Circuits Complexity

Konstantin Ushakov JASS'06, St. Petersburg, Russia

Boolean circuit

Boolean circuit C_n :

- finite acyclic directed graph
- each node is labeled as
 - input node (x_i, 1≤ i ≤n)
 - logical gate { \land , \lor , ¬}
 - " ∧ " and " ∨ " gates have indegree 2
 - "¬" gates have indegree 1
 - at least one output gate
- $S(C_n)$: size of the circuit = number of edges
- D(C_n): depth of the circuit = length of the longest path from input to output (not counting "not" gates)

Circuits properties

• Circuits generation:

- circuit families must be generated by computer
 - such circuit families can be considered as a good computational model
 - Theorem: a language L ⊆ {0, 1}* has uniform polynomial circuits iff L lies in P
- circuit families can be described in abstract way
- Circuits properties
 - any Boolean function can be implemented by a circuit
 - any language can be decided by a circuit family of size O(n2ⁿ)

Circuits and computers

- OR, AND and NOT can be easily implemented in the chip
- in all computers all operations are implemented using circuits
- once invented the circuit can be placed in the hardware and used forever
- what if we invent a small circuit that solves SAT for input of size 1024?

Outline

• P/poly

- Circuits and SAT
- Size[n^k]
- Circuit Complexity of PP

P/poly

- $L \supset \mathbf{P}/\mathbf{poly}$ if there exists $\{C_i\}_{i \supset N}$ and polynomial p:
 - ∀i |C_i| ≤ p(i)

• $x \supseteq L \text{ iff } C_{|x|}(x) = 1$

L ∋P/poly ←→ there exists a polynomial time computable relation R:

$$\exists \{y_i\}_{i \in \mathbb{N}} \forall x (x \in L \Leftrightarrow R(x, y_{|x|}) = 1)$$

This two definitions are equivalent by the theorem from the first talk

P, NP and P/poly

- P ⊆ P/poly
- **P** ≠ **P**/**poly** (example in the lecture 1)
- NP \subseteq P/poly ?
- Theorem (Karp-Lipton): if SAT has polynomial circuits, then the polynomial hierarchy collapses to the second level.
- Theorem (Karp-Lipton): if NP has polynomial circuits, then

$\mathbf{PH} = \sum_{\mathbf{2}} \mathbf{P} \cap \prod_{\mathbf{2}} \mathbf{P}$

• Theorem (Karp-Lipton):

 $NP \subseteq P/poly$ iff there exists a sparse NP-hard language in terms of Cook reduction

$\sum_{i} \text{REMINDER}$

Polynomial Hierarchy:

• i=0: $\prod_0 \mathbf{P} = \sum_0 \mathbf{P} = \Delta_0 \mathbf{P} = \mathbf{P}$

• i>0:

$$\sum_{i+1} \mathbf{P} = \mathbf{N} \mathbf{P} \Sigma_i \mathbf{P}$$

Cumulative polynomial hierarchy : $\mathbf{PH} = \bigcup_{i \ge 0} \sum_{i} \mathbf{P}$

We know:

$$\sum_{1} \mathbf{P} = \mathbf{NP}, \prod_{1} \mathbf{P} = \mathbf{coNP}$$

Proof plan

Proof.

- We show: $\sum_{3} \mathbf{P} = \sum_{2} \mathbf{P}$
- Take L : \sum_{3} **P-complete** language

 $L = \{x \mid \exists y \forall z (x, y, z) \in R\},\$

where R is polynomially balanced relation decidable in NP

- Why L lies in $\sum_2 \mathbf{P}$?
- We need to prove that

$$L = \{x | \exists y \forall z (x, y, z) \in Q\},\$$

where Q is polynomially balanced relation decidable in P

Proof: our knowledge

• L : \sum_{3} **P-complete** language:

$$\mathsf{L} = \{ \mathsf{x} \mid \exists \mathsf{y} \forall \mathsf{z} (\mathsf{x}, \mathsf{y}, \mathsf{z}) \in \mathsf{R} \},\$$

where R is polynomially balanced relation decidable in $\ensuremath{\textbf{NP}}$

What we know:

- R lies in NP → it can be reduced to SAT (NP-complete):
 - F is a reduction
 - $R(x, y, z) \leftrightarrow F(x, y, z)$ is satisfiable
- SAT has a polynomial circuit
 - $C = (C_0,)$: polynomial circuits that solves **SAT**
 - $C_n = (C_0, ..., C_n)$: initial segment of length n
 - C_m is a correct initial segment iff C_m correctly decides SAT for formulas of size <=m

Proof: correct initial segment

Proof: gathering ideas

• We prove:

x is in L iff $\exists C_m \exists y \forall z$ (all of length at most m) :

- *C_m* (F(x, y, z)) = true
- C_m is a correct initial segment of length m
- What m should we take?
 - \mathbf{x} : $\exists \mathbf{p}$: $\forall \mathbf{y} \forall \mathbf{z}(|\mathbf{F}(\mathbf{x},\mathbf{y},\mathbf{z})| < \mathbf{p}(|\mathbf{x}|))$:
 - F is a reduction from R to SAT
 - R is polynomially balanced
 - F is a polynomial
 - \rightarrow **p** is a polynomial

m=**p**(|**x**|)

