
Cryptography and Elliptic curves

Inna Lukyanenko, St.Petersburg State University

JASS’07

1 Introduction to Cryptography

The term Cryptography is derived from Greek words ”hidden” and ”write” and it’s original meaning
is the study of message secrecy. In modern times, it has become a branch of information theory,
as the mathematical study of information and especially its transmission from place to place.

One of cryptography’s primary purposes is hiding the meaning of messages. That’s why, until
modern times, cryptography was concerned solely with message confidentiality, i.e. encryption.
Encryption is the process of converting ordinary information (plaintext) into a ciphertext. De-
cryption is the reverse process. A cipher is a pair of algorithms, which perform this encryption
and the reversing decryption. The both operations are controlled by a key - a secret parameter for
the cipher algorithm. Keys are very important because ciphers without variable keys are trivially
breakable.

The modern cryptography can be divided into two main areas of study:

1. Symmetric-key cryptography. It refers to encryption methods, which use the same (secret)
key for both encryption and decryption. Or, less commonly, the keys are different, but
related in an easily computable way. This was the only kind of encryption publicly known
until 1976. A significant disadvantage of this method is that it requires the prior agreement
about the key between the sender and receiver, using some secure channel. For example,
personal meeting. But in practice this may be very difficult to achieve.

2. Public-key cryptography. The idea of public-key cryptography, which was proposed in 1976
by Whitfield Diffie and Martin Hellman, is to use a pair of cryptographic keys - a public key
(for encryption) and a private key (for decryption). The private key is kept secret, while the
public key may be widely distributed. The keys are related mathematically, but the private
key cannot be practically derived from the public.

1.1 Public-key cryptography

There are two main branches of publc-key cryptography depending on its purpose:

• Public-key encryption: a message is encrypted with users public key, but cannot be decrypted
without the corresponding private key. This is used to ensure confidentiality.

• Digital signatures: a message is signed with users private key, but can be verified by anyone
who has access to the users public key. This is used to ensure authenticity.

This can be illustrated on the following two examples. An analogy for public-key encryption is the
locked mailbox with a mail slot. Everyone can drop the message through the slot, but only the
owner of the key can open the box and read the message. An analogy for digital signatures is the
sealing of an envelope with the personal wax seal. The message can be opened and red by anyone,
but the presence of the seal authenticates the sender.

The security of public-key algorithms is based on the computational complexity of ”hard”
problems, often from number theory. For example, the integer factorization problem and the
discrete logarithm problem.

1

1.2 Digital Signatures

A digital signature scheme is a type of public-key cryptosystem used to simulate the security
properties of a signature in digital form. Digital signatures normally give two algorithms: one for
signing, which involves the user’s secret key, and one for verifying, which involves the user’s public
key. The output of signature process is called the ”digital signature”. Digital signatures are used
to provide the authentication of the associated input, usually called a ”message”.

1.2.1 Overview of Digital Signatures

• RSA was invented in 1978 by Ronald Rivest, Adi Shamir and Leonard Adleman and its
security is based on the integer factorization problem.

• DSA (Digital Signature Algorithm) was developed in 1991 and is related to the discrete
logarithm problem.

• ECDSA (Elliptic Curve Digital Signature Algorithm) is a modification of DSA involving
elliptic curve groups, which was proposed in 1992 by Scott Vanstone. It provides smaller
key sizes for the same security level and that’s why it has become the most popular digital
signature.

1.2.2 The general description

A digital signature scheme typically consists of three algorithms:

1. A key generation algorithm G that randomly produces a key pair (PK, SK) for the signer.
PK is the verifying key, which is to be public, and SK is the signing key, to be kept private.

2. A signing algorithm S that, on input of a message m and a signing key SK, produces a
signature σ.

3. A verifying algorithm V that, on input of a message m, a verifying key PK and a signature
σ, either accepts or rejects.

