Analysis of an Algorithm Using the Hoare Logic

Florian Klöck

Technische Universität München

March 2007

(日) (四) (문) (문) (문) 문

Conversion into the hierarchical basis

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Outline of the presentation

How can we approximate functions?

We want to approximate functions $f : [a, b] \to \mathbb{R}$. Simplification: $f : [0, 1] \to \mathbb{R}, f(0) = f(1) = 0$

Problem ••••••••• Conversion into the nodal point basis ${\tt 000000000}$

Conversion into the hierarchical basis 000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Outline of the presentation

How can we approximate functions?

We want to approximate functions $f : [a, b] \to \mathbb{R}$. Simplification: $f : [0, 1] \to \mathbb{R}, f(0) = f(1) = 0$

"linear splines" with equidistant nodes ("lattice points") with distance $h_n = 2^{-n}, n \in \mathbb{N}$ ("mesh size")

Conversion into the nodal point basis

Conversion into the hierarchical basis 000000000

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Outline of the presentation

Outline

1 Problem

- Outline of the presentation
- Bases for the space of linear splines
- Motivation
- 2 Conversion into the nodal point basis
 - Algorithm for conversion into the nodal point basis
 - Proof of the algorithm
- 3 Conversion into the hierarchical basis
 - Algorithm for conversion into the hierarchical basis
 - Proof of the algorithm

 Problem
 Conversion into the nodal point basis
 Conversion into the hierarchical

 00
 00000000
 000000000

 Bases for the space of linear splines
 000000000

The nodal point basis

We want to find a basis for the space of linear splines $s : [0,1] \to \mathbb{R}$ with s(0) = s(1) = 0 and mesh size $h_n = 2^{-n}$. The lattice points are:

$$x_{n,i} = ih_n$$
 with $i \in \{1, 2, ..., 2^n - 1\}$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Conversion into the nodal point basis

Conversion into the hierarchical basis

Bases for the space of linear splines

The nodal point basis

We want to find a basis for the space of linear splines $s : [0,1] \to \mathbb{R}$ with s(0) = s(1) = 0 and mesh size $h_n = 2^{-n}$. The lattice points are:

$$x_{n,i} = ih_n$$
 with $i \in \{1, 2, ..., 2^n - 1\}$

A simple basis is:

$$\bigcup_{i=1}^{2^{n}-1} \{\Phi_{n,i}\} \text{ with } \Phi_{n,i} := \Phi(\frac{x - x_{n,i}}{h_{n}}), \Phi(x) := \max\{1 - |x|, 0\}$$

Conversion into the nodal point basis ${\tt 000000000}$

Conversion into the hierarchical basis

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Bases for the space of linear splines

Representation in the nodal point basis

The $\Phi_{n,i}$ are piecewise linear and continuous. $\Phi_{n,i}(x_j) = \delta_{ij}$. Piecewise linear and continuous functions are equal when they are equal on every lattice point

Conversion into the nodal point basis ${\tt 000000000}$

Conversion into the hierarchical basis

(日) (字) (日) (日) (日)

Bases for the space of linear splines

Representation in the nodal point basis

The $\Phi_{n,i}$ are piecewise linear and continuous. $\Phi_{n,i}(x_j) = \delta_{ij}$. Piecewise linear and continuous functions are equal when they are equal on every lattice point, so *s* can be expressed as follows:

$$s(x) = \sum_{i=1}^{2^{n}-1} f(x_i) \Phi_{n,i}(x)$$

Let's assume we would use the linear spline for quadrature (=numerical integration).

If we increase n, we have to compute everything again with the nodal point basis:

We will see, that there exists a better basis for this purpose.

Problem ○○○○○●○○○○ Conversion into the nodal point basis

Conversion into the hierarchical basis

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Bases for the space of linear splines

Generating system which includes the nodal point basis

Instead of a basis for the linear splines we could also use a more general generating system:

$$\bigcup_{l=1}^{n}\bigcup_{i=1}^{2^l-1}\{\Phi_{l,i}\}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

◆□> ◆□> ◆三> ◆三> ・三 ・ のへ⊙

Bases for the space of linear splines

Generating system which includes the nodal point basis

Instead of a basis for the linear splines we could also use a more general generating system:

$$\bigcup_{l=1}^{n}\bigcup_{i=1}^{2^{l}-1}\left\{ \Phi_{l,i}\right\}$$

A linear spline is represented in this generating system as follows:

$$s(x) = \sum_{l=1}^{n} \sum_{i=1}^{2^l-1} v_{l,i} \Phi_{l,i}(x)$$
 with a coefficient vector v

 Problem
 Conversion into the nodal point basis
 Conversion into the hierarchical basis

 00000000
 000000000
 000000000

 Bases for the space of linear splines
 000000000

The hierarchical basis

Generating system:
$$\bigcup_{l=1}^{n}\bigcup_{i=1}^{2^{l}-1} \{\Phi_{l,i}\}$$

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

We consider the following both bases:

• Nodal point basis: Only $\Phi_{n,i}$ ($\bigcup_{i=1}^{2^n-1} \{\Phi_{n,i}\}$)

 Problem
 Conversion into the nodal point basis
 Conversion

 000000000
 00000000
 000000
 000000

Conversion into the hierarchical basis

Bases for the space of linear splines

The hierarchical basis

Generating system:
$$\bigcup_{l=1}^{n}\bigcup_{i=1}^{2^{l}-1} \{\Phi_{l,i}\}$$

We consider the following both bases:

