a verifier Bob who inter-
act on a common input x. The computational power of Alice is unbounded
whereas Bob runs a probabilistic, polynomial-time algorithm. The correctness
requirements for the proof are the following:

1. Completeness: If x ∈ L, then there exists a prover strategy such that
Alice convinces Bob with probability at least 2

3
.

6

2. Soundness: If x 6∈ L, then, for any prover strategy, Alice convinces Bob
with probability at most 1

3
.

Note that, since Bob can only process an polynomial amount of data, the
number of rounds as well as the length of the messages exchanged in the
protocol cannot be more then polynomial in the size of the input.

The following theorem characterizes the complexity class IP completely.

Theorem 5 (Shamir 1992).

IP = PSPACE.

Proof.

⊆: Let L ∈ IP. Then there exists an interactive proof system for L with a
fixed verifier strategy. By traversing the tree of all possible interactions
between Alice and Bob, we can compute an optimal prover strategy, i. e.
a strategy that has the highest probability of convincing the verifier for
every input x. This can be done in polynomial space in a way similar to
part 1 of the proof of Theorem 4.

For input x we can now simulate the interaction between the optimal
prover and the verifier, and enumerate over all possible coin tosses. We
accept if and only if at least 2

3
of the outcomes are accepting. This

algorithm can be implemented in polynomial space as well and accepts
if and only if x ∈ L.

⊇: It suffices to show that
QSAT ∈ IP,

since IP is closed under reductions and QSAT is PSPACE-complete
by Theorem 4.

Below we describe an interactive protocol that decides QSAT.

3.1 Arithmetization

First of all we convert a quantified Boolean expression φ into an arithmetic
expression, the arithmetization Aφ of φ. This will allow us to use some results
from number theory.

In order to arithmetize φ we replace its Boolean variables xi ∈ X by vari-
ables zi ∈ Z, where true corresponds to 1 and false to 0. The rules of
conversion are now defined inductively as follows:

QBF φ Arithmetization Aφ
¬xi 1− zi

ψ1 ∨ ψ2 Aψ1 + Aψ2

ψ1 ∧ ψ2 Aψ1 · Aψ2

∃xi ψ
∑1

zi=0Aψ
∀xi ψ

∏1
zi=0Aψ

7

The resulting expression is called Σ-Π expression.
Note that, for reasons that will become clear in the next lemma, the con-

version of negation is only defined over variables and not over subexpressions.
However, we can always assume φ to have this special form, since by de Mor-
gan’s laws we can push any negation sign all the way down to the variables.

Example. Consider the true QBF φ = ∀x1

[
¬x1 ∨ ∃x2∀x3 (x1 ∧ x2) ∨ x3

]
. Its

arithmetization is

Aφ =
1∏

z1=0

[
(1− z1) +

1∑
z2=0

1∏
z3=0

(z1 · z2 + z3)

]
.

Since φ is closed, Aφ evaluates to an integer, namely 2.

The following lemma shows, that positive arithmetizations always corre-
spond to true QBFs.

Lemma 6. Let φ be a closed QBF with negation only over variables. Then

φ is true ⇐⇒ Aφ > 0.

Proof. Induction on the structure of φ. To use induction we have to allow free
variables. So, in the case of free variables, we will prove the claim for any truth
assignment.

First of all observe that arithmetizations are always nonnegative.
For φ = xi we have Aφ = zi, therefore

φ is true ⇐⇒ xi = true ⇐⇒ zi = 1 ⇐⇒ Aφ > 0.

For φ = ¬xi we have Aφ = 1− zi, hence (that is why we allowed negation
only over variables)

φ is true ⇐⇒ xi = false ⇐⇒ zi = 0 ⇐⇒ Aφ > 0.

Let φ be of the form φ = ψ1 ∨ ψ2. Then Aφ = Aψ1 +Aψ2 and it follows by
induction that

φ is true ⇐⇒ ψ1 is true or ψ2 is true

⇐⇒ Aψ1 > 0 or Aψ2 > 0

⇐⇒ Aφ > 0.