Proof ideas: finish

- We prove: x is in L ← → ∃ C_m ∃ y : ∀ z ∀ w (all of length at most p(|x|))
 - **C**_m works correct on **w**
 - C_m (F(x, y, z)) = true
 - $\Rightarrow \exists y \forall z R(x,y,z)$

$$\Rightarrow \exists y \forall z F(x,y,z) \in SAT$$

C_m – correct initial segment

$$\Rightarrow$$
 F(x,y,z) \in SAT

$$\Rightarrow \exists y \forall z R(x, y, z)$$

 $\Rightarrow \exists \{C_i\}_{i=1}^m - \text{correct initial segment} \quad \Rightarrow X \in L$

Reminder: if R is polynomially balanced, polynomial-time decidable, then

$$\mathsf{L} = \big\{ \mathsf{x} \mid \exists \mathsf{y}_1 \forall \mathsf{y}_2 : (\mathsf{x}, \mathsf{y}_1, \mathsf{y}_2) \in \mathsf{R} \big\} \in \sum_2 \mathsf{P}$$

Second Theorem

• Theorem (Karp-Lipton):

if **SAT** has polynomial circuits, then the polynomial hierarchy collapses to the second level.

• Corollary:

if NP has polynomial circuits, then $\mathbf{PH} = \sum_{\mathbf{2}} \mathbf{P} \cap \prod_{\mathbf{2}} \mathbf{P}$

Proof: PH is closed under complement.

TODO

- Theorem (Karp-Lipton): if SAT has polynomial circuits, then the polynomial hierarchy collapses to the second level.
- Theorem (Karp-Lipton): if NP has polynomial circuits, then

 $\mathsf{PH} = \sum_2 \mathsf{P} \cap \prod_2 \mathsf{P}$

Theorem (Karp-Lipton):
 NP ⊆ P/poly iff there exists a sparse NP-hard language in terms of Cook reduction

Size[n^k]

- Size[f(n)] : class of languages accepted by Boolean circuit families of size O(f(n))
- Size[n^k] : class of languages accepted by Boolean circuit families of size O(n^k)
- Lemma: ∑₄ P Size[n^k] for any k
 Proof: later...
- Corollary 1: PH Size[n^k]
- <u>NB:</u> it does not follow that ∑₄ P P/poly: Why?
 Size[poly(n)] (the union of Size[n^k] over all k) equals P/poly

$\sum_2 \mathbf{P} \cap \prod_2 \mathbf{P}$ Size[n^k]

Reminder: PH Size[n^k]:

<u>Theorem:</u> $\sum_2 \mathbf{P} \cap \prod_2 \mathbf{P}$ Size[n^k] for any k

Proof:

assume: $\sum_2 \textbf{P} \cap \prod_2 \textbf{P} \subseteq \textbf{Size}[n^k]$ for some k

- \rightarrow there exists a polynomial circuit that accepts \mathbf{NP}
- \rightarrow the polynomial hierarchy collapses on $\sum_2 \mathbf{P} \cap \prod_2 \mathbf{P}$
- → PH = $\sum_{2} \mathbf{P} \cap \prod_{2} \mathbf{P} \subseteq \mathbf{Size}[n^k]$?!

 \square

Proof of the lemma

Lemma: $\sum_{4} \mathbf{P}$ **Size**[n^k] for any k

Proof:

- f: function that depends only on the first c*k*log(n) bits of input
 - such function can be encoded by polynomial number of bits
 - number of possible f functions is $2^{2^{c^*k^*\log(n)}} = 2^{n^{c^*k}}$
- number of possible circuits of size n^k is at most 2^{n^k/2 + n}
- $\mathbf{M} = \{ f \mid \forall c \text{ (circuit of size } n^k) \exists x \text{ (input of length n): } f(x) \neq c(x) \}$ $(2^{n^{c^*k}} > 2^{n^{k/2} + n} \rightarrow \mathbf{M} \text{ is not empty})$
- let "≤" be any order on **M** (for instance lexicographical order)
- **f** is the smallest function in **M**

•
$$L = \{x \mid f(x) = 1\}$$

Proof of the lemma

•
$$L = \{x \mid f(x) = 1\}$$

$$y \in L \Leftrightarrow \begin{cases} f(y) = 1 \\ \forall c \exists x : f(x) \neq c(x) \\ \forall f' : (\forall c \exists x : (f'(x) \neq c(x)) \Rightarrow f \leq f') \end{cases}$$

• rewriting:

$$y \in L \Leftrightarrow \exists f \forall c \forall f' \exists x \exists c' \forall x' :$$
$$f(x) \neq c(x) \land ((f \leq f') \lor f'(x') = c'(x')) \land f(y) = 1$$

• L is from $\sum_{4} \mathbf{P}$ and it can't be accepted by a circuit of size n^{k}