- Nodal point basis: Only $\Phi_{n,i}$ $(\bigcup_{i=1}^{2^n-1} \{\Phi_{n,i}\})$
- Hierarchical basis: Only $\Phi_{I,i}$ with odd i $(\bigcup_{l=1}^{n} \bigcup_{i \in \{1,3,5,\dots,2^{l}-1\}} \{\Phi_{I,i}\})$

Conversion into the nodal point basis

Conversion into the hierarchical basis

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Bases for the space of linear splines

Quadrature with the hierarchical basis

Using the hierarchical basis, we don't need to recalculate the complete integral if we increase n:

Conversion into the nodal point basis

Conversion into the hierarchical basis

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Bases for the space of linear splines

Quadrature with the hierarchical basis

Using the hierarchical basis, we don't need to recalculate the complete integral if we increase n:

Conversion into the nodal point basis

Conversion into the hierarchical basis

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Bases for the space of linear splines

Outline

1 Problem

- Outline of the presentation
- Bases for the space of linear splines
- Motivation
- 2 Conversion into the nodal point basis
 - Algorithm for conversion into the nodal point basis
 - Proof of the algorithm
- 3 Conversion into the hierarchical basis
 - Algorithm for conversion into the hierarchical basis
 - Proof of the algorithm

Problem ○○○○○○○●	Conversion into the nodal point basis	Conversion into the hierarchical basis
Motivation		
Motivation		

In dimension 1, this problem is quite harmless, but it is a prototype for very complicated problems in higher dimensions. Keywords:

Sparse GridsFinite Elements

skip to revision of the Hoare rules

Figure: sparse grid

・ロト ・雪 ト ・ヨ ト ・ ヨ ト ・ ヨ

Conversion into the nodal point basis

Conversion into the hierarchical basis 000000000

Algorithm for conversion into the nodal point basis

Representation in the nodal point basis

How can we represent the function given by the vector v in the nodal point basis? Algorithm toNodalPointBasis:

- input
 - integer n > 1
 - vector v with $\sum_{l=1}^{n} \sum_{i=1}^{2^{l}-1} v_{l,i} \Phi_{l,i} = u$

output

• vector v with $\sum_{l=1}^{n} \sum_{i=1}^{2^{l}-1} v_{l,i} \Phi_{l,i} = u$ and $v_{l,i} = 0$ for all l < n

Conversion into the nodal point basis

Conversion into the hierarchical basis

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Algorithm for conversion into the nodal point basis

Conversion into the nodal point basis

Algorithm for conversion of a vector v into the nodal point basis:

to Nodal Point Basis

for
$$l = 1, ..., n - 1$$
:
for $i = 1, ..., 2^{l} - 1$:
 $v_{l+1,2i-1} += v_{l,i}/2$
 $v_{l+1,2i} += v_{l,i}$
 $v_{l+1,2i+1} += v_{l,i}/2$
 $v_{l,i} = 0$

In the following we prove the correctness of the algorithm.

Conversion into the hierarchical basis

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Proof of the algorithm

Revision of the Hoare rules

• $\{A\} \ \underline{\%}$ noOperation $\{A\}$

Conversion into the hierarchical basis

Proof of the algorithm

Revision of the Hoare rules

- $\bigcirc \{A\} \ \underline{\%} \text{ noOperation } \{A\}$
- **1** Axiom of assignment: $\{A[E/x]\}x := E \{A\}$

Conversion into the hierarchical basis

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Proof of the algorithm

Revision of the Hoare rules

- **O** $\{A\}$ <u>%</u> noOperation $\{A\}$
- **1** Axiom of assignment: $\{A[E/x]\}x := E\{A\}$
- 2 Rule of consequence: $\frac{A' \Rightarrow A \text{ and } \{A\} S\{B\} \text{ and } B \Rightarrow B'}{\{A'\} S\{B'\}}$

Conversion into the nodal point basis

Conversion into the hierarchical basis

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Proof of the algorithm

Revision of the Hoare rules

- **O** $\{A\}$ <u>%</u> noOperation $\{A\}$
- **1** Axiom of assignment: $\{A[E/x]\}x := E\{A\}$
- 2 Rule of consequence: $\frac{A' \Rightarrow A \text{ and } \{A\}S\{B\} \text{ and } B \Rightarrow B'}{\{A'\}S\{B'\}}$
- **3** Rule of composition: $\frac{\{A\}S\{B\} \text{ and } \{B\}T\{C\}}{\{A\}S;T\{C\}}$

Conversion into the nodal point basis

Conversion into the hierarchical basis 000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Proof of the algorithm

Revision of the Hoare rules

[A] % noOperation {A}
[Axiom of assignment: {A[E/x]}x := E {A}
[Aule of consequence: A' = A and {A}S{B} and B = B' {A'}S{B'}
[Aule of composition: {A}S{B} and {B}T{C} {A}S;T{C}
[Aule of iteration: {A and b}S{A} {A}while b do S{A and not(b)}

Conversion into the nodal point basis

Conversion into the hierarchical basis 000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Proof of the algorithm