Let φ be of the form φ = ∃xi ψ. Then Aφ =
∑1

zi=0Aψ and it follows by
induction that

φ is true ⇐⇒ ψ(xi = true) is true or ψ(xi = false) is true

⇐⇒ Aψ(zi = 1) > 0 or Aψ(zi = 0) > 0

⇐⇒ Aφ > 0.

The remaining cases can be proven similarly.

8

Thus, instead of convincing Bob that φ is true, Alice can also convince
Bob that Aφ > 0. To do so, Alice may wish to send the value of Aφ to Bob.
However, this is not always possible as the following example shows.

Example. Consider the QBF φ = ∀x1∀x2 · · · ∀xk−1∃xk (xk ∨ ¬xk). Then

Aφ =
1∏

z1=0

1∏
z2=0

· · ·
1∏

zk−1=0

1∑
zk=0

[
zk + (1− zk)

]
= 22k−1

,

since the sum evaluates to 2 and each of the k−1 products squares the previous
value. This number has exponentially many bits and cannot be transmitted.

One idea to solve this problem is to do all computations modulo an integer
of polynomial size.

3.2 Reduction to a Finite Field

Modular arithmetic solves the problem of exponential values of arithmetiza-
tions. However, we have to be careful not to choose a divisor of such values as
modulus, because this would destroy the useful characterization in Lemma 6.

On the other hand, it will turn out to be important for the verifier Bob
to know that the computations are done in a field. Otherwise, Alice would
be able to cheat. Therefore we wish to use a small prime p as modulus, what
means arithmetic in the finite field Fp.

The following proposition reaches both goals.

Proposition 7. For every Σ-Π expression A 6= 0 of length n, there exists a
prime p ∈ [2n, 23n] such that

A 6= 0 (mod p).

For the proof, we need an upper bound for the value of an arithmetization
and a lower bound for the number of primes in the interval.

Lemma 8. Let Aφ be a Σ-Π expression of length n. Then

Aφ ≤ 22n

.

Proof. Induction on the structure of φ (again, not necessarily closed, compare
with the proof of Lemma 6).

For literals φ = (¬)xi, it holds that Aφ ≤ 1 ≤ 221
.

Let φ be of the form φ = ψ1 ◦ψ2, where ◦ ∈ {∨,∧}. By induction, we have
Aψ1 ≤ 22`

and Aψ2 ≤ 22m
with ` + m ≤ n. Hence, the value of Aφ can be at

most (in the case of a conjunction)

Aφ ≤ Aψ1 · Aψ2 ≤ 22` · 22m

= 22`+2m ≤ 22n

.

9

Finally, let φ be of the form φ = Qxi ψ, where Q ∈ {∃,∀}. Then Aψ ≤ 22m

with m < n. So, the value of Aφ can be at most (in the case of a universal
quantifier)

Aφ ≤
1∏

zi=0

Aψ ≤ 22m · 22m

= 22·2m

= 22m+1 ≤ 22n

.

Lemma 9. For n ≥ 3, √
n ≤ π(n) ≤ n,

where π(n) denotes the number of primes up to n.

Proof. The upper bound is trivial.
For the lower bound consider the integers 2, . . . , n. We now apply the Sieve

of Eratosthenes. This means, for every prime p ≤
√
n we strike all multiples

of p off the list. After each step at least (p− 1)/p of the previous numbers will
remain in the list. In the end, the list will contain exactly the prime numbers
up to n.

Therefore we can compute directly

π(n) ≥ n
∏
p≤

√
n

p− 1

p
≥ n

b
√
nc∏

i=2

i− 1

i
= n/b

√
nc ≥

√
n,

where the first product ranges over all primes up to
√
n.

Theorem 10 (Chinese Remainder Theorem). Let a1, . . . , ak ∈ Z, and let
p1, . . . , pk ∈ N>0 be pairwise coprime.

Then the system of simultaneous congruences

x = a1 (mod p1)

...

x = ak (mod pk)

has a unique solution x modulo
∏k

i=1 pi.

