

Sierpiński-Curves
Joint Advanced Student School 2007

Martin Dummer

Statement of the Problem

What is the best way to store a triangle mesh efficiently in memory?

The following points are desired :

 Easy to compute
 Requires little memory
 Adaptive refinement is possible
 Finding the neighbor of a node is easy

Overview

 Storage Models

 Refinement
 Basics
 Bisectioning
 General purpose objects

 Storage in Trees

 Introduction to Curves

 Stacks
 Neighbors
 Unknown edges

 Example
 Conclusion

Storage - Models

Surface-based
Wireframe model

(CAD)

==> high effort for
complex objects

Volume-based
Segmentation

(scientific computing)

==> always complexity
O(n³)

Storage - Models

==> Neighborhood relations are important

Adaptive Grids

 The grid requires high resolution only at certain points

kd-Spacetrees

Refine only where more
information is stored
(borderline)

2² Quadtree
2³ Octree

==> Tree structure

Refinement basics

How to find out where refinement is necessary?

 Evaluate the discretization error
 Evaluate possible improvement (change in the result)

==> There is no optimal refinement

Adaptive refinement

To achieve the most generic algorithm
the most basic 2D structure is used

This is called Bisectioning

Adaptive refinement

Bisecting which vertex gives the best results?

First guess usually is the one opposite to the longest edge

Adaptive refinement

==> This leads to “hanging nodes” which are difficult to handle

Bisecting which vertex gives the best results?

Adaptive refinement

Alternative : Always divide 2 triangles at a time

Adaptive refinement

Use the “newest” vertex to divide the triangle again

Alternative : Always divide 2 triangles at a time

Adaptive refinement

==> No hanging nodes for this bisection rule

Alternative : Always divide 2 triangles at a time

Arbitrary Borders

Evaluate a function instead of dividing the edge

Bisection in 3D

Use a tetrahedron instead of a triangle

(Image taken from wikipedia.org)

Review

What do we have so far ?

 Volume based model
 2D and 3D
 Arbitrary shape
 Adaptive refinement

Storage

Represent the sub-triangles in a binary tree

Linearization

Apply depth-first search (DFS)
Store only one refinement bit for each node

Linearization

Neighborhood issues

How do we find the corresponding neighbor?

Space-filling curves

Mapping of a 1D curve into a 2D area

Hilbert curve

Sierpiński-Curves

Fractal geometry object similar to Hilbert- and Peano-curves

Order 1 Order 2 Order 3

Sierpiński-Curves in Grids

Iterate through grid cells according to DFS

Sierpiński-Curves in Grids

Iterate through grid cells according to DFS

Sierpiński-Curves in Grids

Iterate through grid cells according to DFS

Neighborhood problem

Sierpiński iteration linearizes a triangle

Divide cells into left and right side

Stacks

Stack operations

(push) adds an element on top of the stack
(pop) removes an element from top of the stack

Neighborhood problem

Sierpiński iteration linearizes a triangle

Divide cells into left and right side

Neighborhood problem

Possible configurations for triangle traversal

Neighborhood problem

Possible configurations for triangle traversal

Neighborhood problem

Possible configurations for triangle traversal

Unknown edges

Use input or temporary stack?

No adjacent cells have been visited before

(yes) Read from the input stack
(no) Read from a temporary stack

Unknown edges

Use output or temporary stack?

All adjacent cells have been visited before

(yes) Write on the output stack
(no) Write on a temporary stack

Unknown edges

Alternative:

Count number of write accesses and
compare with number of adjacent cells

Use output or temporary stack?

Example

Example

Example

Example

Example

Example

Conclusion

This algorithm combines the advantages of DFS and
the stack system based on Sierpiński-Curves

 Easy to compute
 Requires little memory
 Adaptive refinement is possible
 Finding the neighbor of a node is easy

Thank you for your attention

Questions ?