Revision of the Hoare rules

0 {A} $\frac{\%}{2}$ noOperation {A} **1** Axiom of assignment: $\{A[E/x]\}x := E \{A\}$ **2** Rule of consequence: $\frac{A' \Rightarrow A \text{ and } \{A\}S\{B\} \text{ and } B \Rightarrow B'}{\{A'\}S\{B'\}}$ **3** Rule of composition: $\frac{\{A\}S\{B\} \text{ and } \{B\}T\{C\}}{\{A\}S;T\{C\}}$ **4** Rule of iteration: $\frac{\{A \text{ and } b\}S\{A\}}{\{A\}\text{ while } b \text{ do } S\{A \text{ and } not(b)\}}$ **5** Conditional rule: $\frac{\{A \text{ and } c\}S\{B\} \text{ and } \{A \text{ and } not(c)\}T\{B\}}{\{A\}\text{ if } c \text{ then } S \text{ else } T\{B\}}$

Problem	Conversion into the nodal point basis	Conversion into the hierarchical basis
	0000000	
Proof of the algorithm		
Definitions		

We need the following definitions for the proof:

•
$$f_{v} := \sum_{l=1}^{n} \sum_{i=1}^{2^{l}-1} v_{l,i} \Phi_{l,i}$$

Problem 000000000	Conversion into the nodal point basis ○○●●○○○○○	Conversion into the hierarchical basis
Proof of the algorithm		
Definitions		

We need the following definitions for the proof:

•
$$f_{v} := \sum_{l=1}^{n} \sum_{i=1}^{2^{l}-1} v_{l,i} \Phi_{l,i}$$

•
$$P_u(f) :\Leftrightarrow f \equiv u$$
 (*u* is the input function)

Problem	Conversion into the nodal point basis	Conversion into the hierarchical basis
Proof of the algorithm		
Definitions		

We need the following definitions for the proof:

•
$$f_{v} := \sum_{l=1}^{n} \sum_{i=1}^{2^{l}-1} v_{l,i} \Phi_{l,i}$$

•
$$P_u(f) :\Leftrightarrow f \equiv u$$
 (*u* is the input function)

•
$$v_{l,i} := 0$$
 for $l > n$ or $l < 1$ or $i < 1$ or $i \ge 2^l$

Skip to the conversion into the hierarchical basis

Conversion into the hierarchical basis 000000000

Proof of the algorithm

Transformation of the program

The algorithm needs to be transformed so that it uses only control structures covered by the Hoare logic:

toNodalPointBasis

```
l = 1
while l \neq n:
    i = 1
    while i \neq 2^n:
        v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2
        v_{l+1,2i} = v_{l+1,2i} + v_{l,i}
        v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2
        v_{Li} = 0
        i = i + 1
    l = l + 1
```

Conversion into the nodal point basis 000000000

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The outer loop

 $\{P_{\mu}(f_{\nu})\}$ l = 1while $l \neq n$: i = 1while $i \neq 2^{l}$: $v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$ $v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$ $v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$ $v_{l,i} = 0$ i = i + 1l = l + 1

 $\{P_u(f_v) \text{ and } \forall l' < n : v_{l',i'} = 0\}$ (proposition)

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The outer loop

$$\{P_{u}(f_{v})\}\$$

$$l = 1$$

$$\{P_{u}(f_{v}) \text{ and } \forall l' < l : v_{l',i'} = 0\}$$
while $l \neq n$:
$$i = 1$$
while $i \neq 2^{l}$:
$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

$$v_{l,i} = 0$$

$$i = i + 1$$

$$l = l + 1$$

 $\{P_u(f_v) \text{ and } \forall l' < n : v_{l',i'} = 0\}$ (proposition)

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The outer loop

$$\begin{cases} P_{u}(f_{v}) \\ l = 1 \\ \{P_{u}(f_{v}) \text{ and } \forall l' < l : v_{l',i'} = 0 \} \\ while \ l \neq n : \\ \{P_{u}(f_{v}) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } l \neq n \} \\ i = 1 \\ while \ i \neq 2^{l} : \\ v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2 \\ v_{l+1,2i} = v_{l+1,2i} + v_{l,i} \\ v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2 \\ v_{l,i} = 0 \\ i = i + 1 \\ l = l + 1 \\ \{P_{u}(f_{v}) \text{ and } \forall l' < l : v_{l',i'} = 0 \} \\ \{P_{u}(f_{v}) \text{ and } \forall l' < n : v_{l',i'} = 0 \} \text{ (follows)}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The inner loop

$$\{P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } l \neq n\}$$

 $i = 1$

while $i \neq 2^{l}$:

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

$$v_{l,i} = 0$$

$$i = i + 1$$

$$l = l + 1$$

 $\{P_u(f_v) \text{ and } orall l' < l : v_{l',i'} = 0\}$ (proposition)

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The inner loop

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } l \neq n \}$$

$$i = 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } \forall i' < i : v_{l,i'} = 0 \text{ and } l \neq n \}$$

while $i \neq 2^l$:

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

$$v_{l,i} = 0$$

$$i = i + 1$$

$$l = l + 1$$

 $\{P_u(f_v) \text{ and } orall l' < l : v_{l',i'} = 0\}$ (proposition)

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The inner loop

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } l \neq n \}$$

$$i = 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } \forall i' < i : v_{l,i'} = 0 \text{ and } l \neq n \}$$

while $i \neq 2^l$:

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

$$v_{l,i} = 0$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } \forall l' \leq l : v_{l',i'} = 0 \}$$
 (prop.)

$$l = l + 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \}$$
 (follows)

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The inner loop

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } l \neq n \}$$

$$i = 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } \forall i' < i : v_{l,i'} = 0 \text{ and } l \neq n \}$$

while $i \neq 2^l$:

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

$$v_{l,i} = 0$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } \forall i' < 2^l : v_{l,i'} = 0 \} \text{ (prop.)}$$

$$I = l + 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \} \text{ (follows)}$$
Conversion into the hierarchical basis

Proof of the algorithm

$$X := orall I' < I : v_{I',i'} = 0$$
 and $orall i' < i : v_{I,i'} = 0$ and $I \neq n$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } l \neq n \}$$

$$i = 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } \forall i' < i : v_{l,i'} = 0 \text{ and } l \neq n \}$$

$$while i \neq 2^l :$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

$$v_{l,i} = 0$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } \forall i' < 2^l : v_{l,i'} = 0 \} \text{ (prop.)}$$

$$I = l + 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \} \text{ (follows)}$$

Conversion into the hierarchical basis

Proof of the algorithm

$$X := \forall l' < l : v_{l',i'} = 0$$
 and $\forall i' < i : v_{l,i'} = 0$ and $l \neq n$

$$\{P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } l \neq n \}$$

$$i = 1$$

$$\{P_u(f_v) \text{ and } X \}$$

while $i \neq 2^l$:

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

$$v_{l,i} = 0$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } \forall i' < 2^l : v_{l,i'} = 0 \} \text{ (prop.)}$$

$$I = l + 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \} \text{ (follows)}$$

Conversion into the hierarchical basis

Proof of the algorithm

$$X := orall I' < I : v_{I',i'} = 0$$
 and $orall i' < i : v_{I,i'} = 0$ and $I \neq n$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } l \neq n \}$$

$$i = 1$$

$$\{ P_u(f_v) \text{ and } X \}$$
while $i \neq 2^l$:
$$\{ P_u(f_v) \text{ and } X \text{ and } i \neq 2^l \}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

$$v_{l,i} = 0$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \text{ and } \forall i' < 2^l : v_{l,i'} = 0 \}$$

$$(follows)$$

$$l = l + 1$$

$$\{ P_u(f_v) \text{ and } \forall l' < l : v_{l',i'} = 0 \}$$

$$(follows)$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The inner block

$$X := \forall l' < l : v_{l',i'} = 0 \text{ and } \forall i' < i : v_{l,i'} = 0 \text{ and } l \neq n$$

$$\{P_u(f_v) \text{ and } X\}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

 $v_{I,i} = 0$

i = i + 1{ $P_u(f_v)$ and X} (proposition)

Conversion into the nodal point basis 0000000000

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The inner block

$$X := \forall l' < l : v_{l',i'} = 0 \text{ and } \forall i' < i : v_{l,i'} = 0 \text{ and } l \neq n$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

$$\begin{aligned} &v_{I,i} = 0 \\ &\{P_u(f_v) \text{ and } X \text{ and } v_{I,i} = 0\} \text{ (proposition)} \\ &i = i + 1 \\ &\{P_u(f_v) \text{ and } X\} \text{ (follows)} \end{aligned}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The inner block

$$X := \forall l' < l : v_{l',i'} = 0$$
 and $\forall i' < i : v_{l,i'} = 0$ and $l \neq n$

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$$

$$\begin{aligned} &v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2 \\ &\{P_u(f_v - v_{l,i}\Phi_{l,i}) \text{ and } X\} \text{ (proposition)} \\ &v_{l,i} = 0 \\ &\{P_u(f_v) \text{ and } X \text{ and } v_{l,i} = 0\} \text{ (follows)} \\ &i = i+1 \\ &\{P_u(f_v) \text{ and } X\} \text{ (follows)} \end{aligned}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The inner block

$$X := \forall l' < l : v_{l',i'} = 0$$
 and $\forall i' < i : v_{l,i'} = 0$ and $l \neq n$

$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$\begin{array}{l} v_{l+1,2i} = v_{l+1,2i} + v_{l,i} \\ \left\{ P_u(f_v + v_{l,i}(-\Phi_{l,i} + \Phi_{l+1,2i+1}/2)) \text{ and } X \right\} \text{ (proposition)} \\ v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2 \\ \left\{ P_u(f_v - v_{l,i}\Phi_{l,i}) \text{ and } X \right\} \text{ (follows)} \\ v_{l,i} = 0 \\ \left\{ P_u(f_v) \text{ and } X \text{ and } v_{l,i} = 0 \right\} \text{ (follows)} \\ i = i + 1 \\ \left\{ P_u(f_v) \text{ and } X \right\} \text{ (follows)} \end{array}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

4

Proof of the algorithm

Proof: The inner block

$$X := orall I' < I : v_{I',i'} = 0$$
 and $orall i' < i : v_{I,i'} = 0$ and $I \neq n$

$$\begin{split} &v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2 \\ & \{P_u(f_v + v_{l,i}(-\Phi_{l,i} + \Phi_{l+1,2i+1}/2 + \Phi_{l+1,2i})) \text{ and } X\} \text{ (proposition)} \\ &v_{l+1,2i} = v_{l+1,2i} + v_{l,i} \\ & \{P_u(f_v + v_{l,i}(-\Phi_{l,i} + \Phi_{l+1,2i+1}/2)) \text{ and } X\} \text{ (follows)} \\ &v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2 \\ & \{P_u(f_v - v_{l,i}\Phi_{l,i}) \text{ and } X\} \text{ (follows)} \\ &v_{l,i} = 0 \\ & \{P_u(f_v) \text{ and } X \text{ and } v_{l,i} = 0\} \text{ (follows)} \\ &i = i + 1 \\ & \{P_u(f_v) \text{ and } X\} \text{ (follows)} \end{split}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