Proof of Prop. 7. Denote by p1, . . . , pk all primes in the interval [2n, 23n]. Us-
ing Lemma 9 we obtain

k = π
(
23n

)
− π

(
2n

)
≥
√

23n − 2n > 2n.

Suppose now for the sake of a contradiction that

A = 0 (mod pi) ∀i ∈ {1, . . . , k}.

Then, by the Chinese Remainder Theorem, A = 0 modulo
∏k

i=1 pi > 22n
. But

since A ≤ 22n
(Lemma 8), we conclude A = 0 in Z. Contradiction.

10

3.3 Polynomials and Simple Expressions

In order to convince Bob of the truth of φ, Alice has to reduce the size of the
expression Aφ gradually. This is done by the following construction.

Definition 11. Let A be a Σ-Π expression, where the leftmost symbol is
∑1

zi=0

or
∏1

zi=0. The functional form A′ is defined by eliminating the leftmost
∑1

zi=0

or
∏1

zi=0 symbol in A, and can be considered as a polynomial

q(zi) ∈ Z[zi].

The randomized form of A is A′(zi = r), where r ∈R Fp is a random number
supplied by the verifier Bob.

The coefficients of the polynomial q(zi) are hard to compute in general.
However, for the prover Alice it is possible. Alice may wish to transmit those
coefficients, and here the next problem arises. Indeed, the coefficients are small
enough since we use arithmetic in Fp, but the number of coefficients can be far
too large, as the following example shows.

Example. Consider the QBF φ = ∀x1∀x2 . . . ∀xk (x1 ∨ x2 ∨ · · · ∨ xk). Then

A′
φ =

1∏
z2=0

· · ·
1∏

zk=0

(z1 + z2 + · · ·+ zk) =
2k−1∏
i=1

(z1 − ci) with 0 ≤ ci ≤ k.

Therefore q(z1) is a dense polynomial of exponentially high degree deg q(zi) =
2k−1.

The example shows that a large number of products can be responsible
for the explosion of the degree. Therefore we should try to eliminate as much
universal quantifiers from our QBFs as possible.

Definition 12. A QBF φ is called simple, if any occurrence of a variable is
separated by at most one universal quantifier from its point of quantification.

Example. The QBF

φ = ∀x1∀x2∃x3

[
(x1 ∨ x2) ∧ ∀x4 (x2 ∨ x3 ∨ x4)

]
is simple, since

1. the single occurrence of x1 is separated only by ∀x2,

2. the first occurrence of x2 is not separated by any universal quantifier,
and the second occurrence is separated only by ∀x4,

3. the single occurrence of x3 is separated only by ∀x4, and

4. the single occurrence of x4 is not separated by any universal quantifier

11

from its point of quantification. On the other hand, the QBF

ψ = ∀x1∀x2

[
(x1 ∨ x2) ∧ ∀x3 (¬x1 ∨ x3)

]
is not simple, since the second occurrence of x1 is separated from its point of
quantification by both ∀x2 and ∀x3.

For simple QBFs, the degree of the polynomial is linear in the size of the
formula.

Lemma 13. Let φ be a simple QBF of length n, and let q(zi) be the polynomial
of the functional form of Aφ. Then

deg q(zi) ≤ 2n.

Proof. For quantifier-free subexpressions, you can show by straightforward in-
duction that the degree of the resulting polynomial in zi is bounded above by
the size of the subexpression. Summations can only change the coefficients,
but not the degree, and each product can at most double the degree. But since
φ is simple, such a doubling can happen only once.

The following lemma shows that we can assume simple QBFs without loss
of generality.

Lemma 14. Any QBF φ of length n can be transformed in logarithmic space
to an equivalent simple expression.

Proof. Let φ be of the form φ = . . . Qxi . . . ∀xj ψ(xi), where Q ∈ {∃,∀} and
∀xj is the first universal quantifier after Qxi. We transform φ as follows:

φ′ = . . . Qxi . . . ∀xj∃xi′ (xi ⇔ xi′) ∧ ψ(xi′)

= . . . Qxi . . . ∀xj∃xi′
[
(xi ∧ xi′) ∨ (¬xi ∧ ¬xi′)

]
∧ ψ(xi′).

