
Valiant-Vazirani Theorem

Ilya Posov

June 24, 2006

1 Introduction

Leslie G. Valiant and Vijay V. Vazirani in 1986 wrote a paper with the name ‘NP is as Easy as
Detecting Unique Solutions’ [?]. The theorem they proved became the classical theorem in the
complexity theory, so sometimes it’s even called a lemma instead of a theorem. In this text it
will be presented the statement of the theorem, two different proofs, and also it would be some
discussion.

Both L.G. Valiant and V.V. Vazirani are professors of computer science, L.G. Valiant works
at the Harvard University, V.V. Vazirani works at the Georgia Tech and at the University of
California, Berkley. They have their homepages and more information about them can be found
there: http://people.deas.harvard.edu/∼valiant/, http://www-static.cc.gatech.edu/∼vazirani/.

2 Statement of the Theorem

Before we give the proof of the theorem, let us think of its statement. The theorem deals with the
satisfiability problem (SAT). Given a Boolean formula one is to say whether there is an assignment
to its variables that would make the formula true. Such assignments will be called satisfying
assignments. If the formula has no satisfying assignments, it will be called unsatisfiable. If the
formula has exactly one satisfying assignment, it will be called uniquely-satisfiable. The conjunctive
normal form (CNF) of the formula is the other well-known concept, the formula is said to be in
the CNF, if it is a conjunction of a set of clauses, where clause is a disjunction of a set of variables
and negations of variables. As an example to all said above, F is a uniquely-satisfiable formula in
CNF with the only satisfying assignment x = true, y = false, z = true:

F = (x) ∧ (x̄ ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄)

Theorem 1 (Valiant-Vazirani) Given a Boolean formula F in CNF it can be constructed in
polynomial time a set of formulas F1, F2, . . . , Fm (all in CNF) such that

• if F is satisfiable, than with probability more than 1/2 one of Fi is uniquely-satisfiable.

• if F is unsatisfiable, than all Fi are unsatisfiable too.

The construction that is mentioned in the theorem is polynomial. It means that m, that is the size
of the set {Fi}, is polynomial to the size of input, and the sizes of formulas Fi are also polynomial
to the size of input. The construction is probabilistic; it means that if we run it several times on
the same formula F we would obtain different resulting sets {Fi}.
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3 Solving SAT with Valiant-Vazirani theorem

Imagine we want to solve the satisfiability problem by means of the construction from the Valiant-
Vazirani theorem. Consider the algorithm u-solver() that accepts Boolean formulas as the input
and returns the answer in the following way:

• u-solver(F ) = Yes, if F has exactly one satisfying assignment

• u-solver(F ) = No, if F has no satisfying assignments

• u-solver(F ) = Yes/No (unpredictable), otherwise

u-solver has the meaning that can be described as follows: it test the given formula for satisfiability,
assuming that it has not more than one satisfying assignment. If we look on the definition of the
u-solver we see that it works in unpredictable way, if the given formula has more than one solution.
The kind of problem u-solver solves called promise problem: we promise the algorithm something
about the input, in this case promise is about the number of solutions of the given formula (not
more than one). It’s not a simple task to test whether the formula has not more than one solution,
so if u-solver dosn’t want to do it, it can simply believe the promise. The problem u-solver solves
is called UNIQUE-SAT.

Common sense hints that UNIQUE-SAT is to be simpler than SAT, and actually there are
algorithms for UNIQUE-SAT (u-solvers) that work faster than SAT algorithms. Now we are going
to show that Valiant-Vazirani theorem reduces SAT to UNIQUE-SAT.

Imagine we have a formula F , let us make a Valiant-Vazirani construction and obtain a set of
formulas {Fi}. Now let us apply a u-solver to every Fi. We would obtain a set of answers ai. There
are two different cases:

• formula F is unsatisfiable. Then, as Valiant-Vazirani theorem says, all Fi are unsatisfiable
and, based on the definition of u-solver, all ai would be No.

• formula F is satisfiable. Then, again as Valiant-Vazirani theorem says, with probability more
than 1/2 one of Fi would be uniquely-satisfiable. u-solver on such formulas returns Yes as an
answer, it means that with probability more than 1/2 one of ai would be Yes.

Now we can make the decision about the satisfiability of the formula F based on whether there are
Yeses in {ai}. If there are no Yeses, we say that formula is unsatisfiable, if there are some, we say
that formula is satisfiable.