4

Proof of the algorithm

$$X := orall I' < I : v_{I',i'} = 0$$
 and $orall i' < i : v_{I,i'} = 0$ and $I \neq n$

$$\{P_{u}(f_{v}) \text{ and } X\}$$

$$\{P_{u}(f_{v} + v_{l,i}(-\Phi_{l,i} + \Phi_{l+1,2i+1}/2 + \Phi_{l+1,2i} + \Phi_{l+1,2i-1}/2)) \text{ and } X\}$$
(proposition)
$$v_{l+1,2i-1} = v_{l+1,2i-1} + v_{l,i}/2$$

$$\{P_{u}(f_{v} + v_{l,i}(-\Phi_{l,i} + \Phi_{l+1,2i+1}/2 + \Phi_{l+1,2i})) \text{ and } X\}$$
(follows)
$$v_{l+1,2i} = v_{l+1,2i} + v_{l,i}$$

$$\{P_{u}(f_{v} + v_{l,i}(-\Phi_{l,i} + \Phi_{l+1,2i+1}/2)) \text{ and } X\}$$
(follows)
$$v_{l+1,2i+1} = v_{l+1,2i+1} + v_{l,i}/2$$

$$\{P_{u}(f_{v} - v_{l,i}\Phi_{l,i}) \text{ and } X\}$$
(follows)
$$v_{l,i} = 0$$

$$\{P_{u}(f_{v}) \text{ and } X \text{ and } v_{l,i} = 0\}$$
(follows)
$$i = i + 1$$

$$\{P_{u}(f_{v}) \text{ and } X\}$$
(follows)

Problem 000000000	Conversion into the nodal point basis	Conversion into the hierarchical basis
Proof of the algorithm		
Proof: End		

The following assertions are equivalent:

•
$$\{P_u(f_v) \text{ and } X\}$$

$$= \{ P_u(f_v + V_{l,i}(\underbrace{-\Phi_{l,i} + \Phi_{l+1,2i+1}/2 + \Phi_{l+1,2i} + \Phi_{l+1,2i-1}/2}_{=0}) \text{ and } X \}$$

Problem 000000000	Conversion into the nodal point basis	Conversion into the hierarchical basis
Proof of the algorithm		
Proof: End		

The following assertions are equivalent:

•
$$\{P_u(f_v) \text{ and } X\}$$

$$= \{P_u(f_v + V_{l,i}(\underbrace{-\Phi_{l,i} + \Phi_{l+1,2i+1}/2 + \Phi_{l+1,2i} + \Phi_{l+1,2i-1}/2}_{=0})) \text{ and } X\}$$

The algorithm terminates in all cases because it consists only of for loops.

qed

Conversion into the nodal point basis

Conversion into the hierarchical basis

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Algorithm for conversion into the hierarchical basis

Representation in the hierarchical basis

How can we represent the function given by the vector v in the hierarchical basis?

Algorithm toHierarchicalBasis:

- input
 - integer n > 1
 - vector v with $\sum_{l=1}^{n} \sum_{i=1}^{2^{l}-1} v_{l,i} \Phi_{l,i} = u$

output

• vector
$$v$$
 with

$$\sum_{l=1}^{n} \sum_{i=1}^{2^{l}-1} v_{l,i} \Phi_{l,i} = u \text{ and } v_{l,i} = 0 \text{ for all even } i$$

Conversion into the nodal point basis

Conversion into the hierarchical basis 0

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Algorithm for conversion into the hierarchical basis

Conversion into the hierarchical basis

Algorithm for conversion of a vector v into the hierarchical basis:

toHierarchicalBasis (wrong!)

for
$$l = n - 1, ..., 1$$
:
for $i = 1, ..., 2^{l} - 1$:
 $v_{l+1,2i-1} = v_{l+1,2i}/2$
 $v_{l+1,2i+1} = v_{l+1,2i}/2$
 $v_{l,i} = v_{l+1,2i}$
 $v_{l+1,2i} = 0$

In the following we prove the correctness of the (corrected) algorithm.

Conversion into the nodal point basis

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Algorithm for conversion into the hierarchical basis

Transformation of the program

We have to transform our program so that it uses only the control structures covered by the Hoare logic:

toHierarchicalBasis (wrong!)
l = n - 1
while $I \neq 0$:
i = 1
while $i \neq 2^{l}$:
$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$
$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$
$v_{l,i} = v_{l+1,2i}$
$v_{l+1,2i}=0$
i = i + 1
l = l - 1

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The outer loop

 $\{P_{\mu}(f_{\nu})\}$ l = n - 1while $I \neq 0$: i = 1while $i \neq 2^{l}$: $v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$ $v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$ $v_{l,i} = v_{l+1,2i}$ $v_{l+1,2i} = 0$ i = i + 1l = l - 1

 $\{P_u(f_v) \text{ and } \forall l' > 1 : v_{l',2i'=0}\}$ (proposition)

Conversion into the nodal point basis

Proof of the algorithm

Proof: The outer loop

$$\{P_{u}(f_{v})\}\$$

$$l = n - 1$$

$$\{P_{u}(f_{v}) \text{ and } \forall l' > l + 1 : v_{l',2i'} = 0\}$$
while $l \neq 0$:
$$i = 1$$
while $i \neq 2^{l}$:
$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

$$v_{l,i} = v_{l+1,2i}$$

$$v_{l+1,2i} = 0$$

$$i = i + 1$$

$$l = l - 1$$

 $\{P_u(f_v) \text{ and } \forall l' > 1 : v_{l',2i'=0}\}$ (proposition)