That means, we give all occurrences of xi after ∀xj a new name xi′ , and we
express the equivalence of xi and xi′ by a small formula without introducing
new universal quantifiers. If we iterate this procedure from the left to the right
for every variable and every universal quantifier behind it, then, after O(n2)
steps, we end up with a simple expression that is equivalent to the original
one.

It should be clear that this transformation can be done in logarithmic space,
since only local changes are made.

3.4 The Interactive Protocol

Now we are able to give a description of the interactive protocol.
So let φ be a simple QBF. Alice wants to give a proof that Aφ 6= 0. In the

setup of the protocol she chooses a prime p ∈ [2n, 23n] according to Prop. 7
and computes the value of the arithmetization a ← Aφ (mod p) (see Fig. 2).

12

Prover Verifier

Choose p ∈ [2n, 23n].
Compute a ← Aφ (mod p).

p, a−−→
Verify a 6= 0, p ∈ [2n, 23n],
and p ∈ Primes.

Figure 2: Protocol setup.

Then she sends both p and a to Bob who checks that a 6= 0 and p ∈ [2n, 23n].
Moreover, Bob tests the primality of p, which can be done in polynomial time
with the AKS-algorithm (see [AKS04]). If any of the tests fails he rejects.

At any intermediate step of the protocol, the current expression A is split
up into

A = A1 + A2 or A = A1 · A2,

depending on the structure of A, such that A2 starts with the leftmost
∑1

zi=0 or∏1
zi=0 symbol of A. Since A1 contains no such symbols, Bob can compute the

value a1 ← A1 himself. Then Alice and Bob repeatedly execute the following
simplification step (see Fig. 3):

1. Bob sets A ← A2, and a ← a − a1 (mod p) or a ← a/a1 (mod p)
(depending on the decomposition of A).

2. Alice computes the polynomial q(zi) of A′ and sends the coefficients to
Bob.

3. Bob verifies a = q(0)+ q(1) (mod p) or a = q(0) · q(1) (mod p) (depend-
ing on the first symbol of A2). Otherwise, he rejects.

4. Bob chooses r ∈R Fp at random and sends it to Alice. Then he sets
A← A′(zi = r) (mod p) and a← q(r) (mod p).

The procedure stops if A2 is free of
∑1

zi=0 and
∏1

zi=0 symbols, and Bob accepts
if and only if a = a1.

Example. Consider the simple QBF φ = ∀x1

[
¬x1∨∃x2∀x3 (x1∧x2)∨x3

]
. For

simplicity, we omit modular reductions in this example.
In the setup,

A← Aφ =
1∏

z1=0

[
(1− z1) +

1∑
z2=0

1∏
z3=0

(z1 · z2 + z3)

]
,

and Alice computes the value a← 2 of A.

13

Prover Verifier

A← A2.
a← a− a1 (mod p), or
a← a/a1 (mod p).

Compute q(zi) of A′.
q(zi)−−→

Verify a = q(0)+q(1) (mod p),
or a = q(0) · q(1) (mod p).

Choose r ∈R Fp.
r←−−

A← A′(zi = r) (mod p).
a← q(r) (mod p).

Figure 3: Simplification step.

In the first round, A already starts with a
∏1

z1=0 symbol, so Alice computes
the polynomial q(z1) = z2

1 + 1 of

A′ = (1− z1) +
1∑

z2=0

1∏
z3=0

(z1 · z2 + z3).

Bob checks that a = 2 = 2 · 1 = q(0) · q(1) and chooses a number at random,
say 3. Then he sets

A← A′(z1 = 3) = (1− 3) +
1∑

z2=0

1∏
z3=0

(3z2 + z3)

and a← q(3) = 10.
In the second round, Bob sets

A← A2 =
1∑

z2=0

1∏
z3=0

(3z2 + z3)

and a ← a − a1 = 10 − (−2) = 12. Alice computes the polynomial q(z2) =
9z2

2 + 3z2 of

A′ =
1∏

z3=0

(3 · z2 + z3).