Of cause, we are not always right in our decision about the satisfiability of F , but let us analyze
our answers. If F is unsatisfiable, we would always say ‘unsatisfiable’, if F is satisfiable, we would
sometimes say the wrong answer, but with probability less than 1/2. It reminds us the definition
of the RP class, the right and false answers are to be distributed in the same way there. So we
have the result that SAT is in RP class, but with an oracle that solves a UNIQUE-SAT problem:

SAT ∈ RPUNIQUE−SAT

Sat is an NP-complete problem, thus any problem of NP can be solved by means of u-solver() in
the already discussed way, if it’s first of all reduced to some instance of SAT:

NP ⊂ RPUNIQUE−SAT

To understand the next result one is just to remind herself the inclusion RP ⊂ BPP:

NP ⊂ BPPUNIQUE−SAT
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UNIQUE-SAT is a promise problem, machine that solves it works unpredictably on inputs
that are promised not to be given to the machine. By the way, machine that solves SAT solves
UNIQUE-SAT too. There are two other normal (not promise) machines for UNIQUE-SAT. The
first tests whether the formula has exactly one satisfying assignment (USAT problem from the UP
complexity class), the second tests, whether the formula has odd number of satisfying assignment
(⊕SAT problem from ⊕P complexity class). That leads us to two last results about the inclusion
of NP:

NP ⊂ BPPUP, NP ⊂ BPP⊕P

4 First Proof

The first proof is almost similar to the one given in the book of Papadimitriu [?]. We would use
the concept of hyperplanes, so now we are going to define them.

Definition 1 Let S ⊆ {x1, x2, . . . , xn}. Hyperplane ηS is a Boolean formula in CNF, stating that
an even number of xi in S is true.

Consider an example. Let n = 4 and S = {x1, x2, x4}.

ηS = (y0) ∧ (y1 ⇔ (y0 ⊕ x1)) ∧ (y2 ⇔ (y1 ⊕ x2)) ∧ (y3 ⇔ y2) ∧ (y4 ⇔ (y3 ⊕ x4)) ∧ (y4)

ηS is not in CNF and it is to be converted in CNF. But all properties of it are better seen when
it’s written in this form. It’s not very hard to check that in every satisfying assignment of ηS there
are even number of true variables of set S. Indeed, in every satisfying assignment, variables y0 and
y4 are to be true. Variables y0 and y1 are equal unless x1 is true. y1 and y2 are equal unless x2 is
true. y2 and y3 are equal in every satisfying assignment, y3 and y4 are equal unless x4 is true. So,
if we consequently look on the truth values of y0, y1, . . . , y4 we see that in the beginning and in the
end it would be true, and changing of the truth value occurs if the corresponding xi is true. Truth
value of yi changed even number of times and thus there are even number of true xi.

For other values of n and for other S the hyperplane ηS can be constructed in the same way.

The first proof of Valiant-Vazirani Theorem
We are given a formula F in CNF, it has variables x1, x2, . . . , xn. Let T be a set of satisfying

assignments of the formula F . D = |T | is a number of its satisfying assignments.
We are going to construct a set of formulas {Fi} from the statement of the Valiant-Vazirani

theorem. For this purpose we choose n + 1 random subsets Si of {x1, . . . , xn} (1 ≤ i ≤ n + 1).
Construction of Fi is as follows:

F0 = F

F1 = F ∧ ηS1

F2 = F ∧ ηS1
∧ ηS2

· · ·

Fn+1 = F ∧ ηS1
∧ ηS2

· · · ∧ ηSn+1

Every Fi is a formula in CNF because it’s a conjunction of the formula F that is in CNF and some
set of hyperplanes that are in CNF by definition. One obvious thing is that if F was unsatisfiable,
than all Fi are unsatisfiable too. So, to prove the theorem we are to show that if F is satisfiable,
than with high probability one of Fi is uniquely-satisfiable.
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If F is satisfiable, it has D > 0 satisfying assignments. Let k be such an integer that 2k ≤
D ≤ 2k+1. We are going to show that with probability more than 1/8 the formula Fk+2 is uniquely
satisfiable.

1/8 is not the desired probability, but we can make the construction of {Fi} several times. The
probability that every time we build a set without uniquely-satisfiable formulas is not greater than
7/8, so after 6 independent constructions this probability would be not greater than (7/8)6 < 1/2.
Thus it suffices to give a proof about the 1/8 probability.

We are going to prove that the formula Fk+2 is uniquely-satisfiable with probability greater than
1/8.