Conversion into the nodal point basis

Conversion into the hierarchical basis $\circ\circ\circ\bullet\circ\circ\circ\circ\circ\circ$

Proof of the algorithm

Proof: The outer loop

$$\begin{cases} P_{u}(f_{v}) \\ l = n - 1 \\ \{P_{u}(f_{v}) \text{ and } \forall l' > l + 1 : v_{l',2i'} = 0 \} \\ \text{while } l \neq 0 : \\ \{P_{u}(f_{v}) \text{ and } \forall l' > l + 1 : v_{l',2i'} = 0 \text{ and } l \neq 0 \} \\ i = 1 \\ \text{while } i \neq 2^{l} : \\ v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2 \\ v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2 \\ v_{l,i} = v_{l+1,2i} \\ v_{l+1,2i} = 0 \\ i = i + 1 \\ l = l - 1 \\ \{P_{u}(f_{v}) \text{ and } \forall l' > l + 1 : v_{l',2i'} = 0 \} \\ \{P_{u}(f_{v}) \text{ and } \forall l' > 1 : v_{l',2i'=0}\} \text{ (follows)}$$

Conversion into the nodal point basis ${\scriptstyle 00000000}$

Proof of the algorithm

Proof: The inner loop

$$\{P_u(f_v) \text{ and } \forall l' > l+1 : v_{l',2i'} = 0 \text{ and } l \neq 0\}$$

 $i = 1$

while $i \neq 2^{l}$:

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i/2}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i/2}$$

$$v_{l,i} = v_{l+1,2i}$$

$$v_{l+1,2i} = 0$$

$$i = i + 1$$

$$l = l - 1$$

 $\{P_u(f_v) \text{ and } orall l' > l + 1 : v_{l',2i'} = 0\}$ (proposition)

Conversion into the nodal point basis

Proof of the algorithm

Proof: The inner loop

$$X := orall l' > l+1: v_{l',2i'} = 0$$
 and $orall i' < i: v_{l+1,2i'} = 0$ and $l
eq 0$

$$\{P_u(f_v) \text{ and } \forall l' > l+1 : v_{l',2i'} = 0 \text{ and } l \neq 0\}$$

 $i = 1$

while $i \neq 2^{l}$:

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i/2}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i/2}$$

$$v_{l,i} = v_{l+1,2i}$$

$$v_{l+1,2i} = 0$$

$$i = i + 1$$

$$l = l - 1$$

 $\{P_u(f_v) \text{ and } \forall l' > l + 1 : v_{l',2i'} = 0\}$ (proposition)

Conversion into the nodal point basis

Proof of the algorithm

$$X:= orall l' > l+1: v_{l',2i'}=0$$
 and $orall i' < i: v_{l+1,2i'}=0$ and $l
eq 0$

$$\begin{aligned} &\{P_u(f_v) \text{ and } \forall l' > l+1 : v_{l',2i'} = 0 \text{ and } l \neq 0 \\ &i = 1 \\ &\{P_u(f_v) \text{ and } X \} \\ & \text{while } i \neq 2^l : \end{aligned}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i/2}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i/2}$$

$$v_{l,i} = v_{l+1,2i}$$

$$v_{l+1,2i} = 0$$

$$i = i + 1$$

$$l = l - 1$$

 $\{P_u(f_v) \text{ and } \forall l' > l + 1 : v_{l',2i'} = 0\}$ (proposition)

Conversion into the nodal point basis

Proof of the algorithm

$$X:= orall l' > l+1: v_{l',2i'}=0$$
 and $orall i' < i: v_{l+1,2i'}=0$ and $l
eq 0$

$$\begin{aligned} &\{P_u(f_v) \text{ and } \forall l' > l+1 : v_{l',2i'} = 0 \text{ and } l \neq 0 \\ &i = 1 \\ &\{P_u(f_v) \text{ and } X \} \\ & \text{while } i \neq 2^l : \end{aligned}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i/2}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i/2}$$

$$v_{l,i} = v_{l+1,2i}$$

$$v_{l+1,2i} = 0$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } \forall l' > l : v_{l',2i'} = 0 \} \text{ (proposition)}$$

$$l = l - 1$$

$$\{ P_u(f_v) \text{ and } \forall l' > l + 1 : v_{l',2i'} = 0 \} \text{ (follows)}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

$$X:= orall I' > l+1: v_{l',2i'}=0$$
 and $orall i' < i: v_{l+1,2i'}=0$ and $l
eq 0$

```
\{P_{ij}(f_v) \text{ and } \forall l' > l+1 : v_{l',2i'} = 0 \text{ and } l \neq 0\}
i = 1
\{P_{\mu}(f_{\nu}) \text{ and } X\}
while i \neq 2':
     \{P_{\mu}(f_{\nu}) \text{ and } X\}
     v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2
     v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2
                                                               proposition
     v_{l,i} = v_{l+1,2i}
     v_{l+1,2i} = 0
     i = i + 1
     \{P_{\mu}(f_{\nu}) \text{ and } X\}
\{P_{ii}(f_v) \text{ and } \forall l' > l : v_{l'.2i'} = 0\} (follows)
l = l - 1
\{P_{\mu}(f_{\nu}) \text{ and } \forall l' > l+1 : v_{l',2i'} = 0\} (follows)
```