Let us notice, that the public-key systems are computationally significant more expensive than the
symmetric ones. That’s why a message is previously hashed (using a cryptographic hash function)
and the smaller ”hash value” is signed. Before verifying a signature, the receiver computes the
hash of the message himself, and compares it with the decrypted one to check that the message
has not been tampered with.

1.2.3 One-way functions

Almost all digital signatures are based on the existence of the so called one-way functions. A one-
way function is a function that is easy to compute, but hard to invert. The precise meanings of
”easy” and ”hard” can be expressed mathematically: ”easy” means that there exists an algorithm
that can compute this function in probabilistic polynomial time. ”Hard” means that no such
algorithm exists.

We are interested in a special kind of one-way function - a trapdoor one-way function. It is
hard to invert unless some secret information, called trapdoor, is known. We should notice, that
the existence of one-way functions is an open question. But there are some candidates, for which
no polynomial-time inverting algorithm is known:

• a product of two large primes: it is believed to be difficult to factorize a product of two large
primes, but it is easy as soon as you know one of them. This is called the integer factorization
problem and used in RSA.

• an exponentiation in the finite field: it is believed to be difficult to extract discrete logarithms
in a finite field. This is called the discrete logarithm problem and the security of DSA and
ECDSA is based on it.

2

1.2.4 Discrete Logarithm Problem

Discrete logarithm can be viewed as a group-theoretic analogy of the ordinary logarithm. Let us
consider a finite multiplicative group (G, ·). A group, which is used in DSA, is the multiplicative
group of a finite field Zp, where p is prime. For an element g ∈ G of order n we define

〈g〉 = {gi : 0 ≤ i ≤ n− 1}.

Obviously, 〈g〉 is a cyclic subgroup of order n in (G, ·). Given y ∈ 〈g〉 there exists a unique integer
x, 0 ≤ x ≤ n− 1, such that y = gx. It is called the discrete logarithm of y to the base g and
denoted by x = loggy. It is the inverse operation to discrete exponentiation.

No efficient algorithm for computing discrete logarithms is known. The naive algorithm is to
raise g to the higher and higher powers until the desired y is found. This algorithm is exponential in
the number of digits in the group size. There exist more sophisticated algorithms, which run faster
than the naive, but none of them runs in polynomial time. That’s why the discrete exponentiation
is believed to be a one-way function.

1.3 The Digital Signature Algorithm (DSA)

The DSA was proposed in August 1991 by the U.S. National Institute of Standards and Technology
(NIST). Its security is based on the intractability of the discrete logarithm problem in prime-order
subgroups of Z∗p.

Domain parameters generation. Domain parameters are generated for each entity in a particular
security domain according to the following algorithm:

1. Select a 160-bit prime q and 1024-bit prime p with the property that q|p− 1.

2. Select an element h ∈ Z∗p and compute g = h(p−1)/q mod p. (Repeat until g 6= 1.)
From Fermat’s little theorem follows that gq ≡ h(p−1) ≡ 1 mod p. That’s why g is a generator
of a cyclic subgroup of order q in Z∗p.

3. (p, q, g) are domain parameters.

Key generation. Each entity in the domain with domain parameters (p, q, g) does the following:

1. Select a random integer x such that 1 ≤ x ≤ q − 1.

2. Compute y = gx mod p.

3. y is a public key; x is a private key.

DSA Signature generation. To generate the signature from the original message m one does the
following:

1. Select a random integer k, 1 ≤ k ≤ q − 1.

2. Compute e = HASH(m), where HASH is a cryptographic hash function, such as SHA− 1.

3. Compute r = (gk mod p) mod q.

4. Compute s = (k−1(e + xr)) mod q.

5. Go to step 1 if r = 0 or s = 0.

6. (r, s) is a signature for the message m.