Bob checks that a = 12 = 0 + 12 = q(0) + q(1) and chooses a number at
random, say 2. Then he sets

A← A′(z2 = 2) =
1∏

z3=0

(z3 + 6)

14

and a← q(2) = 9 · 4 + 3 · 2 = 42.
In the third round, Alice computes the polynomial q(z3) = z3 + 6 of

A′ = z3 + 6.

Bob checks that a = 42 = 6 · 7 = q(0) · q(1) and chooses a number at random,
say 5. Then he sets A← A′(z3 = 5) = 5 + 6 = 11 and a← q(5) = 5 + 6 = 11.
Since a1 = 11 = a, he finally accepts.

To complete the proof of the main theorem, it remains to show the correct-
ness of the protocol.

Theorem 15.

1. When φ is true and Alice is honest, Bob will always accept the proof.

2. When φ is false, Bob accepts the proof with negligible probability.

Proof. The completeness of the protocol is clear from the construction, because
Alice is able to provide all the polynomials and Bob will always accept.

For the soundness, assume that Aφ = 0 and still Alice starts the protocol
with a value a′ 6= 0. Then she has to provide a wrong polynomial q′(zi) in the
i-th round, because q′(0) + q′(1) (or q′(0) · q′(1)) must yield the wrong value.
Since 0 6= q(zi)− q′(zi) is a polynomial of degree at most 2n by Lemma 13, it
has at most 2n roots in Fp (here it becomes important that the computations
are done in a field). Therefore, the probability that q′(zi) yields the correct
value when evaluated at a random r ∈R Fp is at most

Pr[error in the i-th round] ≤ 2n

p
≤ 2n

2n
,

by the choice of p. Since the random numbers are chosen by Bob independently,
after the whole m ≤ n rounds the probability of a false positive is

Pr[error] = 1− Pr[no error]

= 1−
m∏
i=1

Pr[no error in the i-th round]

≤ 1−
(
1− 2n

2n

)n
,

which gets arbitrarily small as n→∞.

Remark.

1. The interactive protocol has perfect soundness, and since the random
numbers can be made public by Bob, it is actually of the Arthur-Merlin
type.

2. The prover strategy can be implemented in polynomial space.

15

References

[AKS04] M. Agrawal, N. Kayal, N. Saxena. PRIMES is in P. Annals of Math-
ematics, 160 (2), pp. 781-793, 2004.

[Ba90] L. Babai. E-mail and the unexpected power of interaction. Structure
in Complexity Theory Conf., pp. 30-44, 1990.

[GMR85] S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of
interactive proof-systems. Proc. 17th ACM Symp. on the Theory of
Computing, pp. 291-304, 1985.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, N. Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39 (4), pp. 859-868,
1992.

[Pa83] C.H. Papadimitriou. Games against nature. Proc. 24th IEEE Symp.
on the Foundations of Computer Science, pp. 446-450, 1983.

[Pa94] C.H. Papadimitriou. Computational Complexity. Addison Wesley,
Reading, 1994.

[SchPr98] U. Schöning and R. Pruim. Gems of Theoretical Computer Science.
Springer, 1998.

[Sh92] Adi Shamir. IP=PSPACE. Journal of the ACM, 39 (4), pp. 869-
877, 1992.

[StMe73] L. J. Stockmeyer and A.R. Meyer. Word problems requiring expo-
nential time. Proc. 5th ACM Symp. on the Theory of Computing,
pp. 1-9, 1973.

[To89] S. Toda. On the computational power of PP and ⊕P. Proc. of the
30th IEEE Symp. on Foundations of Computer Science, pp. 514-
519, 1989.

[Va79] L. Valiant. The complexity of computing the permanent. Theoreti-
cal Computer Science, 8, pp. 189-201, 1979.

16