Proof of the algorithm

Proof: The inner block (1)

$$X := orall l' > l + 1 : v_{l',2i'} = 0$$
 and $orall i' < i : v_{l+1,2i'} = 0$ and $l \neq 0$

 $\{P_u(f_v) \text{ and } X\}$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

 $v_{l,i} = v_{l+1,2i}$

 $v_{l+1,2i} = 0$

i = i + 1{ $P_u(f_v)$ and X}

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ▲目 > ▲

Proof of the algorithm

Proof: The inner block (1)

$$X := \forall l' > l+1 : v_{l',2i'} = 0$$
 and $\forall i' < i : v_{l+1,2i'} = 0$ and $l \neq 0$

 $\{P_u(f_v) \text{ and } X\}$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

 $v_{l,i} = v_{l+1,2i}$

$$egin{aligned} &v_{l+1,2i} = 0 \ &\{P_u(f_v) ext{ and } X ext{ and } v_{l+1,2i} = 0\} \ &i = i+1 \ &\{P_u(f_v) ext{ and } X\} \end{aligned}$$

Conversion into the nodal point basis

Proof of the algorithm

Proof: The inner block (1)

$$X := \forall l' > l + 1 : v_{l',2i'} = 0$$
 and $\forall i' < i : v_{l+1,2i'} = 0$ and $l \neq 0$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

$$\begin{aligned} v_{l,i} &= v_{l+1,2i} \\ \{ P_u(f_v - v_{l+1,2i} \Phi_{l+1,2i}) \text{ and } X \} \\ v_{l+1,2i} &= 0 \\ \{ P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0 \} \\ i &= i+1 \\ \{ P_u(f_v) \text{ and } X \} \end{aligned}$$

Conversion into the nodal point basis

Proof of the algorithm

Proof: The inner block (1)

$$X := \forall l' > l + 1 : v_{l',2i'} = 0$$
 and $\forall i' < i : v_{l+1,2i'} = 0$ and $l \neq 0$

 $\{P_u(f_v) \text{ and } X\}$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$\begin{split} v_{l+1,2i+1} &= v_{l+1,2i+1} - v_{l+1,2i}/2 \\ \{ P_u(f_v + v_{l+1,2i}) + v_{l+1,2i} - v_{l,i} \Phi_{l,i} \} \text{ and } X \} \\ v_{l,i} &= v_{l+1,2i} \\ \{ P_u(f_v - v_{l+1,2i} \Phi_{l+1,2i}) \text{ and } X \} \\ v_{l+1,2i} &= 0 \\ \{ P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0 \} \\ i &= i+1 \\ \{ P_u(f_v) \text{ and } X \} \end{split}$$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ▲目 > ▲

Conversion into the nodal point basis

ヘロン 人間と 人間と 人間と

Proof of the algorithm

Proof: The inner block (1)

$$X := orall l' > l+1: v_{l',2i'} = 0$$
 and $orall i' < i: v_{l+1,2i'} = 0$ and $l \neq 0$

$$\begin{aligned} & v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2 \\ & \{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \} \\ & v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2 \\ & \{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i}) - v_{l,i}\Phi_{l,i}) \text{ and } X \} \\ & v_{l,i} = v_{l+1,2i} \\ & \{ P_u(f_v - v_{l+1,2i}\Phi_{l+1,2i}) \text{ and } X \} \\ & v_{l+1,2i} = 0 \\ & \{ P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0 \} \\ & i = i + 1 \\ & \{ P_u(f_v) \text{ and } X \} \end{aligned}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

4

Proof of the algorithm

$$X:=orall I'>I+1:v_{I',2i'}=0$$
 and $orall i'< i:v_{I+1,2i'}=0$ and $I
eq 0$

$$\{P_u(f_v) \text{ and } X\}$$

$$\{P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2 - \Phi_{l+1,2i-1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X\}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$\{P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X\}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

$$\{P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i}) - v_{l,i}\Phi_{l,i}) \text{ and } X\}$$

$$v_{l,i} = v_{l+1,2i}$$

$$\{P_u(f_v - v_{l+1,2i}\Phi_{l+1,2i}) \text{ and } X\}$$

$$v_{l+1,2i} = 0$$

$$\{P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0\}$$

$$i = i + 1$$

$$\{P_u(f_v) \text{ and } X\}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Proof of the algorithm

Proof: The inner block (2)

We would have to show that the following assertions are equivalent:

- $\{P_u(f_v) \text{ and } X\}$
- { $P_u(f_v + v_{l+1,2i}(\Phi_{l,i} \Phi_{l+1,2i} \Phi_{l+1,2i+1}/2 \Phi_{l+1,2i-1}/2) v_{l,i}\Phi_{l,i})$ and X}

Conversion into the nodal point basis

Conversion into the hierarchical basis

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Proof of the algorithm

Proof: The inner block (2)

We would have to show that the following assertions are equivalent:

- $\{P_u(f_v) \text{ and } X\}$
- $\{P_u(f_v + v_{l+1,2i}(\Phi_{l,i} \Phi_{l+1,2i} \Phi_{l+1,2i+1}/2 \Phi_{l+1,2i-1}/2) v_{l,i}\Phi_{l,i}\}$

We already know that

$$\Phi_{l,i} = \frac{\Phi_{l+1,2i-1}}{2} + \Phi_{l+1,2i} + \frac{\Phi_{l+1,2i+1}}{2}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Proof of the algorithm

Proof: The inner block (2)

We would have to show that the following assertions are equivalent:

•
$$\{P_u(f_v) \text{ and } X\}$$

 $\{P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2 - \Phi_{l+1,2i-1}/2) - v_{l,i}\Phi_{l,i}\}$

We already know that

$$\Phi_{l,i} = \frac{\Phi_{l+1,2i-1}}{2} + \Phi_{l+1,2i} + \frac{\Phi_{l+1,2i+1}}{2}$$

So something is wrong with $-v_{I,i}\Phi_{I,i}$.