3

DSA Signature verification. To verify the signature (r, s) on the message m using the public key
y and domain parameters (p, q, g) the receiver does the following:

1. Verify that 1 ≤ r, s ≤ q − 1.

2. Compute e = HASH(m).

3. Compute w = s−1 mod q.

4. Compute u1 = (ew) mod q.

5. Compute u2 = (rw) mod q.

6. Compute v = (gu1yu2 mod p) mod q.

7. Accept the signature if and only if v = r.

DSA Correctness. We should explain that the signature scheme is correct in the sense that it
always accepts the true signatures. Let (r, s) be a signature constructed with the private key x.
The signer computes s = k−1(e + xr) mod q. Rearranging gives

k ≡ (e + xr)s−1 ≡ (e + xr)w mod q.

Since g has order q we have

gk ≡ gewgxrw ≡ gewyrw ≡ gu1yu2 mod p.

And finally
r = (gk mod p) mod q = (gu1yu2 mod p) mod q = v.

2 Finite fields

A finite field is a finite set of elements F together with two binary operations ” + ” and ” · ”, that
satisfy certain arithmetic properties. The order of F is the number of its elements. We know,
that there exists a finite field of order q if and only if q = pm, where p is prime, and this field is
essentially unique. It is denoted by Fq. In this case p is called a characteristic of Fq, m is called
the extension degree of Fq. For elliptic curve cryptography we need one of two cases: q = p , where
p is an odd prime, or q = 2m. Let us notice, that there are many ways of representing the elements
of Fq providing different efficiency. In the next sections we describe some of them.

2.1 The finite field Fp

Let p be a prime number. The finite field Fp, called a prime field, is comprised of the set of integers
{0, 1, 2, ..., p− 1} with the following arithmetic operations:

• Addition: If a, b ∈ Fp, then a + b = r, where r = (a + b) mod p, 0 ≤ r ≤ p− 1. This is
known as addition modulo p.

• Multiplication: If a, b ∈ Fp, then a · b = s, where s = a · b mod p, 0 ≤ s ≤ p− 1. This is
known as multiplication modulo p.

• Inversion: If a ∈ Fp, a 6= 0, then there exists the unique integer a−1 ∈ Fp, such that
a · a−1 = 1.

4

2.2 The finite field F2m

The finite field F2m , called a binary finite field, can be viewed as a vector space of dimension m
over the field F2, which consists of the two elements 0 and 1. It means, that there exists a basis of
m elements {α0, α1, ..., αm−1} ∈ F2m , such that each element α ∈ F2m can be uniquely written in
the form:

α = a0α0 + a1α1 + ... + am−1αm−1, where ai ∈ {0, 1}.

If the basis is fixed, each element α can be represented as the bit string (a0a1...am−1). Addition
is performed by bitwise XOR-ing the vector representations. The multiplication depends on the
basis selected. There are many different kinds of bases of F2m over F2 and some of them lead to
more efficient implementations. Let us consider two of them: polynomial bases and normal bases.

2.2.1 Polynomial basis representation

Let f(x) = xm + fm−1x
m−1 + ... + f2x

2 + f1x + f0 (where fi ∈ {0, 1} for i = 0, 1, ...,m − 1) be
an irreducible polynomial of degree m over F2. That is, f(x) cannot be factored as a product of
two polynomials over F2 of degree less than m. Such polynomial is called the reduction polynomial
and it defines a polynomial basis representation of F2m .

Field elements. The field is comprised of all polynomials over F2 of degree less than m:

F2m = {a(x) = am−1x
m−1 + ... + a1x + a0 : ai ∈ {0, 1}}.

The field element am−1x
m−1 + ... + a1x + a0 is usually denoted by the bit string (am−1...a1a0) of

length m, so that
F2m = {(am−1...a1a0) : ai ∈ {0, 1}}.

Thus, the elements of F2m can be represented by the set of all binary strings of length m. The
multiplicative identity element (1) is represented by the bit string (00...01), the additive identity
element (0) is represented by (00...00).

Field operations:

• Addition: If a = (am−1...a1a0), b = (bm−1...b1b0) ∈ F2m , then a + b = c = (cm−1...c1c0),
where ci = (ai + bi) mod 2.

