
Toda’s Theorem.

Part 2: BPP⊕P ⊆ P PP

Dmitry Shiryaev

JASS 2006

Abstract

Remember, Toda’s Theorem states that PH ⊆ P PP , where PH is the
polynomial hierarchy and PP is the class of sets accepted by polynomial-
time-bounded probabilistic Turing machines with two-sided unbounded
error probability. Statement of the theorem can be proved by obtaining
the chain of inclusions:

PH ⊆ BPP⊕P ⊆ PP⊕P ⊆ P#P = P PP

First inclusion was proved in the previous talk, here we will prove two
rest inclusions and an equality.
So, proof will be divided in 3 steps: first, we remember some basic defini-
tions, such as BPP , PP , ⊕P and define some new class #P . In that part
we will also see, that first inclusion is evident, as BPP ⊆ PP . Second
step is to show that #P -oracle isn’t more powerful than PP -oracle - and
we get an equality P#P = P PP . After all, the last and the main part of
the paper is about the inclusion between PP⊕P and P#P .

1 Remindings and Definitions

Let’s remember the definitions of some classes, that will appear in our proof.
PP is the class of sets, accepted by polynomial-time-bounded probabilistic Tur-
ing machines with two-sided unbounded error probability. BPP - the subclass of
PP with two-sided bounded error probability. These definitions can be written
as follows:

Definition 1. L is in PP iff there exists polynomial-time bounded NTM M ,
such that

x ∈ L ⇐⇒ P{M(x) = 1} >
1
2
,

Definition 2. L is in BPP iff there exists polynomial-time bounded NTM

1

M , such that
x ∈ L ⇒ P{M(x) = 1} >

3
4

x /∈ L ⇒ P{M(x) = 0} >
3
4
.

Definition 3. For the NTM M we define accM (x) as the number of accept-
ing computation paths of M on input x. Then we can define the class ⊕P
(parity − P).

Definition 4. L is in ⊕P iff there exists polynomial-time bounded NTM M ,
such that

x ∈ L ⇐⇒ 2 | accM (x).

PP , BPP , ⊕P , defined above, are classes of languages. Now we’ll define the
#P , and it won’t be a class of languages, but a class of functions.

Definition 5. Here’s the definition of sharp− P function class:

#P = {f : Σ∗ → N∪{0} | ∃ polynomial-time NTM Mf , such that ∀x f(x) = accM (x)}.

Remark, #P is the function class. Nevertheless, we can use it as an oracle. Ask-
ing an oracle from the class #P means asking NTM of number of it’s accepting
computation paths.

Proposition 1. BPP⊕P ⊆ PP⊕P

Proof. It’s evident that BPP ⊆ PP . It simply leads to our conclusion. 2

2 The proof of P#P = P PP

Proposition 2. P#P = PPP

Proof. 1)P#P ⊆ PPP . This part is quite evident. Without loss of generality,
we can say that lengths of all branches in computation tree of our NTM are
equal. We can ask oracle about the number of accepting computation paths
and we want to be able to ask oracle whether it is more or less than a half of all
paths. We know the number of all paths and the number of all accepting paths
- so we can find whether it is more or less than a half.

2) P#P ⊇ PPP . We have an oracle from #P , it is realized by NTM M .
Let’s define the language L = {(x ∈ Σ∗, y ∈ N) : accM (x) > y}. Imagine we’ll
show that L ∈ PP . Then, with access to L as an oracle, using binary search,
we’ll find accM (x) in logarifmic time of 2poly(n), i.e. in the polynomial time. So,
it remains only to show that L ∈ PP .

To show that L ∈ PP we’ll construct NTM M
′

(with inputs (x, y) where
x ∈ Σ∗, y ∈ N), such that number of accepting paths of it is more than 1

2
whenever accM (x) > y. Existance of NTM with this property shows us exactly
that L ∈ PP , due to the definition of L. M

′
is defined as follows: on it’s first

step it makes non-deterministic choise of two branches. While one branch runs

2

M , another branch makes fictious computations, such that number of paths is
the same as M has, and the number of rejecting paths is exactly y. It’s easy to
construct this branch: let machine simply look at the binary representation of
y.