Fk+2 = F ∧ ηS1
∧ ηS2

∧ . . . ∧ ηSk+2

Let us bound the probability PSi
{Fk+2 is uniquely satisfiable}. For this let us take any satisfying

assignment t of the initial formula F . There are several cases. t can be a satisfying assignment
of Fk+2 if it satisfies all hyperplanes ηSi

for 1 ≤ i ≤ k + 2. It can be not a satisfying assignment
of Fk+2 if it doesn’t satisfy some ηSi

, and it can be the only satisfying assignment of Fk+2. The
probability of this is:

PSi
{t is the only satisfying assignment of Fk+2} =

PSi
{∀i ηSi

(t) = true & ∀t′ ∈ T \ {t}∃i ηSi
(t′) 6= ηSi

(t)} =

PSi
{∀i ηSi

(t) = true} · PSi
{∀t′ ∈ T \ {t}∃i ηSi

(t′) 6= ηSi
(t)} =

P1 · P2

The first equality here means that t would be the only satisfying assignment of Fk+2 if and only if
it satisfies all hyperplanes ηSi

for 1 ≤ i ≤ k + 2 and any other satisfying assignment t′ of the initial
formula F doesn’t satisfy at least one hyperplane ηSi

. The last fact, that t′ doesn’t satisfy some
hyperplane is coded in the following way: there is such hyperplane ηS that ηS(t) 6= ηS(t′), we can
do it because we know that t satisfies all hyperplanes.

Second equality follows from the independency of the two events. This and all other indepen-
dencies of events in this text wouldn’t be proved, though all independencies would be quite natural
and the reader can prove them by herself if she likes.

Now we are going to bound probabilities P1 and P2 separetly. Starting with P1:

P1 = PSi
{∀i ηSi

(t) = true} = (PS{ηS(t) = true})k+2

All subsets Si are chosen independently, so it’s quite natural, that all event ηSi
(t) = true are

independent. We used it in this equality without proof as was promised.
To evaluate P1 further we are to think of a combinatorial essence of the obtained probability.

We have a fixed truth assignment t and the question is, what is the probability, that it would be an
even number of true variables in a randomly chosen subset S of variables. There are two answers
to the question. If we have truth assignment t that assigns false to every variable, then in every
subset there are zero true variables and the probability of the event is 1. For every other truth
assignment t it’s claimed that there is exactly one half of all subsets with an even number of true
variables. To prove this first we are to look on subsets consisting only of true variables of t. For
such subsets it’s obvious that exactly one half of them has even number of variables. The rest of
the proof is left to the reader as an exercise.

So, probability PS{ηS(t) = true} is 1 or 1/2 depending on t, we would say that it’s not less
than 1/2 and as the result we can write that

P1 = (PS{ηS(t) = true})k+2 ≥
1

2k+2
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Almost the same can be done with P2. We are going to do some formal rewritings of the
expression for P2.

P2 = PSi
{∀t′ ∈ T \ {t}∃i ηSi

(t′) 6= ηSi
(t)} =

1 − PSi
{∃t′ ∈ T \ {t}∀i ηSi

(t′) = ηSi
(t)} =

1 − PSi
{(∀i ηSi

(t1) = ηSi
(t)) ∨ . . . ∨ (∀i ηSi

(t|T |−1) = ηSi
(t))} ≥

1 − (|T | − 1)PSi
{∀i ηSi

(t′) = ηSi
(t)} >

1 − 2k+1(PS{ηS(t′) = ηS(t)})k+2

First we used the formula P{Ā} = 1−P{A}, then we rewrote an existence of t′ by means of disjunc-
tions, then we used the formula P{A ∨ B} ≤ P{A} + P{B} and finally we used the independency
of events ηSi

(t′) = ηSi
(t) for 1 ≤ i ≤ k + 2.

t and t′ are two fixed different truth assignments and PS{ηS(t′) = ηS(t)} can be evaluated in
the same way as it was done for P1. Again it occurs that exactly one half of all subsets of variables
is such that ηS(t′) = ηS(t). Thus,

P2 > 1 − 2k+1(PS{ηS(t′) = ηS(t)})k+2 = 1 − 2k+1 ·
1

2k+2
=

1

2

Finally we can remind ourselfs the probability we were initially bounding:,

PSi
{t is the only satisfying assignment of Fk+2} = P1 · P2 >

1

2k+2
·
1

2
=

1

2k+3

To end the proof let us remember that D = |T | ≥ 2k and do final evaluations:

PSi
{Fk+2 is uniquely-satisfiable} =

PSi
{∃t ∈ T : t is the only satisfying assignment of Fk+2} >

2k

2k+3
=

1

8

tu

5 Second Proof

The second proof in russian is presented in [?].

The second proof of Valiant-Vazirani Theorem
Second proof uses numeric theory and doesn’t have so many evaluations. In this proof we

construct only one random formula F ′ based on the given formula F and we will show that with
probability not less than 1

32n4+32n3 constructed formula is uniquely-satisfiable. n again is a number
of varaibles in F . If we repeat construction of F ′ for O(n4) times, we can make constant probability
that we would have a uniquely-satisfiable formula: 1 − (1 − 1

32n4+32n3 )
O(n4).

So, now we are to show how to construct the F ′. Let i be a random integer from the segment
[ 0 . . . n ]. Let bi = 4 · 2in2, let pi and ri be random integers from the segment [ 1 . . . bi ].