• Multiplication: If a = (am−1...a1a0), b = (bm−1...b1b0) ∈ F2m , then a · b = r = (rm−1...r1r0),
where r(x) = a(x)·b(x) mod f(x) over F2. That is, r(x) is the remainder when the polynomial
a(x) · b(x) is devided by f(x) over F2.

• Inversion: If a = (am−1...a1a0) ∈ F2m , a 6= 0, then there exists the unique a−1 ∈ F2m , such
that a · a−1 = 1.

2.2.2 Normal basis representation

A normal basis of F2m over F2 is a basis of the form {β, β2, β22
, ..., β2m−1}, where β ∈ F2m .

Such a basis always exists. Each element can be written as a =
∑m−1

i=0 aiβ
2i

, where ai ∈ {0, 1}.
Normal basis representations have the computational advantage that squaring of an element can
be done very efficiently. But, on the other hand, the multiplication can be cumbersome in gen-
eral. For this reason, Gaussian normal bases are used, for which multiplication is both simpler and
more efficient. But the construction itself is relatively complicated, so we wouldn’t describe it here.

Field elements:

F2m = {a =
m−1∑
i=0

aiβ
2i

: ai ∈ {0, 1}}.

5

Each element can be represented by a bit string, so that

F2m = {(a0a1...am−1) : ai ∈ {0, 1}}.

The multiplicative identity element (1) is represented by the bit string (11...11), the additive iden-
tity element (0) is represented by (00...00).

Field operations:

• Addition: If a = (a0a1...am−1), b = (b0b1...bm−1) ∈ F2m , then a + b = c = (c0c1...cm−1),
where ci = (ai + bi) mod 2.

• Squaring: Let a = (a0a1...am−1) ∈ F2m .

a2 =
m−1∑
i=0

aiβ
2i+1

=
m−1∑
i=0

ai−1β
2i

= (am−1a0a1...am−2).

• Multiplication: with use of Gaussian normal basis (GNB).

• Inversion: If a ∈ F2m , a 6= 0, then there exists the unique integer a−1 ∈ F2m , such that
a · a−1 = 1.

3 Elliptic curves

3.1 Elliptic curves over Fp

Let p > 3 be an odd prime, a, b ∈ Fp, such that 4a3 + 27b2 6= 0 mod p. An elliptic curve E over
Fp is the folloving set of elements:

E(Fp) = {(x, y) ∈ Fp × Fp : y2 = x3 + ax + b} ∪ {O − point at infinity}.

The requirement 4a3 + 27b2 6= 0 means that the curve is non-singular, i.e. has no cusps and
self-intersections.

Addition rule. There is a rule, called the chord-and-tangent rule, for adding two points on an
elliptic curve E(Fp) to give a third point. Together with this addition operation a set E(Fp) forms
a group with O serving as identity. Exactly this group is used in ECDSA. The addition rule can
be best explained geometrically:

• Point addition. Let P and Q be two distinct points on an elliptic curve E. Then the sum
of P and Q, denoted by R, is defined as follows. At first, one should draw a line through P
and Q. This line intersects the elliptic curve at a third point. Then R is the reflection of this
point in the x axis.

• Point doubling. Let P be a point on an elliptic curve. Then the double of P , denoted by R,
is defined as follows. One should draw a tangent line to the elliptic curve at P . It intersects
the elliptic curve at the second point. Then R is the reflection of this point in the x axis.

The following algebraic formulas can now be easily derived from the geometric description:

1. P +O = O + P = P for all P ∈ E(Fp).

2. If P = (x, y) ∈ E(Fp), then −P = (x,−y) ∈ E(Fp).

3. Let P = (x1, y1), Q = (x2, y2) ∈ E(Fp), such that P 6= ±Q. Then P + Q = (x3, y3), where

x3 =
(

y2 − y1

x2 − x1

)2

− x1 − x2 and y3 =
(

y2 − y1

x2 − x1

)
(x1 − x3)− y1.