Now let’s find the number of accepting computation paths of M
′
. There are

accM (x)+(allM−y) of them, where allM is the number of all paths of M . Then
the probability of M

′
accepting is accM (x)+(allM−y)

2·allM
= 1

2 + accM (x)−y
2·allM

which is
greater then 1

2 whenever accM (x) > y. This ends our proof. 2

3 The proof of PP⊕P ⊆ P#P

Preparing to the proof, we need the following number theory lemma, which can
be easily prooved by induction.

Lemma 1.
Define polynoms si(z) recurrently:

s0(z) = z,

si(z) = 3si−1(z)4 + 4si−1(z)3.

Then the following property holds for all natural numbers i and z:
if z is odd, then 22i |si(z),
if z is even, then 22i |(si(z) + 1).

In our main proof we won’t need the construction of si(z), we’ll need only
the property, that the lemma states. Now we come to the main part of this
paper.

Proposition 3. PP⊕P ⊆ P#P

Proof. Let’s take the language L ∈ PP⊕P . L can be defined as follows:

L = {x | ∃A ∈ P⊕P :
∣∣∣{y ∈ {0, 1}p(|x|) | (x, y) ∈ A}

∣∣∣ >
1
2
· 2p(|x|)},

where p is a polynom. Define l(x) := dlog(p(|x|)) + 1e. First of all, remember,
that ⊕P⊕P = ⊕P was proved in the previous talk, when discussing the first
part of Toda’s Theorem. It immediately implies P⊕P = ⊕P and so we can
change the class of A in the definition of L:

L = {x | ∃A ∈ ⊕P :
∣∣∣{y ∈ {0, 1}p(|x|) | (x, y) ∈ A}

∣∣∣ >
1
2
· 2p(|x|)}.

Let Ã be the NTM, corresponding to the language A. Our goal is to show that
L ∈ P#P . We’ll construct a machine N such that using it only once as an
#P -oracle will help us to find whether x belongs to L or not. The construction
of N will be divided in 2 steps. First, with the help of Lemma 1, we’ll construct

3

NTM M , such that number of it’s accepting computation paths will be strongly
related to the belonging of input to the A. Then we’ll construct N as NTM,
guessing y and then running M on (x, y) - and ask an oracle to the number of
accepting paths of N . We’ll see, that this number mod(2p) will be exactly the
number of proper y’s such that (x, y) ∈ A. This will end our proof.

Here comes the construction of the NTM M . Define polynom q(z) =
(sl(x)(z))2, where s is the polynom defined in Lemma 1. Let q(z) = q1 · zc1 +
. . . + qm · zcm , where q1, . . . , qm are all non-zero coefficients of q(z). Then ma-
chine M will make the non-deterministic choice between m branches - call them
1, 2, . . . ,m. In each i’s branch machine makes it’s second choice between zi

subbranches. In each of that subbranches machine several times runs Ã, one
after another, number of times is ci. Every next run of Ã starts iff the previous
accepted.

Why do we need such a strange construction of M? Let’s find the num-
ber of it’s accepting computation paths. Machine M takes x as an input, and
accepts iff all Ã’s on it’s path of computation accepted. If accÃ(x) = z, then
accM (x) = q(z) = (sl(x)(z))2 due to the construction of M . Now we remember
the statement of Lemma 1, and immediately get that if machine Ã has odd
number of accepting paths on fixed input x, then M has 1 modulo 22l(x)

accept-
ing computation paths, else 0 the same modulo. That is the only property of
M , that we’ll need in future.

Now the time has come to construct the machine N . First, it makes non-
deterministic choice between 2p branches, in other words it guesses y - the
computation path for machine Ã. Then it simply runs M(x, y). Each choice of
y, such that (x, y) /∈ A brings us 0 modulo 22l(x)

accepting computation paths
of N , and for every y such that (x, y) ∈ A number of corresponding accepting
computation paths of N will be 1 modulo 22l(x)

. This implies, that the number of
accepting computation paths of N (which will be found by question to an oracle)
modulo 22l(x)

is exactly the number of proper y’s - such y’s, that (x, y) ∈ A.
Remember that l(x) := dlog(p(|x|)) + 1e and so 2l(x) > p. It implies that the
number of proper y’s can be found simply by asking oracle of the number of
accepting computation paths of N and taking this number modulo 2p. The only
remaining thing is to compare it with 1

2 · 2
p. 2

4