Proof's bugs

- What is wrong with the proof?
- Lemma: $\sum_{4} \mathbf{P}$ Size[n^k] for any k
- What we proved: L is from ∑₄ P and it can't be accepted by a circuit of size n^k
- Proof completion:
 - Take a circuit c of size C*n^{k-1}
 - $\exists n_0: C^* n_0^{k-1} < n_0^{k}$
 - $\exists x(|x|=n_0)$: on input x **c** works incorrect
 - L Size[n^{k-1}]

MA protocol

- MA protocols: L ⇒ MA if there exist polynomials p and q and Turing machine M, working polynomial time on all inputs, that for every x:
 - x is from L ← → Merlin can think of a proof : Arthur will accept is with high probability
 - x is not from L ←→ every proof created by Merlin will be rejected with high probability

REMINDER

 MA protocols: L ∋ MA if there exist polynomials p and q and Turing machine M, working polynomial time on all inputs, that for every x:

$$x \in L \Rightarrow \exists y \in \{0,1\}^{p(|x|)} : \Pr_{z \in \{0,1\}^{q(|x|)}} \{M(x,y,z) = 1\} > 3/4$$

$$\boldsymbol{x} \notin \boldsymbol{L} \Longrightarrow \forall \boldsymbol{y} \in \{0,1\}^{p(|\boldsymbol{x}|)} : \Pr_{\boldsymbol{z} \in \{0,1\}^{q(|\boldsymbol{x}|)}} \{\boldsymbol{M}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 1\} < 1/4$$

- Toda Theorem: $\mathbf{PH} \subseteq \mathbf{P}^{\mathbf{PP}}$
- $\mathbf{P}^{\#\mathbf{P}} = \{f: \sum^* \rightarrow \mathbf{N} \cup \{0\} \mid \exists \text{ time polynomial } \mathbf{NTM} M_f \text{ such that for every x } f(x)=\operatorname{acc}_{M_f}(x)\}, \text{ where } \operatorname{acc}_{M_f}(x) \text{ is the number of ACCEPT paths of machine } M_f.$
- **P^{PP}= P^{#P} :** lemma in the proof of Toda's theorem
- P^{#P} has interactive protocol with prover from P^{#P}

Circuit complexity of PP

- Lemma 1: if PP ⊆ P/poly we have P^{PP} ⊆ MA.
 Proof: later.
- Lemma 2: MA ⊆ PP.
 Proof: lection 7.
- <u>Theorem:</u> **PP Size**[n^k] for every k.

Proof: **PP** Size[n^k] for every k

REMINDER:

- Toda Theorem: $\mathbf{PH} \subseteq \mathbf{PPP}$
- Lemma 1: if $PP \subseteq P/poly$ we have $P^{PP} \subseteq MA$
- Lemma 2: MA ⊆ PP.

Proof:

- Assume k: PP ⊆ Size[n^k] → PP ⊆ P/poly
- **PH** \subseteq **P**^{PP} (by Toda theorem)
 - \subseteq **MA** (Lemma 1)
 - \subseteq **PP** (Lemma 2)
- We know: PH Size[n^k]
- \rightarrow **PP** Size[n^k]

$\mathsf{PP} \subseteq \mathsf{P/poly} \rightarrow \mathsf{P^{PP}} \subseteq \mathsf{MA}.$

<u>Lemma 1:</u> $PP \subseteq P/poly \rightarrow P^{PP} \subseteq MA$.

Proof:

- Take M : polynomial time oracle Turing machine from **P**^{PP}
- M : asks questions to oracle from **PP** of at most polynomial length
- $P^{\#P} = P^{PP} \subseteq P/poly$:
 - **PP** has polynomial circuits
 - this circuits can be considered as a hint string for machine from P/poly
- P^{#P} has interactive protocol with prover from P^{#P}
- we modify the protocol:
 - prover does not remember communication history
 - verifier sends communication history with every request to the prover
 - now the prover acts as a simple P^{#P} machine

$\mathsf{PP} \subseteq \mathsf{P/poly} \rightarrow \mathsf{P^{PP}} \subseteq \mathsf{MA}.$

P^{#P} has interactive protocol with prover from **P**^{#P}

$\mathsf{PP} \subseteq \mathsf{P/poly} \rightarrow \mathsf{P^{PP}} \subseteq \mathsf{MA}.$

MODIFIED PROTOCOL

Lemma's Proof

- We modified the prover \rightarrow it acts like a simple **P**^{#P} machine
- We know: $\mathbf{P}^{\mathtt{PP}} = \mathbf{P}^{\mathtt{PP}} \subseteq \mathbf{P}/\mathtt{poly}$
- MA protocol modifications
 - Arthur simulates verifier
 - instead of calling the prover Arthur uses circuits sent by the prover in the beginning of the communications
- all requests of the verifier have length poly(n) → circuits are the valid replacement for the prover
- $P^{\#P} \subseteq P/poly \rightarrow P^{PP} = P^{\#P} \subseteq MA$

Conclusion

- P/poly & Size[n^k]
- P/poly as a computational model
- SAT has polynomial circuit → PH collapses on the second level
- **PP** Size[n^k] for every k.

Thanks for the Patience

QUESTIONS TIME