6

4. If P = (x1, y1) ∈ E(Fp), such that P 6= −P , then 2P = (x3, y3), where

x3 =
(

3x2
1 + a

2y1

)2

− 2x1 and y3 =
(

3x2
1 + a

2y1

)
(x1 − x3)− y1.

3.2 Elliptic curves over F2m

Let a, b ∈ F2m , such that b 6= 0. Then an elliptic curve E over F2m is the following set of elements:

E(F2m) = {(x, y) ∈ F2m × F2m : y2 + xy = x3 + ax2 + b} ∪ {O − point at infinity}.

The geometric description of an addition operation is similar to the case of E(Fp). Together with
this addition operation a set E(F2m) forms a group with O serving as identity.

The algebraic formulas for the sum of two points and the double of the point:

1. P +O = O + P = P for all P ∈ E(F2m).

2. If P = (x, y) ∈ E(F2m), then −P = (x, x + y) ∈ E(F2m).

3. Let P = (x1, y1), Q = (x2, y2) ∈ E(F2m), such that P 6= ±Q. Then P + Q = (x3, y3), where

x3 =
(

y1 + y2

x1 + x2

)2

+
y1 + y2

x1 + x2
+ x1 + x2 + a and y3 =

(
y1 + y2

x1 + x2

)
(x1 + x3) + x3 + y1.

4. If P = (x1, y1) ∈ E(F2m), such that P 6= −P , then 2P = (x3, y3), where

x3 = x2
1 +

b

x2
1

and y3 = x2
1 +

(
x1 +

y1

x1

)
x3 + x3.

3.3 Basic facts

Group order. Let E be an elliptic curve over a finite field Fq. Hasse’s theorem gives the following
estimation for the number of points on an elliptic curve:

#E(Fq) = q + 1− t, where |t| ≤ 2
√

q.

Then #E(Fq) is called the order of E and t is called the trace of E. In other words, the order of
an elliptic curve E(Fq) is roughly equal to the size q of an underlying field.

Group structure. E(Fq) is an abelian group of rank 1 or 2. That is, E(Fq) ∼= Zn1 × Zn2 , where
n2 divides n1 and n2 divides q − 1, for unique positive integers n1 and n2. Zn denotes the cyclic
group of order n. In the case n2 = 1 (one of these groups is trivial), E(Fq) ∼= Zn is cyclic of order
n = n1 and there exists a generator G ∈ E(Fq), such that E(Fq) = {kG : 0 ≤ k ≤ n− 1}.

3.4 ECDLP

Let us notice, that the additive cyclic subgroup of order n described above can be considered
similar to the multiplicative group of powers of an integer g modulo prime n:

(O, G, 2G, 3G, ..., (n− 1)G) ⇔ (e, g, g2, g3, ..., g(n−1)).

That’s why the problem of finding k (0 ≤ k ≤ n − 1), if the points G and kG are given, is called
the elliptic curve discrete logarithm problem (ECDLP). The security of elliptic curve cryptography
is based on the hardness of this problem.

7

4 ECDSA

The discrete logarithm problem on elliptic curve groups is believed to be more difficult than the
corresponding problem in the multiplicative group of the underlying finite field. That’s why the
keys can be chosen much shorter for a comparable level of security. As for other popular public-key
cryptosystems, no mathematical proof of difficulty has been published, but in 1999 it was accepted
as an ANSI (American National Standarts Institute) standard. In practice, it is going to replace
RSA and DSA.

4.1 Domain parameters

The domain parameters consist of a suitably chosen elliptic curve E(Fq) of characteristic p and a
base point G ∈ E(Fq). So, we should define the following parameters:

1. a field size q = p or 2m.

2. the representation FR of Fq: in the case q = 2m elements are represented with respect to a
polynomial or normal basis.