Truth assignments of the formula F can be thought as integer numbers with n bits in binary
representation each bit representing true value of the corresponding variable. For instance, let 1
mean true and 0 mean false. To construct F ′ let F ′ = F ∧ (x mod pi = ri). Here (x mod pi =
ri) means a Boolean formula in CNF of variables x. We are not going to show the exact way
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how to construct it as it was done with hyperplanes from the previous proof. One is just to
encode multiplication of some unknown number y (new introduced variables) by pi, then encode
the addition of ri and the comparison of the result with x.

If F is unsatisfiable, F ′ is unsatisfiable too. In the other case number of truth assignments of
F is between some degrees of 2: 2j−1 < D ≤ 2j. j can vary in the segment [ 0 . . . n ]. So, if we are
lucky, our initially chosen number i equals to j and 2i−1 < D ≤ 2i. This occurs with probability

1
n+1

and for all further proof we will assume that this happened.
How to bound the number of primes in the segment [ 1 . . . bi ]? There is a formula in the

numeric theory, that number of primes in such segment is at least 0.92129bi/ ln bi. We can simlify
this expression:

0.92129bi/ ln bi > bi/ log2 bi = 4 · 2in2/(i + 2 + 2 log2 n) > 4 · 2in2/2n = 2i+1n

Now we came to the very proof of the theorem. We want to evaluate the probability that F ′

is uniquely-satisfiable. Let us name elements of T as t(j) 1 ≤ j ≤ |T | = D. Now we fix j and
thus choose some t(j) ∈ T . As it was in previous proof, t(j) can be the satisfying assignment of
F ′, it can be not a satisfying assignment of F ′ and it can be the only satisfying assignment of F ′.
We prefer the last case. Imagine, chosen pi proved to be prime. There are some prime numbers
that if pi is such number, t(j) would never be the only satisfying assignment of F ′ (independently
of choosing of ri). Consider primes p such that p | t(j) − t(1) (j 6= 1). If bi is such a prime, two
equalities t(1) mod bi = ri and t(j) mod bi = ri both either hold or not. So, t(j) is either not a
satisfying assignment of F ′ at all, or is not the only satisfying assignment of F ′.

In the same way we can show that we don’t like pi to be such that pi | t(j) − t(l) for any l 6= j.
By the way, all other primes are good for us and if we are lucky in choosing ri such that t(j)

mod pi = ri holds, t(j) is the only satisfying assignment of F ′. We can count the number of ‘bad’
prime numbers. Number of primes such that p | t(j) − t(1) is not greater than n, because t(j) and
t(1) are n-bit numbers and all primes are at least two. Now we sum up the number of ‘bad’ primes
corresponding to different t(l), l 6= j and the resulting number of overall ‘bad’ primes is not greater
than n(D − 1) < n2i.

We have at least 2i+1n primes, so there are at least 2i+1n−n2i = n2i primes left that can make
t(j) the only satisfying assignment. The result: there are at least n2i pairs of pi and ri that make
t(j) the only satisfying assignment. There are different lucky pairs for different tj, thus there are
at least n2iD > n2i2i−1 = n22i−1 pairs that will make F ′ uniquely-satisfiable. Overall number of
pairs is bibi = 16 · 22in4 and finally the probability that we chose the lucky pair is n22i−1

16·22in4 = 1
32n3 .

Here is the very place to remember that all evaluations were done in the assumption that in the
beginning we were lucky to choose the right i.

P{F ′ is uniquely satisfiable} ≥

P{F ′ is uniquely satisfiable & the right i was chosen} =

P{F ′ is uniquely satisfiable | the right i was chosen} · P{the right i was chosen} ≥

1

32n3

1

n + 1
=

1

32n4 + 32n3

tu

6 Open Questions

We already saw that Valiant-Vazirani theorem reduces SAT to the UNIQUE-SAT problem. There
are solvers for UNIQUE-SAT that work faster than solvers for SAT. They work even faster if the
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formula on input is in 3-CNF (all clauses have not more than three variables). So the desired thing
is to have a Valiant-Vazirani transform that would produce formulas {Fi} in 3-CNF. There is a
well-known method to translate any formula in CNF in 3-CNF, but it may sometimes significantly
increase the number of variables. If a solver works for, say, O((1.5)n) and number of variables
increases only twice, the working time becomes O((2.25)n), so may be better idea was to solve the
initial formula without any Valiant-Vazirani reduction.

The open question is, is there such a Valiant-Vazirani reduction to the set of formulas in 3-CNF
that number of variables would increase only by o(n).

The second open question concerns derandomization. Is there a deterministic reduction instead
of probabilistic. The working time is not supposed now to be polynomial, it may be poly(|F |) · cn

for some constant c < 1 instead. May be reduction would be not to the UNIQUE-SAT problem,
but to some weaker problem, for example if the formula have an odd or zero number of satisfying
assignments.
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