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2 - \Phi_{l+1,2i-1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i}) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l,i} = v_{l+1,2i}$$

$$\{ P_u(f_v - v_{l+1,2i}\Phi_{l+1,2i}) \text{ and } < X \}$$

$$v_{l+1,2i} = 0$$

$$\{ P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0 \}$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } X \}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2 - \Phi_{l+1,2i-1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i}) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l,i} = v_{l+1,2i}$$

$$\{ P_u(f_v - v_{l+1,2i}\Phi_{l+1,2i}) \text{ and } < X \}$$

$$v_{l+1,2i} = 0$$

$$\{ P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0 \}$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } X \}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2 - \Phi_{l+1,2i-1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i}) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l,i} = v_{l+1,2i}$$

$$\{ P_u(f_v - v_{l+1,2i}\Phi_{l+1,2i}) \text{ and } < X \}$$

$$v_{l+1,2i} = 0$$

$$\{ P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0 \}$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } X \}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2 - \Phi_{l+1,2i-1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i}) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l,i} = v_{l+1,2i}$$

$$\{ P_u(f_v - v_{l+1,2i}\Phi_{l+1,2i}) \text{ and } < X \}$$

$$v_{l+1,2i} = 0$$

$$\{ P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0 \}$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } X \}$$

Conversion into the nodal point basis

Conversion into the hierarchical basis

Proof of the algorithm

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2 - \Phi_{l+1,2i-1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i}) - v_{l,i}\Phi_{l,i}) \text{ and } X \}$$

$$v_{l,i} = v_{l+1,2i}$$

$$\{ P_u(f_v - v_{l+1,2i}\Phi_{l+1,2i}) \text{ and } < X \}$$

$$v_{l+1,2i} = 0$$

$$\{ P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0 \}$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } X \}$$
Conversion into the nodal point basis ${\tt 000000000}$

Conversion into the hierarchical basis

Proof of the algorithm

Proof: The inner block (corrected)

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2 - \Phi_{l+1,2i-1}/2)) \text{ and } X \}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2)) \text{ and } X \}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i})) \text{ and } X \}$$

$$v_{l,i} = v_{l,i} + v_{l+1,2i}$$

$$\{ P_u(f_v - v_{l+1,2i}\Phi_{l+1,2i}) \text{ and } < X \}$$

$$v_{l+1,2i} = 0$$

$$\{ P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0 \}$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } X \}$$

Proof of the algorithm

Proof: The inner block (corrected)

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v) \text{ and } X \}$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2 - \Phi_{l+1,2i-1}/2)) \text{ and } X \}$$

$$v_{l+1,2i-1} = v_{l+1,2i-1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i} - \Phi_{l+1,2i+1}/2)) \text{ and } X \}$$

$$v_{l+1,2i+1} = v_{l+1,2i+1} - v_{l+1,2i}/2$$

$$\{ P_u(f_v + v_{l+1,2i}(\Phi_{l,i} - \Phi_{l+1,2i})) \text{ and } X \}$$

$$v_{l,i} = v_{l,i} + v_{l+1,2i}$$

$$\{ P_u(f_v - v_{l+1,2i}\Phi_{l+1,2i}) \text{ and } < X \}$$

$$v_{l+1,2i} = 0$$

$$\{ P_u(f_v) \text{ and } X \text{ and } v_{l+1,2i} = 0 \}$$

$$i = i + 1$$

$$\{ P_u(f_v) \text{ and } X \}$$

qed

Conversion into the nodal point basis ${\tt 000000000}$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Proof of the algorithm

Coversion into the the hierarchical basis (corrected)

So we have the following corrected algorithm for converting a vector v into the hierarchical basis:

toHierarchicalBasis

for
$$l = n - 1, ..., 1$$
:
for $i = 1, ..., 2^{l} - 1$:
 $v_{l+1,2i-1} = v_{l+1,2i}/2$
 $v_{l+1,2i+1} = v_{l+1,2i}/2$
 $v_{l,i} + v_{l+1,2i}$
 $v_{l+1,2i} = 0$

Obviously the algorithm terminates in all cases :)

Conversion into the nodal point basis

Conversion into the hierarchical basis $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

Proof of the algorithm

Conclusion

We have seen:

- How we can prove the correctness of an algorithm
- How we can find bugs with the Hoare logic

Conversion into the nodal point basis

Conversion into the hierarchical basis $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Proof of the algorithm

Conclusion

We have seen:

- How we can prove the correctness of an algorithm
- How we can find bugs with the Hoare logic

This presentation is based on a presentation by Samuel Kerschbaumer.

Conversion into the nodal point basis

Conversion into the hierarchical basis $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Proof of the algorithm

Conclusion

We have seen:

- How we can prove the correctness of an algorithm
- How we can find bugs with the Hoare logic

Thank you for your attention!

This presentation is based on a presentation by Samuel Kerschbaumer.