3. a, b ∈ Fq satisfying corresponding restrictions, which define the equation of EC:{
y2 = x3 + ax + b in the case p > 3
y2 + xy = x3 + ax2 + b in the case p = 2

4. a generator G = (xG, yG) ∈ E(Fq) of prime order.

5. the order n of G is a large prime and n > 4
√

q.

6. the cofactor h = #E(Fq)/n (h ≤ 4).

Generation and validation. The generation of domain parameters can be very time-consuming and
troublesome to implement. That’s why there are some standard domain parameters for several
common field sizes.

If one wants to build his own parameters, one should at first select the underlying field and
then generate the elliptic curve, with respect to the condition that its order is divisible by a large
prime n. Several classes of curves are ”weak” and should be avoided. For example, E(F2m) with
non prime m and so-called ”anomalous” curves, such that #E(Fq) = q. ”Weak” means, that the
ECDLP is relatively easy for these classes of curves.

In order to avoid all attacks against special classes of curves one should select a suitable elliptic
curve at random. Then the probability of constructing a ”weak” curve is negligible. A curve
can be selected verifiably at random by choosing the coefficients a and b of the defining equation
as the outputs of a one-way cryptographic hash function, such as SHA − 1, according to some
pre-specified procedure. There exsist also some other methods for generating cryptographically
suitable elliptic curves, which include the complex multiplication method and method involving
Koblitz curves.

One should always validate domain parameters before use. Domain parameters validation
ensures, that they satisfy all required arithmetical properties. The reasons for performing it are:
to prevent the malicious insertion of invalid domain parameters (it can enable some attacks) and
to detect coding and transmission errors. Use of an invalid set of domain parameters can void all
expected security properties.

8

4.2 Key generation

Each entity in the domain with parameters (q, FR, a, b, G, n, h) does the following:

1. Select a random integer d such that 1 ≤ d ≤ n− 1.

2. Compute Q = dG.

3. Q is a public key; d is a private key.

Some words about the public key validation. A receiver should always perform this procedure to
check that the public key satisfies all required arithmetical properties:

1. Q 6= O.

2. xQ, yQ ∈ Fq with corresponding representation.

3. Q ∈ E(Fq), where E(Fq) is defined by a and b.

4. nQ = O.

The reasons for performing it are similar to that of the domain parameters validation.

4.3 Signature generation and verification

Signature generation. To sign a message m using the key pair (d, Q) one does the following:

1. Select a random integer k, 1 ≤ k ≤ n− 1.

2. Compute e = HASH(m).

3. Compute r = x1 mod n, where (x1, y1) = kG.

4. Compute s = k−1(e + dr) mod n.

5. Go to step 1 if r = 0 or s = 0.

6. (r, s) is a signature for the message m.

Signature verification. To verify the signature using the public key Q one does the following:

1. Verify that 1 ≤ r, s ≤ n− 1.

2. Compute e = HASH(m).

3. Compute w = s−1 mod n.

4. Compute u1 = (ew) mod n.

5. Compute u2 = (rw) mod n.

6. Compute (x1, y1) = u1G + u2Q.

7. Accept the signature if and only if x1 = r mod n.

9

Correctness. The algorithm always accepts the true signatures. If a signature (r, s) on a message
m was indeed generated using a secret key d, then s = k−1(e + dr) mod n. Rearranging gives

k ≡ (e + dr)s−1 ≡ (e + dr)w ≡ u1 + du2 mod n

Thus, u1G + u2Q = (u1 + du2)G = kG, and so r = v as required.

Comparing DSA and ECDSA. Conceptually, the ECDSA is simply obtained from the DSA by
replacing the subgroup of order q of Z∗p generated by g with the subgroup of order n of E(Fq)
generated by G. The only significant difference between DSA and ECDSA is in the generation of
r. In DSA r = (gk mod p) mod q. In ECDSA r = x1 mod n, where (x1, y1) = kG.

References

D. Johnson, A. Menezes, S. Vanstone: The Elliptic Curve Digital Signature Algorithm
(ECDSA). 2001

10

